
Algorithm of Handling Out-of-Order Delivery for Multithreaded
UDP-based Data Transport

Dmytro Syzov, Dmitry Kachan and Eduard Siemens
Department of Electrical, Mechanical and Industrial Engineering,

Anhalt University of Applied Sciences, Bernburger Str. 55, 06366 Köthen, Germany,
{dmytro.syzov, dmitry.kachan, eduard.siemens}@hs-anhalt.de

Keywords: High-Speed Data Transport, Mutli-threading, Out-Of-Order Delivery, Transport Protocols.

Abstract: As industry of information technologies evolves, demand for high speed data transmission steadily
increases. The need in it can be found in variety of different industries – from entertainment withtrends for
increasing of video to scientific research. One of the consequences is a demand for new improved transport
protocols that would use the capacity of Long Fat Pipes by maximum, where common TCP performs much
slower than it is expected. Such protocols are mostly based on UDP and work at the user space. To improve
their network throughput, there is an option to implement sending data in a multi-threading way, but that
can bring complications with it. One of the main obstacles is a possibility of out-of-order delivery due to
race conditions. This problem is researched in current paper. Causes of reorder are studied regarding UDP-
based transport protocols. Based on the results of the testing, a simple algorithm for compensating out-of-
order delivery is proposed. It’s effect then is analysed on the example of RMDT.

1 INTRODUCTION

The common limitation of operating systems –
involving of significant resources on each system
send and receive calls – leads to the performance
limitation on sender side of such an application. Of
particular interest is a problem of a high data rate
traffic generation on a sender side. Especially in
cases of point-to-multipoint communications, when
the same data has to be transmitted to multiple
destinations, as sender has to produce more traffic
than each of the receivers has to process. This can be
resolved by introducing of a multi-threaded send
process into a transport protocol. The idea behind
the use of multi-threading for performance
improvement lies in fact that only part of system call
actually concerns working with NIC. So,
theoretically it could be possible to invoke
sendmsg() or recvmsg() system calls, which can be
used as “send” and “receive” operations on Linux
from different cores and all processing, that is not
concerned NIC, will be performed in parallel. Such
approach can be applied as sendmsg() and recvmsg()

are thread safe and re-entrant (Linux Programmer's
Manual, 2017). Thus, these calls can be performed
in parallel and so resulting data rate can be
increased. Another important fact is that UDP
preserves message boundaries (IEEE Standards
Interpretations, 2017). Theoretically, there is no
reason to assume that within this method there are
some fundamental limitations of maximum data rate
achievable.

Besides the speed boost, multi-threading in
sending and receiving data can bring a number of
problems on its own. One of them is a problem of
efficient scalability regarding the system limitations.
Another one is possible interleaving of packets due
to asynchronous send operations, which is subject of
investigations in current paper. For transport
protocols this may present certain pitfalls as packets
that are out of order could be considered lost by its
ARQ algorithm. This work aims at provision of
some insights into the packet reordering problem
and proposes a simple algorithm to overcome it.
In general, there are mechanisms, such as signals,
mutexes, conditional variables, that allow to avoid

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

17

such packet reordering problems. However, the
downside of using these mechanisms is radically
reduced performance as they usually include waiting
for synchronization, and when the data rates are on
the level of gigabits per second, even a block for a
small amount of time can decrease output from NIC
significantly. Thus, it is important to keep sender
lightweight. Considering arguments, presented
earlier, only lockless data exchange mechanisms are
used in this work – precisely lockless queues.

For a simple application that consists of a lockless
queue as IPC mechanism and sendmsg() system call
which performs the interaction with network
hardware, is considered as a test subject. In such an
application – a few points of possible reorder are
present:

➢ out-of-order timings of dequeue() operations
➢ out-of-order return of the object from a queue
➢ out-of-order send call
First and second points can be generally

considered as one since they produce the same result
– reordered read from the IPC queue.

There is a possibility to handle out-of-order
packets without mechanisms that create additional
load on sender. This work analyses the behaviour of
a multithreaded data transmission application and
analyses the proposed algorithm that handles the
problem of reordering without locking and works on
the receiver side, which is important, as its
implementation does not create an additional load on
the sender threads, thus does not decrease sender
performance.

2 RELATED WORK

The lack of networking performance caused by CPU
limitation is a problem that is of relevance in almost
every multi-gigabit data transmission environment.
This problem is clearly shown in research
(Srivastava, 2014), which explores the problem of
traffic generation for a 40 Gbps channel by
comparison of several generators: D-ITG, packETH,
Ostinato. As a result, S. Srivastava et al. state that no
traffic generator was able to achieve the 40 Gbps
rate. Authors suggest to use multithreaded
generation of traffic. D-ITG - a generator from
proposed research, which utilizes the channel using
16 threads. However, no additional research on
impact of multithreading on packet-reordering was
presented. To obtain more data on implementation
of multi-threading the advantages of a multi-
threaded approach for a network UDP-based
application were investigated in a separate work

(Syzov, 2016). Conclusion is, that multi-threading is
beneficial for the fast traffic generation. It compares
performance of cases with various amount of threads
(from 2 to 20) on a 10 Gbps link. This work shows
clear increase in performance with increasing
number of threads as with 3 threads almost 10 Gbps
rate has been achieved. With more than 12 threads,
data rate starts decreasing. This number corresponds
to exceed of the amount of CPUs and can be
explained by overhead on threads management.

Another work (Nguyen D., 2007) shows the
methodology for development of a multi-threaded
network application, which correlates with this
work. Research, among other subjects, considers two
of the main pitfalls in a multithreaded network
application - race conditions on data transport and
inter-process communication. As explained by
Nguyen D. et al., in an unsynchronized application,
there is a possibility of data races and stresses the
potential harm that it may cause due to reordering
and data corruption. However, that work does not go
into detail and does not propose a solution. In
current research, the problem of possible reorders,
caused by race conditions, is investigated further
with tests made and a proposed algorithm for
reordering avoidance.

3 TESTING ENVIRONMENT

All tests were performed in 10 GE Laboratory of
Future Internet Lab Anhalt (FILA, 2017). The core
element here is the WAN emulator Netropy 10G that
can be used to create an emulation of WAN links.
During each test, 10 GB of data are transmitted.
MSS is equal to 1472 bytes as it corresponds to
common 1500 Ethernet v2 MTU (IETF, 2017). For
sending and receiving, two Linux servers are used.
Their specifications are presented in table 1.

Table 1: Servers' specifications.

Name Server 1 Server 2
Kernel 4.4.0-38generic

x86_64
4.4.0-

45lowlatency
x86_64

CPU Intel Xeon X5690 (6-
core) 3.5 GHz

AMD
Opteron(tm) 4238
(6-core) 3.3 GHz

Memory 40 GB DDR3 32 GB DDR3
NIC Chelsio

Communications Inc.
T420CR

Intel
Corporation

82599ES

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

18

Since system call execution times can show
significant spikes, all the figures with measurement
results present filtered data – significant deviations
are treated as outliers and are removed from data set.
It is done in order to have a closer look on the
behaviour of the tested configuration as original data
often contains spikes that are rare and have different
causes, which are not studied in this paper. The
outlier filtering is performed by Tukey method
(Frigge, 1989), it rejects outcomes, which are out of
inter-quartile range (approximately 2.698σ).

For tests, apart from C Library and C++
Standard Library, following open source non-
standard libraries were used:

➢ moodycamel::ConcurrentQueue (concurrent
queue, 2017) for inter-process
communication;

➢ HPTimer (Fedotova, 2013) for precise time
measurements.

3.1 IPC Means

Since an intensive use of threads is present in this
work, an appropriate IPC mechanism is required.
Due to specific use case, there are some key
requirements for a queue:

➢ Ability to work in a Single Producer,
Multiple Consumers mode

➢ Low time of enqueue and dequeue
operations.

Also a few additional requirements are given,
that simplify usage of the queue and give more
options to a developer:

➢ Ability to acquire approximate number of
elements in the queue or avoiding overflow
and gaining information on senders’
performance without direct communicating
with sender threads;

➢ Support of a dynamic allocation of additional
memory for the option to increase queue
size if senders significantly slows down for
some period of time.

Following these requirements,
moodycamel::ConcurrentQueue was chosen as it
provides fast enough operations and also slow
degradation of performance. It provides approximate
amount of objects currently placed in the queue,
which can be used to determine if threads work
correctly without additional queue for the backward
channel. Apart from this, the possibility to enqueue
only if there is free allocated memory is present,
which is useful if dynamic behaviour is not desired.

3.2 Time Acquisition

In order to retrieve data on timings of various
operations a precise time acquiring mechanism is

required. For this purpose the HPTimer library has
been used, since it provides faster time acquisition
than standard std::chrono library (Fedotova, 2013).
It is worth to note that each measurement contains
overhead of the timer itself which however is non-
negligible.

4 TEST AND ANALYSIS OF
REORDERS

For analysis and evaluation of reorder causes, some
research should be made in order to analyze the
behavior of a multi-threaded application in general.
The stability of send call timings is of interest as
inconsistency may lead to race conditions. In a real
case, however, each send iteration includes
additional operations that are not directly connected
to a send call itself, the program as a whole is not
executed constantly and, apart from all else, the
system call may not take the same time on each
iteration. To assess, how system handles sendmsg()
call, some experiments have to be performed.

To acquire information on timings of main
operations on sender threads’ side, a test has to be
performed with measurements of sendmsg() and
dequeue() operations in sequence. The algorithm is
minimalistic for precise measurements. It does not
contain any operations apart from measured ones,
time measurements and std::vector::push_back()
operation to a reserved storage per loop. Results are
presented on figures 1-3.

Figure 2: enqueue() operation time measurements on
Server 1 in a thread.

Figure 1: sendmsg() operation time measurements on
Server 1 in a thread.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

19

On all figures, there is some inconsistency
observed. The most prominent one is a significant
drop on figure 3, that occurs when enqueue process
on producer side (figure 2) is finished. However, it
should be noted, that in tested case dequeue() takes
much less time than sendmsg(). Also, in comparison
to pure sendmsg() in a single thread, there are more
inconsistencies in this case (deviation of 112ns vs.
63ns).

Next test aims to determine the volume of packet
reorders in an application. As there are two main
possible points of reorder causing operations, each
of them is tested separately and then in combination.
For this purpose, a set of test applications has been
developed.

For tests, all data collection is placed at the
receiver. In the test with no queue, the
differentiation between sender threads is performed
by setting predefined calculation of sequence
numbers. The one, used in this test is defined by
formula 1:

(1)

where it the sequence number of message i; ID
– thread identification number; – amount of
threads. In that way, each sending thread has its own
sequence of numbers, that differs from others. With
this approach, it would be incorrect to count out-of-
order numbering inside one loop of each thread.
More appropriate would be to count reorder cases,
when order of numbers differs on each loop or if one
of the threads sends messages faster than others. For
the final test with queue, no additional functionality
on the sender side is required. Receiver simply gets
the message, then separates and stores a sequence
number. The amount of threads, that are of interest,
are 2, 3 and 11. Amounts of 2 and 3 are important as
in this cases the maximum bandwidth of a 10 Gbps
link is reached. The case with 11 threads represents
the maximum quantity of sender threads for having
one thread per CPU as one thread is a main
application. However, for a better overview of the
behavior, two additional numbers of threads between
3 and 11 are also considered. Such test can provide

some information about significance of reorders as
necessity of handling them depends on it.

For each case 40 trials were conducted. Collected
data is analysed and the mean percentage of reorders
is calculated. Each deviation from the expected next
number is treated as reorder in case if factual
number is bigger than expected. Results are
presented in table 2.

Table 2: Percentage of reordered packets on Server 1.

Tested case,
threads

2 3 5 8 11

sendmsg() 50% 33% 21% 16% 10%

Sendmsg() +
dequeue()

0.02% 4.2% 6.2% 14% 31.3%

As can be seen, sendmsg() is not handled well by
the kernel in regard to proper ordering. Another
conclusion is that internal blocking of the send call
in kernel space can decrease the reordering
percentage, since the increase in the amount of
threads decreases reorder percentage. As for
combined sendmsg() and dequeue(), there is an
expected increase in percentage of out-of-order
delivery. However, it is not linear. And in case of 2
threads, the percentage is small enough to be
neglected.

To check if this behaviour is the same for
different hardware, an additional test for a
sendmsg()+dequeue() was conducted on a different
server. Results are presented in table 3

Table 3: Percentage of reordered packets on Server 2.

Tested
case,

threads

2 3 5 8 11

Sendmsg()
+

dequeue()

2% 3% 6% 18% 30%

As can be seen, while the percentage is different
for some cases, the difference is generally not
significant and the behavior remains the same.

Apart from percentage of reorders, the depth (in
packets) between expected receive of a reordered
packet and factual is of interest. It can show how
long the application should wait before it can send
NACK to get optimal performance. Results of
processing collected data are presented in table 4 for
cases with 2, 8 and 11 threads.

Figure 3: dequeue() operation time measurements on
Server 1 in a thread.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

20

Table 4: Depth of reorders (in %).

 Depth

Scenario

1 2 3 4 5 6 and
more

Server 1, 2
threads

1 69 1 7 7 15

Server 1, 8
threads

4 33 21 13 3 25

Server 1, 11
threads

4 25 16 9 4 42

Server 2, 2
threads

0 97 0.3 0.3 0.3 2

Server 2, 8
threads

2 11 7 3 1 76

Server 2, 11
threads

2 6 3 1 2 86

From data, presented in table 3 it can be
concluded that generally reorders tend to have depth
of 2 or 3. Also, there is a significant difference
between results on server 1 and 2. While on server 1
most of reorders have depth of 2 or 3 even if the
amount of threads is increased, on server 2 with
additional threads added percentage significantly
shifts to more deep.

In a more close to a real use scenario with a
serialized sequence of dequeue() and sendmsg(), the
presence of a single data producer via the queue
mostly compensates the timing reordering of packets
by the kernel. Also, the percentage of reorders in the
case of two threads is negligible. This is important
as in some cases two threads can already reach 10
Gbps data rate, which might be enough for most
applications. However, with addition of more
threads there is a rapid increase in out-of-order
delivery percentage. This fact means that there is a
necessity in a mechanism that would handle such
behavior to avoid decrease in utilization due to
packet reorders.

5 PROPOSED REORDER
HANDLING IN THE
PROTOCOL

To compensate out-of-order delivery an algorithm is
suggested for implementation on the receiver side
which handles the packet reordering in a feasible
way. Basic principle of the algorithm is that every
thread sends packets with thread-specific sequence
numbering in addition to the connection-specific
numbering. In the described multi-threaded sending
scenario, is safe to assume that all packets that have

numbers lower than the least number from received
last from each thread, are either lost or received. For
purposes of this algorithm, some bytes at the header
have to be reserved for a number of a thread, that
sends the data packet. This has two main
consequences:

➢ Maximum amount of sender-threads is
restricted by the maximum thread number
in the respective header field;

➢ Additional operations for processing data are
to be placed on the receiver side.

A flow chart of the described approach is shown
on figure 4 and visual representation of packet
reordering on figure 5.

Here TI is a unique thread ID and Pnum is a
connection-global sequence number of a packet. As
can be seen, packet 5 was lost during transmission,
but receiver does not send NACK immediately, but

Figure 5: Visualization of the reorder handling algorithm.

Figure 4: Flow chart of the reorder handling algorithm.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

21

rather waits until it can be sure that the packet is
actually lost. NACK is sent after packet 6 from
thread 0 and packet 7 from thread 1 are received.

When implemented on the receiver side, it can
handle reorders caused by multithreading by such
approach. However, it does not cover other causes
for out-of-order delivery. Also, in real-world
scenarios, apart from principles, described in the
algorithm, some modifications have to be applied.
The reason for that is the possibility of packet losses.
As receiver has to notify sender about missing
packets at some point, some functionality regarding
this has to be implemented. Two generally used
solutions are:

➢ Setting the timeout. If a missing packet was
not received in a predefined period of time
it is considered to be lost;

➢ Defining a number of packets, that can be
received after a missing one. If missing
data was not received after that number, a
packet is considered to be lost.

TCP, for example, implements both approaches
as it has a defined window, but also TCP has a
timeout for each packet to be received. If timeout is
exceeded or if last message of a window is received,
missing packets are considered to be lost. In regard
to algorithm explained in this chapter, the number of
packets that are received after a missing one depends
on the depth of reorders.

With example of RMDT, the use of 8 theads with
server 1 as a sender, unhandled reorders will result
in 14% loss on it’s own. And if transmission is
performed throug channel with losses, the total
percentage of packets retransmitted can be even
higher, thus, decreasing overall performance of a
protocol. However, by implementation of reorder
handling algorithm with waiting window of 4, most
of reorders will be handled and difference in
performance between these two cases is more than
10%. On the other hand, in a scenario of 2 threads,
the percentage of reorders is low enough to be
ignored.

The main difference between this algorithm and
simple wait for a defined number of packets or a
timeout is that it allows to differentiate between loss
and reorder on the run. Thus, it does not
significantly decrease the performance of the ARQ
protoclol.

5 CONCLUSIONS

There is a demand in transport protocols, that can
efficiently and reliably transmit data. To develop
such a protocol, a number of problems have to be

considered. One of them is a preservation of the
ordering of data packets as for some types of ARQ,
an out-of-order packet might be equal to a lost
packet. In this work, basic reasons for out-of-order
delivery caused by multithreading were considered.
With measurements on timings of operations
involved and reorders themselves, some insight was
provided into behaviour of a multithreaded network
application. In a case of 2 threads, depending on
hardware, the percentage of reorders ranged from
0.02% to 02% with depth mostly equal to 2 (from
69% to 97% of reorders).

For the problem of reordering, to optimize data
integrity preservation, an algorithm was suggested
and it’s benefits evaluated on the example of
RMDT.

5 FUTURE WORK

Possible continuation of this work is developing and
testing more complex algorithm that would include
handling out-of-order delivery in general, not only
that caused by multi-threading. More work can be
done on evaluating the influence of reorders in a real
transport protocol. In particular, the subject of
reordering in wide area networks should be
researched. Such research may provide information
necessary for developing an appropriate out-of-order
handling mechanism in protocols that operate on
wide area network.

Additional tests should also be performed for
different setups. Of special interest are tests with
different types of hardware and its´ configuration.
Also, tests with dynamically changing load on CPU
and memory usage are of interest. Based on the
results of such tests, the proposed algorithm can be
improved to be able to handle variety of situations
correctly.

For testing approach as a part of a real protocol,
if all functionality will be proved to work correctly,
this approach can be tested as a part of an UDP-
based multi-threaded transport protocol for high
speed data transmission.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

22

ACKNOWLEDGMENTS

This work has been funded by Volkswagen
Foundation for trilateral partnership between
scholars and scientists from Ukraine, Russia and
Germany within the project CloudBDT: Algorithms
and Methods for Big Data Transport in Cloud
Environments.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

23

REFERENCES

Linux. socket. In Linux Programmer's Manual
IEEE. IEEE Standards Interpretations for IEEE Std

1003.1c. Amendment 2: Threads Extension. [Online].
Available from: http://standards.ieee.org/findstds/
interps/1003-1c-95_int/pasc-1003.1c39.html.
2017.02.12

Srivastava S., Anmulwar, S., Sapkal, A. M., Batra, T.,
Gupta, A., and Kumar, V., 2014. Evaluation of traffic
generators over a 40Gbps link, in Computer Aided
System Engineering (APCASE), Asia-Pacific
Conference, pp. 43–47.

Syzov, D., Kachan, D., Siemens E., 2016. High-speed
UDP Data Transmission with Multithreading and
Automatic Resource Allocation in Proceedings of the
4th International Conference on Applied Innovations
in IT, Koethen : Hochschule Anhalt, pp. 51-56

Duc Chinh, N., Kandasamy, E., Yoke Khei, L., 2007.
Efficient Development Methodology for
Multithreaded Network Application in The 5th Student
Conference on Research and Development-SCOReD
2007 11-12 2007, Malaysia

FILA. Future Internet Lab Anhalt [Online]. Available
from: https://fila-lab.de. 2017.02.12

Apposite. Apposite Technologies :: Linktropy and Netropy
Comparison. [Online]. Available from:
http://www.apposite-tech.com/products/index.html.
2017.02.12

Internet Engineering Task Force. RFC 894 - A Standard
for the Transmission of IP Datagrams over Ethernet
Networks. [Online]. Available from:
https://tools.ietf.org/html/rfc894. 2017.02.12

Frigge M.,, Hoaglin D. C., Iglewicz, B., 1989. Some
Implementations of theBoxplot, The American
Statistician, vol. 43, no. 1, pp. 50–54.

Concurrent queue. A fast multi-producer, multi-consumer
lock-free concurrent queue for C++11. [Online].
Available from: https://github.com/cameron314/
concurrentqueue/ 2017.02.12

Fedotova, I., Siemens, E., Hu, H., 2013. A high-precision
time handling library, J. Commun. Comput., vol. 10,
pp. 1076–1086.

