Proceedings of International Conference on Applied Innovation in IT
2025/06/27, Volume 13, Issue 2, pp.403-410

Investigations of Some Physical Properties and Sensing Properties of Fluorine-Doped Alpha-Iron (III) Oxide Thin Films


Israa Akram Abbas, Oday Ali Chichan, Tahseen H. Mubarak, Shaymaa A. Hussein, Sami Salman Chiad, Nadir Fadhil Habubi and Yassin Hasan Kadhim


Abstract: Fluorine-doped α-Fe₂O₃ nanostructure films were deposit by a facile Spray Pyrolysis (SP), The F dopant concentration was varied incrementally at 0%, 2%, and 4% by weight. XRD analyses exhibit well-defined diffraction peaks corresponding to the (017), (113), (119), and (220) planes, assure α-Fe₂O₃ (hematite) phase without any secondary phases. The crystallite size of hematite rose from 13.98 nm to 16.78 nm with rising fluorine content, suggesting enhanced crystal growth due to doping. Atomic Force Microscopy (AFM) images reveal uniformly distributed grain sizes with a smooth surface texture free of cracks or pinholes. Additionally, the surface morphology and grain dimensions were noticeably affected by the dopant concentration. Optical characterization revealed a decrease in transmittance with rising fluorine content, reaching 65% at 600 nm, accompanied by a blue shift in the optical band gap, indicating increased energy transitions in the doped films.

Keywords: Spray Pyrolysis, SPD, ZnS, In: ZnS, Optical, XRD, AFM, Band Gap Energy and Structural.

DOI: 10.25673/120511

Download: PDF

References:

  1. M. Toghraei and H. Siadati, "Electrodeposited co-pi catalyst on α-Fe₂O₃ photoanode for water-splitting applications," International Journal of Engineering, Transactions C: Aspects, vol. 31, no. 12, pp. 2085-2091, 2018.
  2. K. D. Salman, "Synthesis and characterization unsaturated polyester resin nanocomposites reinforced by Fe₂O₃+Ni nanoparticles: Influence on mechanical and magnetic properties," International Journal of Engineering, Transactions A: Basics, vol. 35, no. 1, pp. 21-28, 2022.
  3. A. Boudjemaa, S. Boumazaa, M. Trari, R. Bouarab, and A. Bouguelia, "Physical and photo-electrochemical characterizations of α-Fe₂O₃ – application for hydrogen production," Int. J. Hydrogen Energy, vol. 34, pp. 4268-4274, 2009.
  4. N. Beermann, L. Vayssieres, S. E. Lindquist, and A. Hagfeldt, "Photoelectrochemical studies of oriented nanorod thin films of hematite," J. Electrochem. Soc., vol. 147, pp. 2456-2461, 2000.
  5. S. Shen, P. Guo, D. A. Wheeler, J. Jiang, S. A. Lindley, C. X. Kronawitter, J. Z. Zhang, L. Guo, and S. S. Mao, "Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays," Nanoscale, vol. 5, p. 9867, 2013.
  6. G. Wang, Y. Ling, D. A. Wheeler, K. E. N. George, K. Horsley, C. Heske, J. Z. Zhang, and Y. Li, "Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation," Nano Lett., vol. 11, pp. 3503-3509, 2011.
  7. M. Z. Dang, D. G. Rancourt, J. E. Dutrizac, G. Lamarche, and R. Provencher, "Interplay of surface conditions, particle size, stoichiometry, cell parameters, and magnetism in synthetic hematite-like materials," Hyperfine Interact., vol. 117, pp. 271-319, 1998.
  8. S. Zeng, K. Tang, and T. Li, "Controlled synthesis of α-Fe₂O₃ nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties," J. Colloid Interface Sci., vol. 312, pp. 513-521, 2007.
  9. D. Varshney and A. Yogi, "Structural and electrical conductivity of Mn doped hematite (α-Fe₂O₃) phase," J. Mol. Struct., vol. 995, pp. 157-162, 2011.
  10. C. L. Bruzzone, Ingalls, and R. Mossbauer, "Effect study of the Morin transition and atomic positions in hematite under pressure," Phys. Rev. B, vol. 28, pp. 2430-2440, 1983.
  11. E. Gharibshahian, "The effect of polyvinyl alcohol concentration on the growth kinetics of KTiOPO₄ nanoparticles synthesized by the co-precipitation method," HighTech and Innovation Journal, vol. 1, no. 4, pp. 187-193, 2020.
  12. P. H. Kien, Y. Khamphone, and G. T. T. Trang, "Study of effect of size on iron nanoparticle by molecular dynamics simulation," HighTech and Innovation Journal, vol. 2, no. 3, pp. 158-167, 2021.
  13. M. Hosseingholi, "Room temperature synthesis of n-doped urchin-like rutile TiO₂ nanostructure with enhanced photocatalytic activity under sunlight," International Journal of Engineering, Transactions A: Basics, vol. 28, no. 10, pp. 1401-1407, 2015.
  14. N. T. Hahn and C. B. Mullins, "Photoelectrochemical enhancement in Ti- and Sn-doped α-Fe₂O₃ nanostructured photoanodes," Chem. Mater., vol. 22, pp. 6474-6482, 2010.
  15. G. G. Amatucci and N. Pereira, "Fluoride based electrode materials for advanced energy storage devices," J. Fluorine Chem., vol. 128, pp. 243-262, 2007.
  16. T. Mueller, G. Hautier, A. Jain, and G. Ceder, "Evaluation of tavorite-structured cathode materials for lithium-ion batteries using high-throughput computing," Chem. Mater., vol. 23, pp. 3854-3862, 2011.
  17. K.-S. Park, P. Xiao, S.-Y. Kim, A. G. Dylla, Y.-M. Choi, G. Henkelman, et al., "Enhanced charge-transfer kinetics by anion surface modification of LiFePO₄," Chem. Mater., vol. 24, no. 16, pp. 3212-3218, 2012, [Online]. Available: https://doi.org/10.1021/cm301569m.
  18. G. G. Amatucci, N. Pereira, T. Zheng, and J.-M. Tarascon, "Failure mechanism and improvement of the elevated temperature cycling of LiMn₂O₄ compounds through the use of the LiAlₓMn₂-xO₄-zFz solid solution," J. Electrochem. Soc., vol. 148, p. A171, 2001.
  19. S. B. Lee, S. H. Cho, V. Aravindan, H. S. Kim, and Y. S. Lee, " Improved Cycle Performance of Sulfur-Doped LiFePO4 Material at High Temperatures," Bull. Korean Chem. Soc., vol. 30, pp. 2223-2226, 2009.
  20. J. Hu and R. G. Gordon, " Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells," Solar Cells, vol. 30, pp. 437-450, 1991.
  21. M. Eslamian, M. Ahmed, and N. Ashgriz, "Modelling of nanoparticle formation during spray pyrolysis," Nanotechnology, vol. 17, pp. 1674-1685, 2006.
  22. K. Okuyama and I. W. Lenggoro, "Preparation of nanoparticles via spray route," Chem. Eng. Sci., vol. 58, pp. 537-547, 2003.
  23. L. Filipovic, S. Selberherr, G. C. Mutinati, et al., "Modeling spray pyrolysis deposition," vol. 6, 2013.
  24. K. Karthikeyan, S. Amaresh, S. N. Lee, V. Aravindan, and Y. S. Lee, "Fluorine-doped Fe₂O₃ as high energy density electroactive material for hybrid supercapacitor applications," Chem. Asian J., vol. 9, pp. 852-857, 2014.
  25. A. Patterson, "The Scherrer formula for x-ray particle size determination," Phys. Rev., vol. 56, no. 10, pp. 987-982, 1939.
  26. S. S. Chiad, A. S. Alkelaby, and K. S. Sharba, "Optical conduct of nanostructure Co₃O₄ rich highly doping Co₃O₄:Zn alloys," Journal of Global Pharma Technology, vol. 11, no. 7, pp. 662-665, 2020.
  27. P. Malliga, J. Pandiarajan, N. Prithivikumaran, and K. Neyvasagam, "Influence of film thickness on structural and optical properties of sol-gel spin coated TiO₂ thin film," IOSR J. Appl. Phys., vol. 6, pp. 22-28, 2014.
  28. K. H. Kim, K. C. Park, and D. Y. Ma, "Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by rf magnetron sputtering," J. Appl. Phys., vol. 81, p. 7764, 1997.
  29. V. D. Mote, V. R. Huse, and B. N. Dole, "Synthesis and characterization of Cr doped ZnO nanocrystals," World Journal of Condensed Matter Physics, vol. 2, pp. 208-211, 2012.
  30. K. Ozcelik and C. Ergun, "Synthesis, characterization, and antibacterial activity of cobalt doped (α-Fe₂O₃) thin films," Ceram. Int., vol. 41, no. 2, p. 1994, 2015.
  31. S. Shinde, R. Bansode, C. Bhosale, and K. Rajpure, "Physical properties of hematite α-Fe₂O₃ thin films: Application to photoelectrochemical solar cells," Journal of Semiconductors, vol. 32, no. 1, 013001, 2011, doi:10.1088/1674-4926/32/1/013001.
  32. R. Satheesh, K. Vignesh, A. Suganthi, and M. Rajarajan, "Visible light responsive photocatalytic applications of transition metal (M = Cu, Ni and Co) doped α-Fe₂O₃ nanoparticles," Journal of Environmental Chemical Engineering, vol. 2, no. 4, p. 1956, 2014, [Online]. Available: https://pure.atu.ie/en/publications/visible-light-responsive-photocatalytic-applications-of-transitio.
  33. J. Simmons and K. S. Potter, Optical Materials, 1st ed., Academic Press, New York, 1999, [Online]. Available: https://books.google.com/books/about/Optical_Materials.html?id=jeWB-6K5u3EC.
  34. P. E. Agbo and M. N. Nnabuchi, "Growth and optical properties of nanocrystalline CdS thin films prepared by spray pyrolysis," Chalcogenide Letters, vol. 8, p. 273, 2011.
  35. Y. A. AL Shaabani, "Studying some physical properties of Zn₂xCu₁-xIn₁-xS₂ thin films prepared by chemical spray pyrolysis," Applied Sciences University of Technology, 2009.
  36. R. S. Ali, M. K. Mohammed, A. A. Khadayeir, Z. M. Abood, N. F. Habubi, and S. S. Chiad, "Structural and optical characterization of sprayed nanostructured indium doped Fe₂O₃ thin films," J. Phys.: Conf. Ser., vol. 1664, no. 1, 012016, 2020.
  37. M. Matsuoka, M. Kitano, M. Takeuchi, K. Tsujimaru, M. Anpo, and J. M. Thomas, "Photocatalysis for new energy production: Recent advances in photocatalytic water splitting reactions for hydrogen production," Catal. Today, vol. 122, p. 51, 2007, doi:10.1016/j.cattod.2007.01.042.
  38. A. A. Khadayeir, R. I. Jasim, S. H. Jumaah, N. F. Habubi, and S. S. Chiad, "Influence of substrate temperature on physical properties of nanostructured ZnS thin films," J. Phys.: Conf. Ser., vol. 1664, no. 1, 2020.
  39. S. Wang, W. Wang, W. Wang, Z. Jiao, J. Liu, and Y. Qian, "Characterization and gas-sensing properties of nanocrystalline iron (III) oxide films prepared by ultrasonic spray pyrolysis on silicon," Sensors and Actuators B: Chemical, vol. 69, pp. 22-27, 2000.
  40. E. Lee, G. Jang, C. Kim, and D. Yoon, "Fabrication and gas sensing properties of α-Fe₂O₃ thin film prepared by plasma enhanced chemical vapor deposition (PECVD)," Sensors and Actuators B: Chemical, vol. 77, pp. 221-227, 2001.
  41. Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, and T. Wang, "Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe₂O₃ nanostructures toward H₂S," Mater. Sci. Eng. B, vol. 176, pp. 600-605, 2011.
  42. K. L. Hardee and A. J. Bard, "Semiconductor electrodes. 10. Photoelectrochemical behavior of several polycrystalline metal-oxide electrodes in aqueous solutions," J. Electrochem. Soc., vol. 124, p. 215, 1977.
  43. H. T. Salloom, E. H. Hadi, N. F. Habubi, S. S. Chiad, M. Jadan, and J. S. Addasi, "Characterization of silver content upon properties of nanostructured nickel oxide thin films," Digest Journal of Nanomaterials and Biostructures, vol. 15, no. 4, pp. 1189-1195, 2020.
  44. R. S. Ali, N. A. H. Al Aaraji, E. H. Hadi, K. H. Abass, N. F. Habubi, and S. S. Chiad, "Effect of lithium on structural and optical properties of nanostructured CuS thin films," Journal of Nanostructures, vol. 10, no. 4, pp. 810-816, 2020.
  45. A. Z. Moshfegh, R. Azimirad, and O. Akhavan, "Optical properties and surface morphology of evaporated (WO₃)₁-x–(Fe₂O₃)x thin films," Thin Solid Films, vol. 484, pp. 124-131, 2005.
  46. J. A. Glasscock, P. R. F. Barnes, I. C. Plumb, and N. Savvides, "Enhancement of photoelectron chemical hydrogen production from hematite thin films by the introduction of Ti and Si," J. Phys. Chem. C, vol. 111, pp. 16477-16488, 2007.
  47. A. K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press Inc., San Diego, 1994.
  48. W. Wenjian, M. Ma, P. Du, Z. Gaoling, G. Shen, J. Wang, and G. Han, "Superhydrophilic Fe doped titanium dioxide thin films prepared by a spray pyrolysis deposition," Surf. Coat. Technol., vol. 198, pp. 340-344, 2005.
  49. E. F. Keskenler, G. Turgut, and S. Dogan, "Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium," Superlattices Microstruct., vol. 52, pp. 107-115, 2012.
  50. J. I. Pankov, Optical Processes in Semiconductors, 1971.
  51. J. Kaur and M. Sharma, "Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic application," Superlattices Microstruct., vol. 77, pp. 35-53, 2015.
  52. M. A. Kaid and A. Ashour, "Preparation of ZnO-doped Al films by spray pyrolysis technique," Appl. Surf. Sci., vol. 253, pp. 3029-3033, 2007.
  53. U. Schwertmann, R. W. Fitzpatrick, R. M. Taylor, and D. G. Lewis, "The influence of aluminum on iron oxide. Part II. Preparation and properties of Al-substituted hematites," Clays Clay Miner., vol. 27, no. 2, pp. 105-112, 1979.
  54. D. G. Schulze and U. Schwertmann, "The influence of aluminum on iron oxides. XIII. Properties of goethites synthesized in 0.3 M KOH at 25°C," Clay Miner., vol. 22, pp. 83-92, 1987.
  55. M. R. Belkhedkar, A. U. Ubale, Y. S. Sakhare, N. Zubair, and M. Musaddique, "Characterization and antibacterial activity of nanocrystalline Mn doped Fe₂O₃ thin films grown by successive ionic layer adsorption and reaction method," Journal of the Association of Arab Universities for Basic and Applied Sciences, vol. 21, pp. 38-44, 2016.
  56. Y. H. Elbashar and H. A. Abd El-Ghany, "Optical spectroscopic analysis of Fe₂O₃ doped CuO containing phosphate glass," Opt. Quant. Electron., vol. 49, p. 310, 2017.
  57. J. H. Park, S. Kim, and A. J. Bard, "Novel carbon-doped TiO₂ nanotube arrays with high aspect ratios for efficient solar water splitting," Nano Letters, vol. 6, p. 24, 2006, [Online]. Available: http://bard.cm.utexas.edu/styled-5/styled-26/
  58. K. G. Mor, H. E. Prakasam, O. K. Varghese, K. Shankar, and C. A. Grimes, "High-aspect-ratio TiO₂ nanotube arrays prepared by anodic oxidation of titanium," Nano Letters, vol. 7, no. 8, pp. 2356–2364, 2007.
  59. C. D. Park, D. Magana, and A. E. Stiegman, "High-quality Fe and γ-Fe₂O₃ magnetic thin films from an epoxide-catalyzed sol–gel process," Chemistry of Materials, vol. 19, pp. 677–683, 2007.
  60. X. W. Li, A. Gupta, G. Xiao, and G. Q. Gong, "Transport and magnetic properties of epitaxial and polycrystalline magnetite thin films," Journal of Applied Physics, vol. 83, pp. 7049–7051, 1998.


    HOME

       - Conference
       - Journal
       - Paper Submission to Journal
       - For Authors
       - For Reviewers
       - Important Dates
       - Conference Committee
       - Editorial Board
       - Reviewers
       - Last Proceedings


    PROCEEDINGS

       - Volume 13, Issue 2 (ICAIIT 2025)
       - Volume 13, Issue 1 (ICAIIT 2025)
       - Volume 12, Issue 2 (ICAIIT 2024)
       - Volume 12, Issue 1 (ICAIIT 2024)
       - Volume 11, Issue 2 (ICAIIT 2023)
       - Volume 11, Issue 1 (ICAIIT 2023)
       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


    PAST CONFERENCES

       ICAIIT 2025
         - Photos
         - Reports

       ICAIIT 2024
         - Photos
         - Reports

       ICAIIT 2023
         - Photos
         - Reports

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports

    ETHICS IN PUBLICATIONS

    ACCOMODATION

    CONTACT US

 

        

         Proceedings of the International Conference on Applied Innovations in IT by Anhalt University of Applied Sciences is licensed under CC BY-SA 4.0


                                                   This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


           ISSN 2199-8876
           Publisher: Edition Hochschule Anhalt
           Location: Anhalt University of Applied Sciences
           Email: leiterin.hsb@hs-anhalt.de
           Phone: +49 (0) 3496 67 5611
           Address: Building 01 - Red Building, Top floor, Room 425, Bernburger Str. 55, D-06366 Köthen, Germany

        site traffic counter

Creative Commons License
Except where otherwise noted, all works and proceedings on this site is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.