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Estimation of the residual service life of operating fiber-optic cables is an urgent t ask. Usually this problem 
is solved based on the use of the Markov chain model. However, due to the nonlinear dependence of 
the probability of rejection on the rate of gradual failures, the task of selecting the number of states of a 
Markov chain becomes difficult. The article discusses a technique for determining the required number of 
states of the Markov model of damage accumulation based on a given value of the modeling accuracy. The 
characteristic values of the time and the probability of failure are found for the model of the destruction 
of optical fibers made of silica glass. The determination of the required number of states of a Markov 
chain in the article is carried out using the Python programming language.

1 INTRODUCTION

Since 1993, more than 2.2 billion km of optical 
fiber has been laid in the world, which is used to 
transmit more than 20% of global information traffic. 
With the proliferation of cloud technologies, 
distributed computing and databases, the role of 
fiber-optic communication systems is growing 
steadily [1].

The service life of fiber-optic communication 
lines is about a quarter of a century [2, 3] (not to 
be confused with the warranty service life, which, 
according to most manufacturers, does not exceed 
two years). Depending on the design of the cable 
and its field of application, the value of the service 
life can vary from 2 to 40 years. Often the 
requirements for tendering indicate that the service 
life of an optical cable must be at least 25 years.

Lifetime of the cable is defined [4, 5] as the aver-
age service life - the mathematical expectation of the 
service life. Gamma percent service life is the cal-
endar duration of operation during which it will not 
reach the limit state with a given probability γ, ex-
pressed as a percentage.

A. Yu. Tsym in his work [6] proposed to supple-
ment the list of lifetime criteria with an indicator of 
disproportionate risk of loss of network connectivity. 

This indicator is relevant for the Russian informa-

tion infrastructure due to the limited possibilities of 
network redundancy and the need for an additional 
assessment of the fact of loss of network 
connectivity when the optical cable goes to the limit 
state. The criteria for the limiting state is a set of 
features established in the technical 
documentation [7].

During its service life, a fiber-optic cable 
belongs to the class of recoverable objects, after 
passing to the limit state, it is a non-recoverable 
object. The transition to the limiting state occurs 
gradually as the static fatigue of the fiber 
accumulates (aging or deterioration).

In addition to damage to the cable sheath, the 
aging of optical fibers is influenced by such 
internal factors as fiber stretching, moisture, and 
hydrogen [8, 9]. The lifetime of optical cables 
is mainly determined by the amount of tension on 
the fibers. Since under tension, optical fibers 
gradually decrease their strength due to the growth 
of cracks on their surface [10, 11], the number 
of failures caused by cable breaks increases. 
For example, the ITU-T recommendation [11] 
provides test data for cable sections that have 
been buried in the ground since 1979, 1986 and 
1991. The probability of failure values for 
the 1979 cable are significantly higher than 
those for the 1991 cable. In the work of 
I. V. Bogachkov and N.I. Gorlov [12] it is shown that
the      established      service      life  of  25    years  is
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ensured in the presence of an elongation of less than
0.26%, which determines the permissible value of the
local mechanical tensile load within 3 N.

2 RELATED WORK

Gradual failure models are designed to analyze
changes in the physical parameters of technical sys-
tems under stress. The parameter Y , called defin-
ing, changes during wear, reaching a limit value, af-
ter which the system becomes inoperative. The mean
time to failure of the system is determined by the for-
mula (1).

T =
Ylim−Y0

α
(1)

where Ylim — limiting value of the defining pa-
rameter; Y0 — its initial value; α — the rate of change
of the defining parameter dY

dt .
Many works have been devoted to assessing the

lifetime of various objects, including fiber-optic lines,
in which various models of the transition of an object
to the limiting state are described.

It was shown in [13] that the processes of damage
accumulation (regardless of their nature) can be de-
scribed by Markov models, on the basis of which it
is possible to construct fairly accurate models of cu-
mulative damage accumulation. In [14], this model
was used to describe the accumulation of damage in
polymer high-voltage insulation. In [15], this proba-
bilistic approach was used to model the life cycle of
road bridge elements based on the Markov stochastic
degradation model. The paper presents a graph of the
degradation process for a model of five discrete states
and a method for determining the degradation param-
eter, which is considered as the failure rate λ.

In [16], the Markov model with discrete states and
continuous time is used to predict the parametric reli-
ability of the Monitoring System. Application of this
model makes it possible to determine several oper-
ational states of the Monitoring System with differ-
ent levels of operational efficiency, determined by the
probability of no-failure operation.

In [17], a Markov branching process was used to
build a model for predicting changes in the parameters
of an electronic system during operation. The model
is recommended to be used to predict the parametric
reliability and technical condition of radio-electronic
systems depending on the time of operation.

In [18], Markov models were developed for pre-
dicting the parameters of computer networks, tak-
ing into account the nonstationarity of the operation
modes. The calculation of the parameters is carried

out on the basis of the results of the wavelet - analysis
of the dynamics of changes in operating parameters.

In [19], using the theory of semi-Markov pro-
cesses, models of operation of communication sys-
tems equipment are considered, taking into account
the physical aging of the elements included in it.

A similar approach to assessing the time to reach
the limit state can be used for fiber-optic communica-
tion lines.

Griffiths is considered the founder of the mechan-
ical concept of optical fiber destruction [20, 21]. Ac-
cording to Griffiths, a solid contains microcracks,
which begin to expand under the action of tensile
stress. Crack growth occurs when the tensile force
reaches a certain threshold value. When this value is
reached, the crack begins to grow at a limiting rate.

Today, optical fiber fracture models are actively
used, built on the basis of the empirical concept of the
power-law dependence of the rate of development of
microcracks V on the tensile stress intensity factor Ke,
which characterizes the overstress at the crack tip.

V = A ·Kn
e (2)

where n is the parameter of resistance to fatigue
(corrosion coefficient); A is a constant depending on
the parameters of the material and the environment.

In [22], it is noted that the use of a simple power
law to describe the statistical fatigue of an optical
fiber leads to the neglect of the possible existence
of regions where crack growth follows other mech-
anisms and patterns (regions with a limited rate of
moisture diffusion to the crack tip, as well as regions
of thermal fluctuation crack growth in the absence of
moisture).

A similar approach to estimating the time to reach
the limit state can be used for fiber-optic communica-
tion lines.

This article discusses a technique for determining
the required number of states of a Markov damage ac-
cumulation model based on a given value of modeling
accuracy. The characteristic values of the time and the
probability of failure are found for the model of the
destruction of optical fibers made of quartz glass ac-
cording to the Weibull parameters determined in the
article [23].

3 GRADUAL FAILURE MODELS

The theoretical aspects of mechanical reliability are
described in sufficient detail in the document [24] and
articles [25, 26], where the following formula for cal-
culating the time to failure for static fatigue is pre-
sented:
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t =
2

A ·Y 2(n−2) ·Kn−2
IC

· σ
n−2
c

σn
exp

(3)

Where σc — fiber strength in an inert environ-
ment; σexp — applied tension; A — a constant de-
pending on the material and the environment; Y —
coefficient depending on the geometry of the crack; 

— fatigue parameter; KIC — the stress intensity 
factor corresponding to the inert environment.

For a statistical assessment of the mechanical 
strength of an optical fiber, the most suitable type of 
distribution is the Weibull law, written in the 
form [27]:

P(σ,L) = 1− exp

(
− L

L0

(
σ

σ0

)n
)

(4)

where L is the length of the optical fiber; L0 — the
length of the optical fiber sample during testing; σ —
tensile strength of the fiber; σ0,m — the parameters
of the Weibull distribution are determined experimen-
tally.

At present, usually, a two-stage optical fiber de-
struction model is used: the first mode is valid for
the probabilities of optical fiber destruction Pcrit ≤
P(σ,L) ≤ 1, the second is for probabilities 0 ≤
P(σ,L) ≤ Pcrit . Pcrit corresponds to the probability
of destruction at the boundary of two modes.

P(σ,L) =

1− exp
(

Lσ
m1

L0σ
m1
01

)
i f Pcrit ≤ P(σ,L)

1− exp
(

Lσ
m2

L0σ
m2
02

)
i f P(σ,L)≤ Pcrit

(5)

However, for gradual failures, it is more reason-
able to consider only the time interval of the two-stage
fiber failure model, characterized by a slow decrease
in the availability factor (a slow increase in the proba-
bility of failure).There is no need to take into account
the time interval corresponding to the transition to the
limit state, since the second stage proceeds in frac-
tions of a second [28] and the value of the unavail-
ability coefficient tends to 1.

From equations (3) and (4) it follows that the prob-
ability of failure of an optical fiber during its aging is
determined as:

P(t) = 1− e
−

L
L0
·
[

σc

σ0
−
([

σn−2
c

σ
n−2
0

]
−

t ·σn
exp

B ·σn−2
0

) 1
n−2
]m

(6)

where

B =
2

A ·Y 2(n−2) ·Kn−2
IC

(7)

The Markov model of damage accumulation with
discrete states and continuous time can be represented
as Figure 1.

S0

1-λ0

S1

1-λ1

λ0 λN-1SN-1

1-λN-1

SN
λ1 ...λN-2

Figure 1: Markov Damage Accumulation Model.

The probability of the transition of the system to
the state S j during the time interval ∆t, counted from
the moment t, will be denoted by Pi j(t +∆t).

Pi j(t +∆t) = P(S(t +∆t) = S j|S(t) = Si) (8)

In this case, the events of the Markov chain are
mutually exclusive and create a complete group:

N

∑
k=1

Pk(t) = 1 (9)

The probability density of the transition (or the in-
tensity of the transition) of the system from state Si to
state S j is:

λi j = lim
∆t→0

Pi j(t +∆t)−Pi j(t)
∆t

= P′i j(t) (10)

Note that for ∆t→ 0 the intensity λi j(t) = tan(α),
where tan(α) is the tangent to the function Pi j(t).

Pi j(t +∆t)≈ λi j∆t (11)

Thus, the intensities of state-to-state transitions 
can be found by means of a piecewise linear approxi-
mation of the failure probability function determined 
by formula (6). The accuracy of the correspondence 
of the piecewise linear approximation of the original 
function will depend on the number of linear sections 
of the approximating function, the number of which 
will correspond to the number of states of the Markov 
model. The choice of the optimal number of states 
in this case is determined by the required simulation 
accuracy.

4 DATA FOR MODELING

The following characteristics are taken as the initial 
data for finding the required number of s tates of the 
Markov damage accumulation model for an optical 
fiber 100 km long:

1)   L0  =  0.012 m,    σ0  =  5.222 GPa,   m  =  5.187, 
 n = 23.287, lnB = −24.7711 [23]
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Inert strength for category B singlemode fibers 
σc = 20 APa according to [29]

Applied Aechanical Atress exp = 2 APa Taking

 into account the adopted characteristics,

expression (6) takes the form:

P(t) = 1 − e
−

[
53.0476−(5.164·1036−6.1·1026·t)

1
21.287

]5.187

(12)

5 FINDING THE REQUIRED
NUMBER OF STATES OF 
THE MARKOV MODEL

Piecewise-linear approximation of the function of the 
probability of failure of an optical fiber at any moment 
of time is obtained in the following form:

P(t) =


k1t +C1 i f 0 ≤ t ≤ t1
k2t +C2 i f t1 ≤ t ≤ t2
. . . . . .

kvt +Cv i f tv−1 ≤ t ≤ tv

(13)

where v is the number of sections in the piecewise 
linear approximating function, the number of states of 
the Markov model of damage accumulation.

To find the number of states of the Markov model 
of damage accumulation, it is necessary to set the per-
missible simulation error εmod , which will correspond 
to the approximation error εapprox.

εmod ≥ εapprox (14)

The solution of the problem of approximation 
with the required error within the framework of the 
article is implemented by numerical methods.

Finding the optimal linear equations for piecewise 
linear approximation for a function is carried out us-
ing the least squares method [30]. The software func-
tionality is implemented in the pwlf library for the 
Python programming language. The approximating 
function is found for a given number of linear equa-
tions. To determine the required number of linear 
equations, the criterion of the maximum approxima-
tion error εapprox is used for a time interval from N1 to 
N2 days. The number of approximating linear equa-
tions increases until condition (14) is satisfied. The 
maximum error between the approximating and ap-
proximating functions in percent is found as:

dmax( f ,π f ) = max( f − π f ) · 100 (15)

where f is the approximated function, π f - appro-
ximating function.

As an example, an algorithm of  operation  is  pre-
sented at εmod = 0.005, for a time interval from 1 
year to 60 years.
1 import pwlf
2 import numpy as np
3
4 P(t) # equation 11
5
6 e_max_threshold = 0.005
7 nLine = 1
8 t0, t1 = 3.1536e7, 1.89216e9
9 t = np.linspace(t0, t2, 10000)
10
11 maxError = lambda (f, pf) :
12 max(abs(f - pf)) * 100
13
14 pf = pwlf.PiecewiseLinFit(t, P(t))
15
16 while (e_max > e_max_threshold):
17 nLine += 1
18 pf.fit(nLine)
19 e_max = maxError(P(t),
20 pf.predict(t))

Based on the results of the algorithm, 
an approximating function is determined, 
consisting of v linear equations with the 
required approximation accuracy.

6 RESULTS

The article discusses the dependence of the number 
of states of the Markov model of damage 
accumulation on the required modeling error. 
Considered modeling errors: 0.0001, 0.0005, 0.001, 
0.005, 0.01 and 0.05. The obtained values are 
presented in Table 1. The dependence of the 
approximation accuracy εapprox on the number of 
states of the Markov model is shown in Figure 6.

  The plots of the approximating functions 
vs the absolute approximation error, are 
shown in Figures 2-5.

with     different Table 1: Approximation results 
modeling errors.

εmod εapprox # of states Equation
0.0005 0.00048 9 (16)
0.001 0.00095 6 (17)
0.005 0.0038 3 (18)
0.01 0.009 2 (19)
0.05 0.009 2 (19)
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Figure 2: The plot of the approximating function combined 
with the absolute error of approximation with the accuracy 
of modeling εmod = 0.0005.

Figure 3: The plot of the approximating function combined 
with the absolute error of approximation with the accuracy 
of modeling εmod = 0.001.

Figure 4: The plot of the approximating function combined 
with the absolute error of approximation with the accuracy 
of modeling εmod = 0.005.

Figure 5: The plot of the approximating function combined 
with the absolute error of approximation with the accuracy 
of modeling εmod = 0.01.

Figure 6: The plot of the dependence of the number of 
states of the Markov model on the required modeling     
error εmod.

Thus, using this algorithm, it is possible to deter-
mine the number of states of the Markov damage 
accumulation model for a given value of the 
simulation accuracy. In this case, the intensities of 
transitions between the states of the Markov model 
can be found from the obtained system of equations 
of approximating functions.

For a modeling error of 0.01, only two equations 
are enough to describe a given function, for a model-

nP(t) = 

4.3· 10-IЗХ 
6.5· 10-12х-О.004
1.6· JO-llx-0.014 
3.4- JO-llx-0.034 
6.2· JO-llx-0.07 
9.5· JO-llx-0.12 
1.3· JO-IOx-0.17 
1.7 · JO-IOx-0.25 
2.2· JO-IOX-0.34 

if 3.2е7 > t 2': 7.2е8 
if 7.2е8 > t 2': 9.7е8 
if9.7e8>t2': l .le9 
if 1.1 е9 > t 2': 1.3е9 (16)
if l .3e9 > t 2': 1.5е9 
if l .5e9 > t 2': 1.6е9 
if 1.6е9 > t 2': 1.7е9 
if 1.7е9 > t 2': \ .8е9

if 1.8е9 > t 2': 1 .9е9
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ing error of 0.005, three equations are enough. 

However, such accuracy is often unacceptable with 

the required reliability indices of 0.982 for the 

backbone primary network, 0.998 for the intra-zone 

primary network [31]. At the same time, with an 

increase in the number of equations (when there are 

more than 8), the modeling error decreases slightly. 

The optimal value in this case is modeling with an 

error of 0.001. 

However, the accuracy of the modeling should 

be determined by the infrastructure owner based on 

many aspects: the category of users, the economic 

costs of downtime, etc. 

7 CONCLUSIONS 

The article proposes a method for solving the 
problem of determining the number of states of a 
Markov chain associated with a nonlinear 
dependence of the probability of rejection on the rate 
of gradual failures. From the system of equations of 
approximating functions, the values of time and 
probability of failure can be found for the model of 
failure of optical fibers made of silica glass.  
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