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Abstract: In this research, we analyse how Long Short-Term Memory (LSTM) models can predict photovoltaic (PV) 

power output, in Abuja, Nigeria by selecting specific climate features and model configurations. The rising 

energy needs due to population growth and urbanisation emphasise the importance of sustainable energy 

sources. This study aims to improve the accuracy of PV power forecasts for integrating power into the current 

electrical grid and enhancing energy management strategies. By analysing data from the ERA5 dataset that 

includes various climatic features, we rigorously trained and assessed the LSTM models. Our results indicate 

that specific window sizes and combinations of features notably enhance forecasting accuracy with a window 

size of 6 and a mix of meteorological and solar radiation features showing the performance metrics (MAE, 

RMSE, R²). The study also underscores the significance of autocorrelation and cross-correlation analyses in 

optimizing model setups. Our findings suggest that LSTM models can accurately predict PV power output 

offering insights for maximizing energy usage in urban areas with similar climates. This research contributes 

to efforts aimed at reducing reliance on fossil fuels and promoting sustainable energy solutions. Future 

endeavours will explore integrating real-time data and incorporating additional climatic features to further 

refine forecasting models. 

1 INTRODUCTION 

As population continues to grow, so does the energy 
demand, which has become a necessity to life in the 
21st century. Like fuel to an automobile, so is energy 
to life, especially electrical power supply. Access to 
affordable, clean and reliable power supply is a 
sustainable development goal (SDG) of the United 
Nations [1]. Whilst other continents are making 
strides and seeking smoother transition, some West 
African countries seem to be lagging considerably 
with regards to electrical power infrastructure. 
Available infrastructure is outdated and requires an 
immediate and large-scale overhaul, which now is 
bereft of political will [2]. 

For several reasons generating power from fossil 
fuels is no longer sustainable, hence the need for 
renewable energy. In spite of the prospects of 
renewable energy, its reliability and integration to 
already existing infrastructure is dependent on a 

couple of factors, one of which is its availability 
owing to the fact that its generation is dependent on 
weather or meteorological factors [3, 4]. In tropical 
climates like Sub-Saharan Africa, renewable energy 
such as solar has a very high potential in addressing 
the electricity deficiency experienced in the region 
especially in the most populous African country, 
Nigeria. Off-grid solar homes systems (SHSs) and 
community microgrids seem to be the most effective 
and practical solution to accessing power supply for 
rural dwellers, with advantages of reduced cost, 
environmental sustainability and ease of deployment, 
especially when the centralized power infrastructure 
is not reliable and would be capital intensive for 
individuals without access to such funds [1]. 

The capital city of Nigeria, Abuja, is quite 
developed but not left out in electrical power 
infrastructure challenges the region faces. 
Unprecedented population growth and urbanization 
have resulted in an escalating need for dependable 
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and cost-effective electricity. Nevertheless, the 
current power infrastructure in Abuja is overburdened 
and experiences frequent interruptions, impacting 
economic activities and quality of life. Moreover, the 
utilization of fossil fuels for electricity generation is 
not environmentally sustainable due to ecological 
degradation and rising fuel costs. Renewable energy, 
specifically solar power, offers a feasible resolution 
to these challenges. Abuja, positioned in a tropical 
climate with ample sunshine, boasts a significant 
potential for harnessing solar energy. However, the 
successful integration of solar power into the current 
grid and its dependability are contingent upon precise 
forecasting of photovoltaic (PV) power production. 
Accurate PV power prediction can enhance the 
efficacy of solar energy systems, improve grid 
reliability, and enable more effective energy 
management approaches [5, 6]. 

Predicting power generation with a high level of 
accuracy, would enable power users in these regions 
without reliable power supply; to embrace this option 
of solar energy in photovoltaics as a reliable source of 
power. It can improve the efficiency of smart 
community microgrids where peer to peer trading of 
energy is possible. 

Photovoltaic power generation is dependent on 
certain weather conditions like solar radiation 
intensity, temperature, wind speed and direction, 
cloud cover, humidity etc [4, 7]. Several models have 
been used in forecasting the PV power generation of 
renewable energy systems, some of which were 
traditional techniques or even hybrid models 
demonstrating excellent accuracy depending on the 
peculiarity of the prevailing conditions [7]. 

Long Short-Term Memory (LSTM) has been used 
for different time scales in predicting PV power 
output for several plants using climatic data. This 
deep learning method is robust and flexible. In some 
cases, providing accuracy of over 18% better than 
other benchmarked methods [8]. The functionality of 
any smart grid is dependent on the efficiency of the 
energy management technique employed. Energy 
management strategies are based on timescales 
(hourly, daily, weekly, monthly or yearly) depending 
on the purpose of its design. An RNN generates its 
output predictions from both current input and past 
data or experience, and where the distance between 
the cells is significant and vanishing gradient may 
tend to lose some information, LSTM solves this 
challenge by adding three gates (input gate, forget 
gate and output gate) to the RNN cell. So, it captures 
nonlinear relationships improving accuracy of the 
model [9]. In this study a Recurrent Neural Network 
(LSTM - Long Short-Term Memory) is employed to 
predict the power output of a PV system from climatic 
conditions. 

The objectives of this paper are to: 
 Demonstrate the possible outcome of PV

power forecasting using LSTM with different

climatic features for an urban city.

 Determine the most effective feature selection

that enhances the accuracy of the LSTM model

in forecasting PV power output in Abuja.

The importance of this investigation lies in its 

emphasis on refining PV power forecasting through 

sophisticated machine learning methodologies. By 

formulating and assessing Long Short-Term Memory 

(LSTM) models customized to Abuja's climatic 

conditions, this study strives to offer more precise 

forecasts of solar power generation. Subsequently, 

this can accelerate the acceptance of solar energy 

solutions, diminish reliance on fossil fuels, and 

contribute to sustainable development objectives in 

the region.  

2 RELATED WORKS 

In recent years, significant advancements have been 

made in the field of PV power forecasting, 

particularly with LSTM models and other machine 

learning techniques. In this overview we briefly 

discuss a range of research projects showcasing 

progress made so far, while also looking into specific 

areas that need improvement.  

Machine Learning Model Optimization: For PV 

power prediction it is essential to choose relevant 

input features. Research highlights the significance of 

including weather conditions and time details to 

improve forecast accuracy [10, 11]. LSTM models, 

specifically tailored for time series data analysis, have 

shown superior performance in predicting power 

generation often surpassing other neural networks 

like GRU and MLP [12]. Moreover, methods such as 

XGBoost have also been successful in forecasting PV 

power output outperforming statistical methods, like 

SARIMA [13]. 

LSTM-Based Models for PV Power Forecasting: 

LSTM models have become quite popular for their 

ability to effectively handle the intermittent nature of 

solar irradiation and incorporate it into power grids. 

Studies have shown that LSTM models outperform 

Artificial Neural Network (ANN) models, especially 

when it comes to short term predictions [14]. Single 

variable LSTM models, which rely on PV output data 

demonstrate good accuracy in predicting one step 

ahead while multivariable models that consider 

weather factors excel in forecasting multiple steps 

ahead [15]. Additionally, research suggests that 
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LSTM models outshine Multi-Layer Perceptron 

(MLP) and Convolutional Neural Network (CNN) 

models when series data. According to a study by 

[16], employing two-week datasets produced the best 

outcomes. These methodologies indicate that LSTM 

based models are exceptionally proficient in 

providing dependable forecasts, for solar 

photovoltaic power across various time frames. 

2.1 Gaps in Existing Research 

Despite the progress made so far, some areas still 

need further investigation in the literature. 

1) Selecting Features Adapted to Climate; While

many studies stress the importance of choosing

features, more research is required on selecting

features that adapt to conditions especially

tailored for regions like Abuja.

2) Ensuring Robustness Across Varied Climates;

Most studies concentrate on weather patterns.

Unique climate conditions in urban areas such

as Abuja call for customized approaches to

enhance forecasting accuracy.

3) Incorporating Local Data; Limited research

exists on incorporating climate data with

advanced machine learning algorithms for

predicting PV power. This integration is vital for

optimizing energy usage in areas with weather

patterns.

4) Examining Window Sizes; Current studies often

lack assessments of how different window sizes

impact forecasting accuracy. This study aims to

fill this void by examining the effects of window

lengths on the precision of LSTM models in

forecasting PV power.

By tackling these gaps this research strives to 

build models that utilize feature selection to climate 

and advanced machine learning methods customized 

for Abuja's specific climate conditions, in Nigeria. 

3 METHODOLOGY 

This section outlines the methodology employed in 

the study, to develop and evaluate an LSTM model 

for predicting surface solar radiation downwards 

(ssrd_5) using historical meteorological data from the 

ERA5 dataset, including data preprocessing, feature 

selection, and the development and evaluation of an 

LSTM model for time series forecasting. 

3.1 Dataset Description 

The data used in this study are sourced from the 

ERA5 reanalysis dataset, provided by the European 

Centre for Medium-Range Weather Forecasts 

(ECMWF) through the Copernicus Climate Change 

Service (C3S) [17]. The ERA5 dataset offers a 

comprehensive reanalysis of global climate data, 

providing hourly estimates of various atmospheric, 

oceanic, and land surface parameters. The specific 

dataset used for this study is available at: ERA5 

Reanalysis Dataset. The dataset covers the period 

from January 1, 2020, to December 31, 2022, with 

hourly time stamps. The dataset for the years 2023 

and 2024 was not available at the time of the analysis. 

This dataset provides valuable insights into the 

climatic conditions of the Abuja region over the 

specified period. It can be used for various analyses 

including wind energy potential assessment, solar 

radiation analysis, temperature and humidity studies, 

and cloud cover observation, which are crucial for 

understanding local weather patterns and for planning 

renewable energy projects. 

The dataset includes the following meteorological 

variables measured at two different heights (10 

meters and 100 meters), solar radiation parameters, 

temperature, dew point, surface pressure, and cloud 

cover. These variables are recorded for nine different 

locations in the vicinity of Abuja, Nigeria. The 

dataset was in csv file format which contained the 

time series data for the specified period and locations, 

with each variable labelled accordingly with the 

location suffix (_i). Table 1 shows variables and 

description of the dataset. 

The data were collected for nine specific 

locations, each identified by a unique suffix (i where 

i ranges from 1 to 9). These locations are situated 

around Abuja, Nigeria, with the central point being at 

Latitude 9.0° N and Longitude 7.5° E, as shown in 

Fig. 1. 

Figure 1: The geolocations of the study sites in Abuja, and 

a map of Nigeria. 
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Table 1: Data description. 

Variable Type Variable Description 

Meteorological 

Variables (Wind) 

u10 10m_u_component_of_

wind     

v10 10m_v_component_of_

wind     

fg10 Wind gusts at 10m 

u100 100m_u_component_of

_wind     

v100 100m_v_component_of

_wind     

Solar Radiation 

Variables 

cdir Clear sky direct solar 

radiation at surface 

fdir Total sky direct solar 

radiation at surface 

ssrdc Surface solar radiation 

downward clear sky 

ssrd Surface solar radiation 

downwards     

Temperature and 

Pressure 

Variables 

t2m 2m temperature 

d2m 2m dew point 

temperature 

sp Surface pressure 

Cloud Cover 

Variables 

lcc Low cloud cover 

mcc Medium cloud cover 

hcc High cloud cover 

3.2 Data Pre-Processing 

Rows with missing values were dropped to ensure the 

dataset is complete and ready for analysis. The 

'Timev' column, containing date and time 

information, was utilized to extract separate 'Date' 

and 'Time' columns. The 'Date' and 'Time' columns 

were converted to datetime formats to facilitate time 

series analysis. 

1) Autocorrelation: Autocorrelation is a statistical

measure used to analyze the degree of similarity

between a given time series and a lagged version

of itself over successive time intervals. It helps

in understanding the repeating patterns, cycles,

or trends within the data. For time series

forecasting tasks, especially with LSTM (Long

Short-Term Memory) models, autocorrelation

analysis is crucial as it informs the selection of

important features and appropriate model 

parameters. Before selecting features and 

building the model, it is essential to examine the 

autocorrelation of the target variable, which is, 

the surface solar radiation downwards (ssrd_5). 

By analyzing the autocorrelation plot, we can 

identify significant lags that exhibit strong 

correlations with the current time step. This 

information is valuable in determining the 

appropriate window size and the number of 

units for the LSTM model.  The autocorrelation 

plot (shown in the Figure 2) indicates a strong 

correlation at a 24-hour repetition, suggesting a 

daily cycle in the data. The plot shows a clear 

24-hour cycle, which means that the solar

radiation values are highly correlated with the

values from the previous day.

2) Feature Selection: Relevant features for the

analysis were selected. These include

meteorological parameters such as wind speed,

temperature, solar radiation, and cloud cover at

different time intervals for location 5 and

location 8, since they had the highest correlation

in our analysis.

3) Normalization: The numerical features were

normalized to scale the data within a range of 0

to 1. This step was crucial for ensuring that the

neural network training process converges more

efficiently.

The dataset was further then transformed 

into sequences using a sliding window 

approach. The window size, which determines 

the number of time steps used to predict the next 

value, was experimented with different sizes 

ranging from 2 to 6. For each window size, the 

data was reshaped into overlapping sequences to 

create the input (X) and output (y) datasets. 

Figure 2: Autocorrelation of ssrd_5 at location 5. 
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4) Dataset Split: The dataset was divided into

training, validation, and testing sets. The splitting

approach used was chronological to preserve the

temporal structure, ensuring the model is tested

on unseen future data. This split helps in

evaluating how well the model can predict future

PV power output based on past data.

Specifically, each sequence of weather

parameters (X) was used to predict the

subsequent solar radiation value (ssrd_5) (y).

The sequences were split into training and testing

sets using an 80-20 split ratio. The training set

was further split into training and validation sets

with an 80-20 split ratio for model evaluation.

3.3 Description/LSTM Model 
Architecture 

The Long Short-Term Memory (LSTM) model is a 

type of recurrent neural network (RNN) designed to 

handle time series data and sequences. It addresses 

the vanishing gradient problem faced by traditional 

RNNs, enabling it to learn long-term dependencies. 

Figure 3 represents the flow diagram of the LSTM 

approach proposed in this study. 

3.3.1 Layers of the Proposed Model 

1) Input Layer: The model takes sequences of shape

(window_size, num_features), where

window_size is the number of time steps in each

input sequence, and num_features is the number

of features in each time step.

2) LSTM Layer: The LSTM layer with 50 units

processes the input sequences, capturing

temporal dependencies:

LSTM(𝑥𝑡) → (ℎ𝑡).  (1) 

3) Dense Layer: A Dense layer with a single unit

produces the final output, predicting the target

variable:

Dense(ℎ𝑡) → (𝑦𝑡).  (2) 

4) Loss Function: The Mean Squared Error (MSE)

is used as the loss function, measuring the

average squared difference between the

predicted values and the actual values:

𝑀𝑆𝐸 =
1

𝑁
∑ (

𝑁

𝑖=1
𝑦𝑖 − 𝑦̂𝑖)

2.  (3) 

3.3.2 Experimental Setup 

The LSTM model was constructed using the Keras 

library, with an architecture comprising a single 

LSTM layer with 50 units and a ReLU activation 

function. The choice of 50 units was guided by the 

autocorrelation analysis.  The number 50 was chosen 

to approximately cover two days (48 hours) of data, 

providing the model with sufficient information to 

capture the daily cycles effectively. While 50 is also 

a common default setting in many Keras examples, 

the decision to retain this number was supported by 

the autocorrelation findings from Figure 2. The strong 

24-hour cycle observed in the data justifies using a

window that spans multiple days.

Figure 3: Flow diagram of the proposed model.
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A Dense layer with a single neuron was added as 

the output layer to predict the solar radiation value. 

The model was compiled using the Adam optimizer 

and mean squared error (MSE) loss function. The 

model was trained on the training dataset with a batch 

size of 32 and a maximum of 100 epochs. Early 

stopping was employed with a patience of 5 epochs 

to prevent overfitting, ensuring the model retained the 

best weights based on validation loss. During cross-

validation, different hyperparameters (e.g., number of 

LSTM units, batch size, learning rate) was tested to 

identify the optimal configuration that minimizes the 

validation loss. The model with the best performance 

across the cross-validation folds was selected as the 

final model. This model was then evaluated on the 

test set to confirm its performance. The dataset was 

divided into k folds (10). The model was trained and 

validated k times, each time using a different fold as 

the validation set and the remaining folds as the 

training set. For each fold, the same data preparation 

steps are followed: normalization, sequence 

preparation, and splitting into input (X) and target (y). 

The model is trained and evaluated on each fold, and 

performance metrics (e.g., MSE) are recorded. The 

performance metrics from all folds are averaged to 

provide a more accurate estimate of the model's 

performance. This average performance metric is 

considered the final evaluation of the model. 

The trained model was evaluated on the test set to 

assess its performance using the mean squared error 

(MSE) metric. The training and validation loss over 

epochs were plotted to visualize the model's learning 

process and to identify any signs of overfitting. By 

following this methodology, the study aimed to 

develop a robust LSTM model for forecasting solar 

radiation using various meteorological features, 

contributing to more accurate weather predictions for 

the Abuja region. Table 2 presents the 

hyperparameters used in the proposed model. 

Table 2: Hyperparameters description for the proposed 

model. 

Hyperparameter Window Size 2-6 

Number of LSTM Units 50 

Batch Size 32 

Activation ReLU 

Epochs 100 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Early Stopping Patience 5 

Input Shape (2, num_features) 

3.4 Evaluation Metrics 

1) Mean Absolute Error (MAE): It is the average of

the absolute differences between the predicted

and actual values. Mathematically, it can be

represented as:

𝑀𝐴𝐸 =
1

𝑛
∑ ∣𝑛
𝑖=1 𝑦𝑖 − 𝑦̂𝑖 ∣      (4) 

where: 

𝑦𝑖  is the actual value,

𝑦̂𝑖is the predicted value, and

𝑛 is the total number of data points. 

2) Root Mean Squared Error (RMSE): It is the

square root of the average of the squared

differences between the predicted and actual

values. Mathematically, it can be represented as:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (

𝑛

𝑖=1
𝑦𝑖 − 𝑦̂𝑖)

2  (5) 

3) R² (Coefficient of Determination): It is a

statistical measure that represents the proportion

of the variance for a dependent variable that is

explained by an independent variable or

variables in a regression model. Mathematically,

it can be represented as:

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
   (6) 

where: 

𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals, i.e.,

∑ (
𝑛

𝑖=1
𝑦𝑖 − 𝑦̂𝑖)

2,

𝑆𝑆𝑡𝑜𝑡  is the total sum of squares, i.e.,

∑ (
𝑛

𝑖=1
𝑦𝑖 − 𝑦̄)2, and

𝑦̄  is the mean of the observed data. 

4 RESULTS AND DISCUSSION 

In this section we discuss the results of the 

experiments performed in this study. 

4.1 Months Analysis 

The prediction analysis focuses on several months 

throughout the dataset. The specific months 

highlighted include January 1 to February 29 and 

July 1 to August 31, for the years 2020 to 2022. These 

months were chosen to represent the dry and wet 

seasons characterised by the location. The varying 

weather conditions during these seasons were 

considered to test the robustness of the LSTM 

models. 
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4.2 Auto Correlation and Cross 
Correlation Analysis 

Figure 2 shows the autocorrelation for location 5 with 

significant lags that influence the PV power output, 

determining the optimal number of input nodes for 

the LSTM model. This lag is crucial in setting up the 

sequence length for the LSTM. 

The cross-correlation analysis in Figure 4 shows 

that locations 5 and 8 for SSRD variable are closely 

related. This relationship suggests that these locations 

experience similar climatic conditions, which can be 

leveraged in the model for improved accuracy by 

incorporating spatial dependencies. 

For consistency and based on the cross-

correlation findings, location 5 was used for both 

input and output. This consistency helps in reducing 

complexity and improving model stability, ensuring 

that the predictions are reliable and based on closely 

related data.  

The histogram of the ratio of `SSRD_5` (Surface 

Solar Radiation Downwards at location 5) and 

`SSRDC_5` (Surface Solar Radiation Downwards 

Clear Sky at location 5) shown in Figure 5 provides 

insights into cloud cover variability. High variability 

in this ratio indicates significant cloud cover, which 

affects solar radiation and PV output. The histogram 

helps in understanding the distribution and frequency 

of different cloud cover conditions over the studied 

period. 

The analysis was conducted using different 

window sizes (Window 2, 3, 4, 5, 6): 

1) Window 2: Considered a very short-term

prediction, capturing immediate past data.

2) Window 3, 4, 5, 6: Incrementally larger

windows capturing longer past data sequences,

helping in understanding how far back the

model needs to look to make accurate

predictions. Figure 6 visualises the analysis of 

the MSE vs Window lengths across the entire 

year, dry and wet seasons. 

3) SSRD_5 and FDIR_5: Predictions for these

features was performed. The results are shown

in Figure 6.

Figure 4: Correlation heatmap of SSRD across all locations. 

Figure 5: Ratio between ssrd_5 and ssrdc_5. 

Figure 6: MSE vs window lengths for different time periods for year 2022. 
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4.3 Results Interpretation 

The analysis demonstrates that LSTM models are 

highly effective in predicting PV power output in 

Abuja, leveraging weather data to account for both 

temporal and spatial factors. The model exhibits 

superior performance during stable weather seasons, 

such as the dry and rainy periods, which are 

characterized by consistent solar radiation patterns. 

This consistency allows the model to capture 

predictable dynamics, whereas transitional seasons 

pose greater challenges due to increased variability in 

weather conditions. 

The 24-hour cycle identified through the 

autocorrelation study serves as a key insight for 

designing the model, providing a logical foundation 

for determining optimal window sizes. This 

alignment enables the model to effectively account 

for diurnal variations, improving accuracy and 

reliability. Moreover, the analysis highlights that 

incorporating data from multiple locations, especially 

those with strong spatial interdependencies like 

locations 5 and 8, enhances the model’s ability to 

generalize across a wider range of conditions. 

Figures 7, 8, and 9 provide evidence of how 

temporal and spatial configurations influence model 

performance. Window sizes tailored to the diurnal 

cycle result in reduced errors, as seen through lower 

MAE and RMSE metrics. Including features such as 

direct irradiance (FDIR_5) alongside solar radiation 

(SSRD_5) across all locations further boosts model 

accuracy, illustrating the value of combining 

complementary data sources. 

The R² metric underscores the importance of 

spatial diversity in the input data, revealing that 

models trained with features from multiple locations 

achieve higher predictive accuracy and explanatory 

power. This reinforces the idea that broader spatial 

data not only improves generalization but also 

stabilizes performance across varying temporal 

scales. 

While smaller window sizes fail to capture long-

term dependencies and larger windows risk 

incorporating irrelevant information, an intermediate 

window size aligned with the 24-hour cycle strikes a 

balance between model complexity and accuracy. 

The non-linear relationship between window size and 

performance metrics, as observed in Figures 7 and 8, 

reflects this trade-off, emphasizing the need for 

careful tuning of input parameters. 

Additionally, models leveraging multi-location 

data demonstrate greater resilience across changing 

window sizes, making them more robust for long-

term forecasting. By incorporating direct measures of 

sunlight intensity, such as FDIR_5, the models further 

reduce errors and improve their explanatory power, 

highlighting the importance of precise feature 

selection [18]. 

Figure 7: Performance metrics vs window sizes. 
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Figure 8: Performance metrics vs window sizes. 

Figure 9: Performance metrics vs window sizes. 

Figure 10: Actual vs Predicted Solar Radiation with Wind 

Direction Trends.  

Figure 10 illustrates the relationship between 

actual solar radiation, predicted solar radiation, and 

average wind direction trends across the test dataset 

samples. The variations in solar radiation and wind 

direction trends reflect the dynamic behaviour of 

meteorological data. The green wind direction 

trendline indicates fluctuations in atmospheric 

conditions, which may have a subtle influence on 

solar radiation that the model captures. The predicted 

solar radiation values closely align with the actual 

values, showcasing the LSTM model's ability to 

effectively utilize temporal and meteorological 

features, including wind direction. Although wind 

direction does not display a direct cyclic pattern with 

solar radiation in this plot, its inclusion likely 

enhances the model's performance by accounting for 
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atmospheric effects such as cloud movement or 

aerosol dispersion, which impact solar radiation. 

Our findings reveal that a hybrid approach 

combining deep learning techniques with statistically 

correlated features outperforms a hybrid model that 

relies solely on machine-learning techniques without 

leveraging the statistical relationships between 

features, as demonstrated in the recent results 

reported by Alkandari and Ahmad [18]. 

Seasonal variability is another important factor, as 

spatially diverse configurations are better equipped to 

handle the uncertainties of transitional periods. These 

findings highlight that the integration of temporal 

cycles, spatial interdependencies, and diverse 

weather features is key to building a reliable and 

accurate LSTM model for solar energy forecasting in 

Abuja. Figures 7, 8, and 9 validate this approach, 

offering practical guidance for optimizing predictive 

performance through feature selection and model 

design. 

4.3 Implications for PV Power 
Forecasting in Abuja and Similar 
Urban Settings  

The use of LSTM models, for predicting PV power in 

Abuja and similar urban areas has shown promise for 

application in cities with comparable weather 

conditions. Precise forecasts of PV power generation 

can enhance the efficiency and reliability of energy 

systems leading to seamless energy management and 

grid stability. The findings from this research, which 

highlights the significance of choosing relevant 

features and optimal time windows can be utilized in 

other locations to accelerate the integration of 

renewable energy sources into current power systems. 

This in turn aligns with the overarching objectives of 

reducing dependence on fossil fuels and promoting 

sustainable development. Our study introduces an 

innovative method for real-time, low-cost solar 

energy forecasting on resource-constrained edge 

devices, focusing on the evaluation and optimization 

of deep learning models to improve energy 

management for both residential and industrial 

applications, aligning with findings reported in [19]. 

5 CONCLUSIONS 

This study effectively showcased the use of LSTM 

models to predict PV power output by utilizing 

weather features specific to Abuja, Nigeria. Overall, 

the analyses revealed that LSTM models, with a 

window size of 6 and a combination of 

meteorological and solar radiation features resulted in 

the most accurate predictions. The analyses of 

autocorrelation and cross correlation played a role in 

identifying the optimal feature selection and window 

sizes thereby significantly enhancing the model's 

predictive accuracy. Through comparing setups, it 

became clear that certain combinations of features 

and window sizes produced better performance 

metrics (MAE, RMSE and R²). These results 

emphasize the significance of choosing relevant 

features and appropriate window lengths to optimize 

the model configuration for predicting PV power in 

urban environments. The implications of this study go 

beyond Abuja as it provides insights for urban areas 

facing similar climate conditions. Accurate PV power 

prediction can lead to improved energy management, 

grid stability and greater adoption of energy sources 

aligning with sustainable development objectives. 

Future research could explore real-time data 

feeds, larger datasets, and additional climatic features 

to further improve the model's accuracy and 

applicability in different regions. 
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