Proceedings of International Conference on Applied Innovation in IT
2023/11/30, Volume 11, Issue 2, pp.107-115

A Data-Driven-Based Wide-Area Protection Scheme for Fault Detection Using the Limited Measurements


Sirwan Shazdeh, Qobad Shafiee and Hassan Bevrani


Abstract: This paper presents a novel and efficient approach for wide-area fault detection in microgrids, utilizing data-driven techniques based on voltage and current measurements. The proposed method offers both high speed and accuracy in detecting faults. The methodology consists of three key steps that collectively form a comprehensive protection scheme. Initially, the current trajectories obtained from the measurements are analyzed to determine the fault condition. This initial indicator serves as a valuable starting point for fault detection. In the second step, the impedance of the lines, including the considered area, is calculated for the fault detection. The change of the calculated impedances implies for the fault occurrence activating the third step. In the final step, an iterative process is followed to identify the faulted line. The proposed method provides a faster and more reliable fault detection mechanism, allowing for rapid response and mitigation of potential disruptions. The efficacy of the proposed method is validated on an 11-bus microgrid. The simulation investigations are conducted in MATLAB\SIMULINK environment.

Keywords: Fault Detection, Wide-Area Protection, Data-Driven Scheme, Intelligent Electronic Devices (IEDs), Microgrid (MG).

DOI: 10.25673/113000

Download: PDF

References:

  1. M. Farrokhabadi et al., “Microgrid Stability Definitions, Analysis, and Examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13-29, 2020, doi: 10.1109/TPWRS.2019.2925703.
  2. W. M. Hamanah, M. I. Hossain, M. Shafiullah, and M. A. Abido, “AC Microgrid Protection Schemes: A Comprehensive Review,” IEEE Access, vol. 11, pp. 76842-76868, 2023, doi: 10.1109/ACCESS.2023.3298306.
  3. G. S. Dua, B. Tyagi, and V. Kumar, “Fault Detection Technique for Distribution Networks and Microgrids Using Synchrophasor Data,” IEEE Trans. Ind. Appl., pp. 1-14, 2023, doi: 10.1109/TIA.2023.3305362.
  4. M. W. Altaf, M. T. Arif, S. N. Islam, and M. E. Haque, “Microgrid Protection Challenges and Mitigation Approaches–A Comprehensive Review,” IEEE Access, vol. 10, pp. 38895-38922, 2022, doi: 10.1109/ACCESS.2022.3165011.
  5. P. H. A. Barra, D. V. Coury, and R. A. S. Fernandes, “A survey on adaptive protection of microgrids and distribution systems with distributed generators,” Renew. Sustain. Energy Rev., vol. 118, no. September 2019, p. 109524, 2020, doi: 10.1016/j.rser.2019.109524.
  6. A. Dagar, P. Gupta, and V. Niranjan, “Microgrid protection: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 149, no. June, p. 111401, 2021, doi: 10.1016/j.rser.2021.111401.
  7. S. Mirsaeidi, D. Mat Said, M. W. Mustafa, and M. Hafiz Habibuddin, “A protection strategy for micro-grids based on positive-sequence component,” IET Renew. Power Gener., vol. 9, no. 6, pp. 600–609, 2015, doi: https://doi.org/10.1049/iet-rpg.2014.0255.
  8. K. A. Saleh and A. Mehrizi-Sani, “Harmonic Directional Overcurrent Relay For Islanded Microgrids With Inverter-Based DGs,” IEEE Syst. J., vol. 15, no. 2, pp. 2720-2731, 2021, doi: 10.1109/JSYST.2020.2980274.
  9. A. D. Bebars, A. A. Eladl, G. M. Abdulsalam, and E. A. Badran, “Internal electrical fault detection techniques in DFIG-based wind turbines: a review,” Prot. Control Mod. Power Syst., vol. 7, no. 1, p. 18, 2022, doi: 10.1186/s41601-022-00236-z.
  10. M. N. Alam, “Overcurrent protection of AC microgrids using mixed characteristic curves of relays,” Comput. Electr. Eng., vol. 74, pp. 74-88, 2019, doi: https://doi.org/10.1016/j.compeleceng.2019.01.003.
  11. P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” Int. J. Electr. Power Energy Syst., vol. 118, p. 105756, 2020, doi: https://doi.org/10.1016/j.ijepes.2019.105756.
  12. A. N. Sheta, G. M. Abdulsalam, B. E. Sedhom, and A. A. Eladl, Comparative framework for AC-microgrid protection schemes: challenges, solutions, real applications, and future trends, vol. 8, no. 1. Springer Nature Singapore, 2023. doi: 10.1186/s41601-023-00296-9.
  13. N. Hussain, M. Nasir, J. C. Vasquez, and J. M. Guerrero, “Recent developments and challenges on AC microgrids fault detection and protection systems-a review,” Energies, vol. 13, no. 9, 2020, doi: 10.3390/en13092149.
  14. J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Gener. Transm. Distrib., vol. 13, no. 6, pp. 770-779(9), Mar. 2019, [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2018.6230
  15. J. J. Q. Yu, Y. Hou, A. Y. S. Lam, and V. O. K. Li, “Intelligent Fault Detection Scheme for Microgrids With Wavelet-Based Deep Neural Networks,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1694-1703, 2019, doi: 10.1109/TSG.2017.2776310.
  16. S. Kar and S. R. Samantaray, “A Fuzzy Rule Base Approach for Intelligent Protection of Microgrids,” Electr. Power Components Syst., vol. 43, no. 18, pp. 2082-2093, 2015, doi: 10.1080/15325008.2015.1070384.
  17. F. A. S. Dizioli, P. H. A. Barra, T. S. Menezes, V. A. Lacerda, D. V Coury, and R. A. S. Fernandes, “Multi-agent system-based microgrid protection using angular variation: An embedded approach,” Electr. Power Syst. Res., vol. 220, p. 109324, 2023, doi: https://doi.org/10.1016/j.epsr.2023.109324.
  18. R. Jain, Y. Nag Velaga, K. Prabakar, M. Baggu, and K. Schneider, “Modern trends in power system protection for distribution grid with high DER penetration,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 2022, no. July, pp. 2772-6711, 2022, doi: 10.1016/j.prime.2022.100080.
  19. Y. Seyedi and H. Karimi, “Coordinated Protection and Control Based on Synchrophasor Data Processing in Smart Distribution Networks,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 634-645, 2018, doi: 10.1109/TPWRS.2017.2708662.
  20. P. Kundu and A. K. Pradhan, “Supervisory protection of islanded network using synchrophasor data,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1772-1780, 2019, doi: 10.1109/TSG.2017.2777873.
  21. S. Papathanassiou, “Study-Case LV Network.” http://microgrids.power.ece.ntua.gr/documents/Study-Case%20LV-Network.pdf.


    HOME

       - Call for Papers
       - For authors
       - Important Dates
       - Conference Committee
       - Editorial Board
       - Reviewers
       - Last Proceedings


    PROCEEDINGS

       - Volume 12, Issue 1 (ICAIIT 2024)        - Volume 11, Issue 2 (ICAIIT 2023)
       - Volume 11, Issue 1 (ICAIIT 2023)
       - Volume 10, Issue 1 (ICAIIT 2022)
       - Volume 9, Issue 1 (ICAIIT 2021)
       - Volume 8, Issue 1 (ICAIIT 2020)
       - Volume 7, Issue 1 (ICAIIT 2019)
       - Volume 7, Issue 2 (ICAIIT 2019)
       - Volume 6, Issue 1 (ICAIIT 2018)
       - Volume 5, Issue 1 (ICAIIT 2017)
       - Volume 4, Issue 1 (ICAIIT 2016)
       - Volume 3, Issue 1 (ICAIIT 2015)
       - Volume 2, Issue 1 (ICAIIT 2014)
       - Volume 1, Issue 1 (ICAIIT 2013)


    PAST CONFERENCES

       ICAIIT 2024
         - Photos
         - Reports

       ICAIIT 2023
         - Photos
         - Reports

       ICAIIT 2021
         - Photos
         - Reports

       ICAIIT 2020
         - Photos
         - Reports

       ICAIIT 2019
         - Photos
         - Reports

       ICAIIT 2018
         - Photos
         - Reports

    ETHICS IN PUBLICATIONS

    ACCOMODATION

    CONTACT US

 

DOI: http://dx.doi.org/10.25673/115729


        

         Proceedings of the International Conference on Applied Innovations in IT by Anhalt University of Applied Sciences is licensed under CC BY-SA 4.0


                                                   This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License


           ISSN 2199-8876
           Publisher: Anhalt University of Applied Sciences

        site traffic counter

Creative Commons License
Except where otherwise noted, all works and proceedings on this site is licensed under Creative Commons Attribution-ShareAlike 4.0 International License.