Proceedings of International Conference on Applied Innovation in IT
2025/06/27, Volume 13, Issue 2, pp.113-123
Alzheimer’s Disease Detection Using Optimized Vision Transformer
Nasrallah Asem Al-Sultani, Alaa Taima Albu-Salih and Osama Majeed Hilal Abstract: Alzheimer's disease (AD) is a complex, progressive neurodegenerative condition that affects millions of people worldwide, making early diagnosis critical for effective treatment and clinical management to improve quality of life. In this study, we present an automated classification framework based on the Vision Transformer (ViT) model optimized with a modified hippopotamus optimization algorithm (M-HOA). Unlike traditional models that rely solely on ViTs or convolutional networks, the M-HOA algorithm is used to fine–tune key hyperparameters of the ViT model, improving feature extraction and classification accuracy. The model was evaluated on the ADNI dataset, which covers three diagnostic categories (AD, MCI, and NC). Experiments demonstrated that the proposed M-HOA-ViT model outperforms both the baseline and optimized ViT architectures, achieving a classification accuracy of 97.90%. The results indicate that integrating metaheuristic optimization with ViT significantly improves diagnostic accuracy, providing a robust and scalable approach for the early detection of Alzheimer's disease.
Keywords: Alzheimer's Disease, Vision Transformer, Hippopotamus Optimization Algorithm, OViT, ADNI Dataset.
DOI: 10.25673/120411
Download: PDF
References:
- H. Jahn, "Memory loss in Alzheimer’s disease," Dialogues Clin. Neurosci., vol. 15, no. 4, pp. 445-454, Dec. 2013, [Online]. Available: https://doi.org/10.31887/DCNS.2013.15.4/hjahn.
- Z. Zhang and F. Khalvati, "Introducing Vision Transformer for Alzheimer’s Disease classification task with 3D input," arXiv Prepr. arXiv2210.01177, 2022, [Online]. Available: https://doi.org/10.48550/arXiv.2210.01177.
- "2022 Alzheimer’s disease facts and figures," Alzheimers Dement., vol. 18, no. 4, pp. 700-789, Apr. 2022, [Online]. Available: https://doi.org/10.1002/alz.12638.
- Z. Breijyeh and R. Karaman, "Comprehensive Review on Alzheimer’s Disease: Causes and Treatment," Molecules, vol. 25, no. 24, p. 5789, Dec. 2020, [Online]. Available: https://doi.org/10.3390/molecules25245789.
- Q. Behfar, A. Ramirez Zuniga, and P. V. Martino-Adami, "Aging, Senescence, and Dementia," J. Prev. Alzheimers Dis., vol. 9, no. 3, pp. 523-531, Jul. 2022, [Online]. Available: https://doi.org/10.14283/jpad.2022.42.
- M. Bruscoli and S. Lovestone, "Is MCI really just early dementia? A systematic review of conversion studies," Int. Psychogeriatr., vol. 16, no. 2, pp. 129-140, Jun. 2004, [Online]. Available: https://doi.org/10.1017/S1041610204000092.
- A. Lakhan, T.-M. Grønli, G. Muhammad, and P. Tiwari, "EDCNNS: Federated learning enabled evolutionary deep convolutional neural network for Alzheimer disease detection," Appl. Soft Comput., vol. 147, p. 110804, Nov. 2023, [Online]. Available: https://doi.org/10.1016/j.asoc.2023.110804.
- For the Alzheimer’s Disease Neuroimaging Initiative, A. Chandra, G. Dervenoulas, and M. Politis, "Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment," J. Neurol., vol. 266, no. 6, pp. 1293-1302, Jun. 2019, [Online]. Available: https://doi.org/10.1007/s00415-018-9016-3.
- A. A. Hasan, A. T. A. Salih, and A. Ghandour, "Lung Cancer Detection using Evolutionary Machine learning and Deep learning: A survey," in 2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS), Al-Qadisyia, Iraq: IEEE, Mar. 2023, pp. 129-133, [Online]. Available: https://doi.org/10.1109/ICITAMS57610.2023.10525500.
- S. E. Sorour, A. A. A. El-Mageed, K. M. Albarrak, A. K. Alnaim, A. A. Wafa, and E. El-Shafeiy, "Classification of Alzheimer’s disease using MRI data based on Deep Learning Techniques," J. King Saud Univ. - Comput. Inf. Sci., vol. 36, no. 2, p. 101940, Feb. 2024, [Online]. Available: https://doi.org/10.1016/j.jksuci.2024.101940.
- A. Vaswani et al., "Attention is all you need," Adv. Neural Inf. Process. Syst., vol. 30, 2017.
- A. Dosovitskiy et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," arXiv Prepr. arXiv2010.11929, 2020, [Online]. Available: https://doi.org/10.48550/arXiv.2010.11929.
- Y. Liu et al., "A Survey of Visual Transformers," IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 6, pp. 7478-7498, Jun. 2024, [Online]. Available: https://doi.org/10.1109/TNNLS.2022.3227717.
- S. Takahashi et al., "Comparison of Vision Transformers and Convolutional Neural Networks in Medical Image Analysis: A Systematic Review," J. Med. Syst., vol. 48, no. 1, Sep. 2024, [Online]. Available: https://doi.org/10.1007/s10916-024-02105-8.
- S. Sarraf, A. Sarraf, D. D. DeSouza, J. A. E. Anderson, M. Kabia, and The Alzheimer’s Disease Neuroimaging Initiative, "OViTAD: Optimized Vision Transformer to Predict Various Stages of Alzheimer’s Disease Using fMRI and Structural MRI Data," Brain Sci., vol. 13, no. 2, p. 260, Feb. 2023, [Online]. Available: https://doi.org/10.3390/brainsci13020260.
- U. Khatri and G.-R. Kwon, "Training vision transformer with gradient centralization optimizer for Alzhemier’s disease small dataset increase the diagnostic accuracy," Jan. 2024, [Online]. Available: https://doi.org/10.36227/techrxiv.170594593.30710633/v1.
- M. Odusami, R. Maskeliūnas, and R. Damaševičius, "Pixel-Level Fusion Approach with Vision Transformer for Early Detection of Alzheimer’s Disease," Electronics, vol. 12, no. 5, p. 1218, Mar. 2023, [Online]. Available: https://doi.org/10.3390/electronics12051218.
- R. C. Poonia and H. A. Al-Alshaikh, "Ensemble approach of transfer learning and vision transformer leveraging explainable AI for disease diagnosis: An advancement towards smart healthcare 5.0," Comput. Biol. Med., vol. 179, p. 108874, Sep. 2024, [Online]. Available: https://doi.org/10.1016/j.compbiomed.2024.108874.
- Y. Yin, W. Jin, J. Bai, R. Liu, and H. Zhen, "SMIL-DeiT: Multiple Instance Learning and Self-supervised Vision Transformer network for Early Alzheimer’s disease classification," in 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy: IEEE, Jul. 2022, pp. 1-6, [Online]. Available: https://doi.org/10.1109/IJCNN55064.2022.9892524.
- F. Huang and A. Qiu, "Ensemble Vision Transformer for Dementia Diagnosis," IEEE J. Biomed. Health Inform., vol. 28, no. 9, pp. 5551-5561, Sep. 2024, [Online]. Available: https://doi.org/10.1109/JBHI.2024.3412812.
- A. Sen, U. Sen, and S. Roy, "A Comparative Analysis on Metaheuristic Algorithms Based Vision Transformer Model for Early Detection of Alzheimer’s Disease," in 2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN), Dec. 2023, pp. 200-205, [Online]. Available: https://doi.org/10.1109/CICN59264.2023.10402213.
- S. M. A. H. Shah, M. Q. Khan, A. Rizwan, S. U. Jan, N. A. Samee, and M. M. Jamjoom, "Computer-aided diagnosis of Alzheimer’s disease and neurocognitive disorders with multimodal Bi-Vision Transformer (BiViT)," Pattern Anal. Appl., vol. 27, no. 3, p. 76, Sep. 2024, [Online]. Available: https://doi.org/10.1007/s10044-024-01297-6.
- J. He et al., "TransFG: A Transformer Architecture for Fine-Grained Recognition," Proc. AAAI Conf. Artif. Intell., vol. 36, no. 1, pp. 852-860, Jun. 2022, [Online]. Available: https://doi.org/10.1609/aaai.v36i1.19967.
- M. H. Amiri, N. Mehrabi Hashjin, M. Montazeri, S. Mirjalili, and N. Khodadadi, "Hippopotamus optimization algorithm: a novel nature-inspired optimization algorithm," Sci. Rep., vol. 14, no. 1, p. 5032, Feb. 2024, [Online]. Available: https://doi.org/10.1038/s41598-024-54910-3.
- M. A. Murillo-Escobar, C. Cruz-Hernández, L. Cardoza-Avendaño, and R. Méndez-Ramírez, "A novel pseudorandom number generator based on pseudorandomly enhanced logistic map," Nonlinear Dyn., vol. 87, no. 1, pp. 407-425, Jan. 2017, [Online]. Available: https://doi.org/10.1007/s11071-016-3051-3.
- X. Mu et al., "Alzheimer Classification Based on Convolutional Neural Network and Vision Transformer," in 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML), Chengdu, China: IEEE, Nov. 2023, pp. 329-334, [Online]. Available: https://doi.org/10.1109/ICICML60161.2023.10424819.
- Y. Lyu, X. Yu, D. Zhu, and L. Zhang, "Classification of Alzheimer’s Disease via Vision Transforme," in Proceedings of the 15th International Conference on PErvasive Technologies Related to Assistive Environments, Corfu, Greece: ACM, Jun. 2022, pp. 463-468, [Online]. Available: https://doi.org/10.1145/3529190.3534754.
|

HOME

- Conference
- Journal
- Paper Submission to Journal
- For Authors
- For Reviewers
- Important Dates
- Conference Committee
- Editorial Board
- Reviewers
- Last Proceedings

PROCEEDINGS
-
Volume 13, Issue 2 (ICAIIT 2025)
-
Volume 13, Issue 1 (ICAIIT 2025)
-
Volume 12, Issue 2 (ICAIIT 2024)
-
Volume 12, Issue 1 (ICAIIT 2024)
-
Volume 11, Issue 2 (ICAIIT 2023)
-
Volume 11, Issue 1 (ICAIIT 2023)
-
Volume 10, Issue 1 (ICAIIT 2022)
-
Volume 9, Issue 1 (ICAIIT 2021)
-
Volume 8, Issue 1 (ICAIIT 2020)
-
Volume 7, Issue 1 (ICAIIT 2019)
-
Volume 7, Issue 2 (ICAIIT 2019)
-
Volume 6, Issue 1 (ICAIIT 2018)
-
Volume 5, Issue 1 (ICAIIT 2017)
-
Volume 4, Issue 1 (ICAIIT 2016)
-
Volume 3, Issue 1 (ICAIIT 2015)
-
Volume 2, Issue 1 (ICAIIT 2014)
-
Volume 1, Issue 1 (ICAIIT 2013)

PAST CONFERENCES
ICAIIT 2025
-
Photos
-
Reports
ICAIIT 2024
-
Photos
-
Reports
ICAIIT 2023
-
Photos
-
Reports
ICAIIT 2021
-
Photos
-
Reports
ICAIIT 2020
-
Photos
-
Reports
ICAIIT 2019
-
Photos
-
Reports
ICAIIT 2018
-
Photos
-
Reports
ETHICS IN PUBLICATIONS
ACCOMODATION
CONTACT US
|
|