Proceedings of International Conference on Applied Innovation in IT
2021/04/28, Volume 9, Issue 1, pp.69-76

Models and Algorithms for Automatic Labelling of Unstructured Texts (Text Tagging)

Gyuzel Shakhmametova, Ilshat Ishmukhametov

Abstract: The article discusses the task of automatic labelling of texts to improve the efficiency of processing unstructured text data. An overview of existing software products for solving the problem is given, showing the need to develop its own solution specialized in the processing of Russian-language texts. The problem of assigning labels is considered from a mathematical point of view as a problem of multilabel classification, with corresponding mathematical models analysed and described. Based on this, models, algorithms, and a software product for automatically assigning labels to texts have been developed. Numerical experiments were carried out that showed the universality of the method and the possibility of application both in non- specialized and specialized fields, in particular, for processing medical documents.

Keywords: Automatic Labelling of Texts, Unstructured Text, Text Tagging, Multilabel Classification, Keywords Extraction

DOI: 10.25673/36586

Download: PDF


  1. D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World – From Edge to Core,” IDC white paper, November 2018, Doc# US44413318.
  2. A. M. Nancy and R. Maheswari, "Review on unstructured data in medical data," Journal of Critical Reviews, 2020, 10.31838/jcr.07.13.342.
  3. pp. 2202-2208, doi:
  4. R. Mihalcea and P. Tarau, “TextRank: Bringing Order into Text,” EMNLP, 2004.
  5. S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual Web Search Engine,” Comput. Networks, vol. 30, 1998, pp. 107-117.
  6. S. Tasci and T. Güngör, “LDA-based keyword selection in text categorization,” 24th International Symposium on Computer and Information Sciences, 2009, pp. 230-235.
  7. A. Sedova and O. Mitrofanova, “Topic Modelling of Russian Texts based on Lemmata and Lexical Constructions,” Saint-Petersburg State University, 2017.
  8. S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic Keyword Extraction from Individual Documents,” 2010.
  9. M. Thushara, M. Krishnapriya, and S. N. Sangeetha, “A model for auto-tagging of research papers based on keyphrase extraction methods,” International Conference on Advances in Computing, Communications and Informatics, 2017, pp. 1695- 1700.
  10. Dcipher Analytics official web-site [Online]. Available:
  11. MonkeyLearn official web-site [Online]. Available:
  12. TwinWord official web-site [Online]. Available:
  13. J. Read , B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label classification,” Machine Learning, vol. 85, 2011, pp. 333-359.
  14. S.GodboleandS.Sarawagi,“DiscriminativeMethods for Multi-labeled Classification,” PAKDD, 2004.
  15. G. Tsoumakas and I. Katakis, “Multi-Label Classification: An Overview,” Int. J. Data Warehous, Min. 3, 2007, pp. 1-13.
  16. M. Zhang and Z. Zhou, “ML-KNN: A lazy learning approach to multi-label learning,” Pattern Recognit, vol. 40, 2007, pp. 2038-2048.
  17. A. Clare and R. King, “Knowledge Discovery in Multi-label Phenotype Data,” PKDD, 2001.
  18. M. Zhang and Z. Zhou, “Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, 2006, pp. 1338-1351.
  19. V.BalakrishnanandE.Lloyd-Yemoh,“Stemmingand lemmatization: A comparison of retrieval performances,” 2014.
  20. B.Trstenjak,S.Mikac,andD.Donko,“KNNwithTF- IDF based Framework for Text Categorization,” Procedia Engineering, vol. 69, 2014, pp. 1356-1364.
  21. TextTagger online demo [Online]. Available:
  22. A.Luque,A.Carrasco,A.Martín,and A. D. L. Heras, “The impact of class imbalance in classification performance metrics based on the binary confusion matrix,” Pattern Recognit., vol 91, 2019, pp. 216-231.



       - Call for Papers
       - Paper Submission
       - Important Dates
       - Committees
       - Guest registration
       - Proceedings


       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


       ICAIIT 2022
         - Message

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports





           ISSN 2199-8876
           Copyright © 2013-2021 Leonid Mylnikov, © 2022 at Anhalt University of Applied Sciences. All rights reserved.