Proceedings of International Conference on Applied Innovation in IT
2013/03/25, Volume 1, Issue 1, pp.43-47

AvBandTest  a Testing Tool for Implementations of Available Bandwidth Estimation Algorithms

Dmitry Kachan, Eduard Siemens

Abstract: This work describes a test tool that allows to make performance tests of different end-to-end available bandwidth estimation algorithms along with their different implementations. The goal of such tests is to find the best-performing algorithm and its implementation and use it in congestion control mechanism for high-performance reliable transport protocols. The main idea of this paper is to describe the options which provide available bandwidth estimation mechanism for highspeed data transport protocols and to develop basic functionality of such test tool with which it will be possible to manage entities of test application on all involved testing hosts, aided by some middleware.

Keywords: High-speed transport; available bandwidth, congestion avoidance, testing of algorihtms

DOI: 10.13142/kt10001.07

Download: PDF


  1. D. Kachan, E. Siemens, V. Shuvalov. Comparison of contemporary solutions for high speed data transport on WAN connections. Accepted to: ICNS, Lisbon, Portugal. 2013.
  2. M. Allman, V. Paxson, W. Stevens. M. Allman, V. Paxson, and W. Stevens. IETF RFC 2581. 1999.
  3. A. S. Tanenbaum. Computer Networks. Third edition. New Jersey : Prenice Hall PRT, 1996. p. 813. ISBN 0-13-349945-6.
  4. H. Ohsaki et al. Rate-based congestion control for ATM networks. ACM SIGCOMM Computer Communication Review. 1995, Vol. 25, pp. 60-72.
  5. Y. Gu, X. Hong, M. Muzzucco, R. Grossman. Rate Based Congestion Control over High Bandwidth/Delay Links. IEEE/ACM Transaction on Networking. 2003, Vol. 11.
  6. L. J. Latecki, T Jin, J. Mulik. A Two-stream Approach for Adaptive Rate Control in Multimedia Applications. IEEE Int. Conf. on Multimedia & Expo. 2004.
  7. M. Jain, C. Dovrolis. End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput. IEEE/ACM Transactions on Networking. 2003, Vol. 11 (4), pp. 537-549.
  8. A. K. Aggarwal, A. N. Bharadwaj, R.D. Kent. Active congestion control using available bandwidth-based congestion detection. Proc. ICAI'05/MCBC'05/AMTA'05/MCBE'05. 2005, pp. 390-397.
  9. R. Wang et al. Efficiency/Friendliness Tradeoffs in TCP Westwood. Proc. Computers and Communications, ISCC. 2002, pp. 304-311.
  10. C. Dovrolis, P. Ramanathan, D. Moor. What do packet dispersion techniques measure? proceedings of INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. 2001, Vol. 2, pp. 905-914.
  11. M. Jain C. Dovrolis. Packet-Dispersion Techniques and a Capacity-Estimation Methodology. IEEE/ACM Transaction on Networking. 2004, Vol. 12, pp. 963-977.
  12. V. J. Ribeiro et al. pathChirp: Efficient Available Bandwidth Estimation for Network Paths. Passive and Active Measurement Workshop. 2003.
  13. L. Lao, C. Dovrolis, M. Y. Sanadidi. The probe gap model can underestimate the available bandwidth of multihop paths. ACM SIGCOMM Computer Communication Review. 2006, Vol. 36 issue5.
  14. C. D. Guerrero, M. A. Labrador. On the applicability of available bandwidth estimation techniques and tools. Computer Communications. Vol. 33 Issue 1, 2010, pp. 11-22.
  15. Y. Gu, R. L. Grossman. UDT: UDP-based Data Transfer for High-Speed Wide Area Networks. Computer Networks (Elsevier). May 2007.
  16. E. Siemens, R. Einhorn, A. Aust. Multi-Gigabit Challenges: Similarities between Scientific Environments and Media Production. ACIT - Information and Communication Technology : s.n., 2010.
  17. E. He, J. Leigh, O. Yu, T. DeFanti. Reliable Blast UDP: Predictable High Performance Bulk Data Transfer. In Proceeding of 5th Int. Conf. on Cluster Computing. 2002.
  18. S. Vinoski. CORBA: integrating diverse applications within distributed heterogeneous environments. Communications Magazine, IEEE. 1997, Vol. 35, pp. 46-55.
  19. A. Puder, K. Römer. MICO: An Open Source CORBA Implementation.- 3rd ed. s.l. : Morgan Kaufmann Publishers, 2000.
  20. S.-I. Lo, S. Pope. The Implementation of a High Performance ORB over Multiple Network Transports. In Middleware 98: IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing. 1998.
  21. M. Gudgin et al. W3C Recomendations. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). [Online] 04 27, 2007. [Cited:01 2013, 14.]
  22. F. Curbera. Unraveling the Web services web: an introduction to SOAP, WSDL, and UDDI . Internet Computing, IEEE. 2002, Vols. 6 , Issue: 2 , pp. 86-93.
  23. R. A. van Engelen. gSOAP Toolkit. The gSOAP Toolkit for SOAP Web Services and XML-Based Applications . [Online] [Cited: 01 15, 2013.]
  24. C. Kohlhoff . Boost C++ Libraries. Boost.Asio. [Online] [Cited: 01 15, 2013.]
  25. E. Siemens, S. Piger, C. Grimm, M. Fromme. LTest  A Tool for Distributed Network Performance Measurement. Proc. Consumer Communications and Networking Conference, 2004. First IEEE. 2004, pp. 239-244.
  26. I. Fedotova, E. Siemens, H. Hu. A High-precision Time Handling Library for Tracking Internet Packet Dynamics. Accepted to: ICNS, Lisbon, Portugal. 2013.
  27. E. Siemens, Xiaopeng Qiu. Datentransport in multimedialen Systemen: Effiziente Pufferspeicher für schnellen Datentransport. 2009. 978-3836479837.
  28. D. Kachan, E. Siemens, H. Hu. Tools for the high-accuracy time measurement in computer systems. T-Comm  Telecommunication and Transport. 2012, 8, pp 23-27.



       - Call for Papers!!!
       - Paper Submission
       - Important Dates
       - Committee
       - Guest registration


       - Issue 1 (ICAIIT 2013)
       - Issue 2 (ICAIIT 2014)
       - Issue 3 (ICAIIT 2015)
       - Issue 4 (ICAIIT 2016)
       - Issue 5 (ICAIIT 2017)





           ISSN 2199-8876
           Copyright © 2013-2017 Leonid Mylnikov. All rights reserved.