Proceedings of International Conference on Applied Innovation in IT
2022/03/09, Volume 10, Issue 1, pp.1-6

Cost-Effective High Performance Distributed GPU Cluster for Deep Learning Tasks


Kirill Karpov, Dmitry Kachan, Maksim Iushchenko, Ivan Luzianin, Eduard Siemens


Abstract: The expenses on computational resources for modern Deep Learning computing can be extremely large. However, most of them are spent on the chassis and not on the GPU units themselves. Since modern mass market

Keywords: Tensor Flow, DNN Training, Performance, Horovod, HPC, High-Performance Computing

DOI: 10.25673/76925

Download: PDF

References:

  1. "RDMA Aware Networks Programming User Manual," Mellanox Technologies, Tech. Rep. Rev 1.7, 2015. [Online]. Available:.https:// network.nvidia.com/related-docs/prod software/RDMA Aware Programming user manual.pdf
  2. W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface. The MIT Press, 11 1999. [Online]. Available: https://doi.org/10.7551/mitpress/7056.001.0001
  3. "Nvidia collective communication library (nccl) documentation," Nvidia Corporation, Specification, 2020. [Online]. Available: https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
  4. A. Sergeev and M. Del Balso, "Horovod: fast and easy distributed deep learning in tensorflow," arXiv preprint arXiv:1802.05799, 2018.
  5. Horovod, "Horovod," https://github.com/horovod/horovod, 2017.
  6. "Intel NUC 9 Extreme/Pro Kit, Techincal Product Specification," Intel Corporation, Specification 1, Dec. 2019. [Online]. Available:https://simplynuc.com/wp-content/uploads/2020/01/NUC9QN TechProdSpec.pdf
  7. "Intel NUC 9 Kit, User Guide," Intel Corporation, Specification 1, May 2020. [Online]. Available: https://www.intel.com/content/dam/support/us/en/documents/intel-nuc/nuc-kits/NUC9xyQNX UserGuide.pdf
  8. "ConnectX-5 EN Card," Mellanox Technologies, Tech. Rep., 2020. [Online]. Available: https://www.mellanox.com/files/doc-2020/pb-connectx-5-en-card.pdf
  9. Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, "Is network the bottleneck of distributed training?" in Proceedings of the Workshop on Network Meets AI & ML, 2020, pp. 8–13.
  10. J. George, "Qperf 0.4.11 (1)-linux man page," Qperf (1): Measure RDMA/IP Performance.
  11. D. Merkel et al., "Docker: lightweight linux containers for consistent development and deployment," Linux journal, vol. 2014, no. 239, p. 2, 2014.
  12. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
  13. M. Devin et al., "Tensorflow: Large-scale machine learning on heterogeneous distributed systems," arXiv preprint arXiv:1603.04467, 2016.
  14. N. J. Gunther, Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly Scalable Applications and Services, 1st ed. Springer Publishing Company, 2010.
  15. F. Alkhoury, D. Wegener, K.-H. Sylla, and M. Mock, "Communication efficient distributed learning of neu-ral networks in big data environments using spark," in 2021 IEEE International Conference on Big Data (Big Data), 2021, pp. 3871–3877.

    Home

    PARTICIPATION

       - Committees
       - Proceedings


    PROCEEDINGS

       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


    PAST CONFERENCES

       ICAIIT 2022
         - Message

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports

    ETHICS IN PUBLICATIONS

    ACCOMODATION

    CONTACT US

 


           ISSN 2199-8876
           Copyright © 2013-2021 Leonid Mylnikov, © 2022 at Anhalt University of Applied Sciences. All rights reserved.