10.25673/118131">


Proceedings of International Conference on Applied Innovation in IT
2024/11/30, Volume 12, Issue 2, pp.173-183

Comparative Analysis of LSTM-Based PV Power Forecasting Models with Climate-Adaptive Feature Selection in Abuja, Nigeria


David Akpuluma, Wolf-Gerrit Früh, Neda Firoz, James Abam, Mohammed Umar Bello, Comfort Williams and Ambrose Onne Okpu


Abstract: In this research, we analyse how Long Short-Term Memory (LSTM) models can predict photovoltaic (PV) power output, in Abuja, Nigeria by selecting specific climate features and model configurations. The rising energy needs due to population growth and urbanisation emphasise the importance of sustainable energy sources. This study aims to improve the accuracy of PV power forecasts for integrating power into the current electrical grid and enhancing energy management strategies. By analysing data from the ERA5 dataset that includes various climatic features, we rigorously trained and assessed the LSTM models. Our results indicate that specific window sizes and combinations of features notably enhance forecasting accuracy with a window size of 6 and a mix of meteorological and solar radiation features showing the performance metrics (MAE, RMSE, R²). The study also underscores the significance of autocorrelation and cross-correlation analyses in optimizing model setups. Our findings suggest that LSTM models can accurately predict PV power output offering insights for maximizing energy usage in urban areas with similar climates. This research contributes to efforts aimed at reducing reliance on fossil fuels and promoting sustainable energy solutions. Future endeavours will explore integrating real-time data and incorporating additional climatic features to further refine forecasting models.

Keywords: PV Power Forecasting, LSTM Models, Climatic Feature Selection, Renewable Energy, Solar Energy Prediction, Abuja, Autocorrelation Analysis, Cross-Correlation Analysis, Sustainable Energy Solutions

DOI: 10.25673/118131

Download: PDF

References:

  1. C. Etukudor, B. Couraud, V. Robu, W. Fruh, D. Flynn, and C. Okereke, “Automated negotiation for peer-to-peer electricity trading in local energy markets,” Energies, vol. 13, no. 4, 2020. [Online]. Available: https://doi.org/10.3390/en13040920.
  2. S. M. Kadiri, A. O. Bagre, M. B. Camara, B. Dakyo, and Y. Coulibaly, “Electrical power distribution status in west assessment and perspective overview,” in Proc. IEEE Int. Conf. Renewable Energy Res. Appl. (ICRERA), 2019. [Online]. Available: https://doi.org/10.1109/ICRERA47325.2019.8997112.
  3. W. Tsai, C. Tu, C. Hong, and W. Lin, “A review of state-of-the-art and short-term forecasting models for solar PV power generation,” Energies, vol. 16, no. 14, 2023. [Online]. Available: https://doi.org/10.3390/en16145436.
  4. K. Tu, H. Xiong, and F. Chen, “Comprehensive prediction of generation power in photovoltaic microgrid,” in Proc. IEEE Joint Int. Inf. Technol. Artif. Intell. Conf., 2019. [Online]. Available: https://doi.org/10.1109/ITAIC.2019.8785746.
  5. O. T. Ibitoye, O. S. Agunbiade, T. W. Ilemobola, A. B. Oluwadare, P. C. Ofodu, K. O. Lawal, and J. O. Dada, “Nigeria electricity grid and the potentials of renewable energy integration: A concise review,” in Proc. IEEE 7th Int. Energy Conf. (ENERGYCON), 2022, pp. 1-4. [Online]. Available: https://doi.org/10.1109/ENERGYCON53164.2022.9830349.
  6. Y. N. Chanchangi, F. Adu, A. Ghosh, S. Sundaram, and T. K. Mallick, “Nigeria’s energy review: Focusing on solar energy potential and penetration,” Environ. Dev. Sustain., vol. 25, no. 7, pp. 5755-5796, 2023. [Online]. Available: https://doi.org/10.1007/s10668-022-02308-4.
  7. C. K. Rao, S. Sahoo, and F. F. Yanine, “Forecasting electric power generation in a photovoltaic power system for smart energy management,” in Proc. Int. Conf. Intell. Controller Comput. Smart Power (ICICCSP), 2022. [Online]. Available: https://doi.org/10.1109/ICICCSP53532.2022.9862396.
  8. M. N. Akhter et al., “An hour-ahead PV power forecasting method based on an RNN-LSTM model for three different PV plants,” Energies, vol. 15, p. 2243, 2022. [Online]. Available: https://doi.org/10.3390/EN15062243.
  9. Y. Wang, Y. Shen, S. Mao, X. Chen, and H. Zou, “LASSO and LSTM integrated temporal model for short-term solar intensity forecasting,” IEEE Internet Things J., vol. 6, pp. 2933-2944, 2019. [Online]. Available: https://doi.org/10.1109/JIOT.2018.2877510.
  10. F. Jin, “Photovoltaic power generation prediction based on k-means clustering analysis and GRO-CNN-LSTM attention,” Math. Model. Algorithm Appl., vol. 2, no. 1, pp. 61-68, 2024. [Online]. Available: https://doi.org/10.54097/qdcrpc46.
  11. R. Kabir, A. Elmouatamid, H. Elkhoukhi, and P. W. Pong, “Photovoltaic power forecasting using neural networks for short and medium-term dependencies,” in Proc. IEEE Texas Power Energy Conf. (TPEC), 2024, pp. 1-6. [Online]. Available: https://doi.org/10.1109/TPEC60005.2024.10472207.
  12. T. Magesh et al., “Prediction of solar power irradiance using machine learning and deep learning for smart grid integration,” in Proc. Int. Conf. Recent Adv. Electr. Electron. Ubiquitous Commun. Comput. Intell. (RAEEUCCI), 2024, pp. 1-6. [Online]. Available: https://doi.org/10.1109/RAEEUCCI61380.2024.10547750.
  13. C. K. Rodriguez-Leguizamon et al., “PV power generation forecasting based on XGBoost and LSTM models,” in Proc. IEEE Workshop Power Electron. Power Qual. Appl. (PEPQA), 2023, pp. 1-6. [Online]. Available: https://doi.org/10.1109/PEPQA59611.2023.10325757.
  14. H. He, R. Hu, Y. Zhang, Y. Zhang, and R. Jiao, “A power forecasting approach for PV plant based on irradiance index and LSTM,” in Proc. 37th Chin. Control Conf. (CCC), 2018, pp. 9404-9409. [Online]. Available: https://doi.org/10.23919/ChiCC.2018.8483960.
  15. T. Limouni et al., “Univariate and multivariate LSTM models for one step and multistep PV power forecasting,” Int. J. Renew. Energy Dev., vol. 11, no. 3, pp. 815-824, 2022. [Online]. Available: https://doi.org/10.14710/ijred.2022.43953.
  16. R. Ahmed et al., “Computationally expedient photovoltaic power forecasting: A LSTM ensemble method augmented with adaptive weighting and data segmentation technique,” Energy Convers. Manage., vol. 258, p. 115563, 2022. [Online]. Available: https://doi.org/10.1016/j.enconman.2022.115563.
  17. H. Hersbach et al., “ERA5 hourly data on single levels from 1940 to present,” Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2023. [Online]. Available: https://doi.org/10.24381/cds.adbb2d47.
  18. M. AlKandari and I. Ahmad, “Solar power generation forecasting using ensemble approach based on deep learning and statistical methods,” Appl. Comput. Informat., vol. 20, no. 3/4, pp. 231-250, 2024. [Online]. Available: https://doi.org/10.1016/j.aci.2019.11.002.
  19. A. M. Hayajneh, F. Alasali, A. Salama, and W. Holderbaum, “Intelligent solar forecasts: Modern machine learning models and TinyML role for improved solar energy yield predictions,” IEEE Access, vol. 12, pp. 10846-10864, 2024. [Online]. Available: https://doi.org/10.1109/ACCESS.2024.3354703.


    HOME

       - Call for Papers
       - Paper Submission
       - For authors
       - Important Dates
       - Conference Committee
       - Editorial Board
       - Reviewers
       - Last Proceedings


    PROCEEDINGS

       - Volume 12, Issue 2 (ICAIIT 2024)        - Volume 12, Issue 1 (ICAIIT 2024)        - Volume 11, Issue 2 (ICAIIT 2023)
       - Volume 11, Issue 1 (ICAIIT 2023)
       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


    PAST CONFERENCES

       ICAIIT 2024
         - Photos
         - Reports

       ICAIIT 2023
         - Photos
         - Reports

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports

    ETHICS IN PUBLICATIONS

    ACCOMODATION

    CONTACT US

 

        

         Proceedings of the International Conference on Applied Innovations in IT by Anhalt University of Applied Sciences is licensed under CC BY-SA 4.0


                                                   This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


           ISSN 2199-8876
           Publisher: Edition Hochschule Anhalt
           Location: Anhalt University of Applied Sciences
           Email: leiterin.hsb@hs-anhalt.de
           Phone: +49 (0) 3496 67 5611
           Address: Building 01 - Red Building, Top floor, Room 425, Bernburger Str. 55, D-06366 Köthen, Germany

        site traffic counter

Creative Commons License
Except where otherwise noted, all works and proceedings on this site is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.