
31



Abstract—Optimized structure of the educational program
consisting of a set of the interconnected educational objects is
offered by means of problem solution of optimum partition of
the acyclic weighed graph. The condition of acyclicity
preservation for subgraphs is formulated and the quantitative
assessment of decision options is executed. The original
algorithm of search of quasioptimum partition using the genetic
algorithm scheme with coding chromosomes by permutation is
offered. Object-oriented realization of algorithm in language C
++ is described and results of numerical experiments are
presented.

Keywords: e-learning, educational program, educational

object, computer testing, acyclic weighed graph, number
partition, graph partition, random permutation, genetic
algorithm, object-oriented approach.

I. INTRODUCTION

While study processes planning of large volumes of a
training material with use of electronic training technologies
(for example, for preparation and professional development
of the industrial enterprises personnel) all training material of
the educational program (EP) is presented usually in the
separate portions – educational objects (EO), on each
studying completion intermediate certification is carried out
(usually in the form of computer testing – CT).

EO are connected by the relation of precedence-
consequence, and successful certification for one EO is an
admission condition to studying of another EO. Natural
model of such EP is the directed acyclic weighted graph
G=(V,E,WE), where V – a set of n vertex presenting EO, E –
a set of edges (precedence- consequence conditions) and – WE
a set of edges weight [1][2][3]. The weight of wij defines
“activation threshold” of an edge: if the assessment on EO vi
is more or equal to wij, studying of EO vj is possible, otherwise
repeated testing on vi is necessary.

In practice the quantity of EO as a part of EP can be rather
big, especially in cases of the corporate educational structures
connected with training of employees of the enterprises on
various specialties. Under these conditions problem of
integration of EO in the educational modules (EM) by graph

partition G on a small amount of k subgraphs is becoming

actual:
 𝑉𝑉 = ⋃ 𝑉𝑉𝑝𝑝 , ⋂ 𝑉𝑉𝑝𝑝 = ∅.𝑘𝑘

𝑝𝑝=1
𝑘𝑘
𝑝𝑝=1 (1)

Rather obvious optimality criteria of such partition are
minimization of "interconnections" between EM while
preservation of acyclicity for subgraphs.

Before formalization of optimality criteria and condition of
acyclicity we will make necessary explanations. We will call
the scheme of graph partition si(n,k) any number partition n
into k parts:

 𝑠𝑠𝑖𝑖(𝑛𝑛, 𝑘𝑘) ∶ 𝑛𝑛 = 𝑎𝑎1 + 𝑎𝑎2 + ⋯𝑎𝑎𝑘𝑘 . (2)

It is known [4, p.71], that total of such partition P is defined
recursively:

 𝑃𝑃(𝑛𝑛, 𝑘𝑘) = 𝑃𝑃(𝑛𝑛 − 1, 𝑘𝑘 − 1) + 𝑃𝑃(𝑛𝑛 − 𝑘𝑘, 𝑘𝑘), (3)

where: 𝑃𝑃(𝑖𝑖, 𝑖𝑖) = 1,𝑃𝑃(𝑖𝑖, 1) = 1,∀𝑖𝑖, 𝑃𝑃(𝑖𝑖, 𝑗𝑗) = 0, 𝑗𝑗 > 𝑖𝑖.
Generation algorithms of all number partition n into k parts

are given in [4, p 70]. Thus, when graph partition from n
vertex on k subgraphs there is P (n, k) schemes of partition
(for example, P (20,3) = 33).

We will define, how many various options of graph
partition for the scheme set (assign Q(si(n,k) to that quantity).
As there generally can be repeating elements in the scheme
of partition, the general view of the scheme will be:

 𝑠𝑠𝑖𝑖(𝑛𝑛, 𝑘𝑘) ∶ 𝑛𝑛 = 𝑞𝑞1𝑎𝑎1 + 𝑞𝑞2𝑎𝑎2 + ⋯𝑞𝑞𝑚𝑚𝑎𝑎𝑚𝑚 , (4)

where qj>=1, m<=k, all aj varies.
The formula is fair:

𝑄𝑄(𝑠𝑠𝑖𝑖(𝑛𝑛, 𝑘𝑘)) = 𝑛𝑛!
𝑞𝑞1!(𝑎𝑎1!)𝑞𝑞1𝑞𝑞2!(𝑎𝑎2!)𝑞𝑞2…𝑞𝑞𝑚𝑚!(𝑎𝑎𝑚𝑚!)𝑞𝑞𝑚𝑚 (5)

For example, si(4,2): 4 = 2+2. Then:

Optimization of the Modular Educational
Program Structure

Alexandr Ivanchenko, Anastasia Kolomiets, Dmitriy Grinchenkov, Nguyen Van Ngon
Platov South-Russian State Polytechnic University (Novocherkassk Polytechnic Institute)

Information Technologies and Control Department
Prosvescheniya Str. 132, Rostov region, 346428, Novocherkassk, Russia

E-mail: grindv@yandex.ru

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

32

𝑄𝑄(𝑠𝑠𝑖𝑖(4,2)) = 4!
2! (2!)2 = 2 ∙ 3 ∙ 4

2 ∙ 4 = 3.

It will be such partitions: {(1,2), (3,4)}, {(1,3), (2,4)},
{(1,4), (2,3)}.

One more example: P(8,3)=5. It will be scheme:

s1(8,3)=1+1+6, s2(8,3)=1+2+5, s3(8,3)=1+3+4,
s4(8,3)=2+2+4, s5(8,3)=2+3+3

Total number of graph partition from 8 vertex on 3

subgraphs:

𝑁𝑁(8,3) = ∑ 𝑄𝑄(𝑠𝑠𝑖𝑖(8,3)) = 8!
2!6! + 8!

2!5! + 8!
3!4! + 8!

2!(2!)24! +𝑃𝑃(8,3)
𝑖𝑖=1

8!
2!2!(3!)2 = 966.

The formula for total number of graph partition from n
vertex on k subgraphs is fair:

 𝑁𝑁(𝑛𝑛, 𝑘𝑘) = ∑ 𝑄𝑄(𝑠𝑠𝑖𝑖(𝑛𝑛, 𝑘𝑘)).𝑃𝑃(𝑛𝑛,𝑘𝑘)
𝑖𝑖=1 (6)

Let us denote 𝑟𝑟𝑙𝑙(𝑛𝑛, 𝑘𝑘) = {𝑉𝑉1𝑙𝑙 ,𝑉𝑉2𝑙𝑙, …𝑉𝑉𝑘𝑘𝑙𝑙} for current graph
partition. Then we will consider the best for the set n and k -
partition minimizing the following criterion (total weight of
interconnections):

𝐹𝐹(𝑛𝑛, 𝑘𝑘) = min

𝑟𝑟𝑙𝑙(𝑛𝑛,𝑘𝑘),𝑙𝑙∈[1,𝑁𝑁(𝑛𝑛,𝑘𝑘)]
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉𝑥𝑥𝑙𝑙 , 𝑣𝑣𝑗𝑗 ∈𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1

𝑉𝑉𝑥𝑥𝑙𝑙 , 𝑥𝑥 ≠ 𝑦𝑦. (7)

It is required to keep an acyclicity condition for subgraphs
by its partition. We will consider that partition rl(n,k) keeps
property of acyclicity if for any couple of subgraphs 𝑉𝑉𝑥𝑥𝑙𝑙 ,𝑉𝑉𝑦𝑦𝑙𝑙
all edges connecting them go into one direction.

We will notice that formulated problem of graph optimum
partition differs from known graph partition problems [6,7]
by the condition that initial graph is directed acyclic and it is
required to keep an acyclicity condition for subgraph.

II. ALGORITHM FOR SOLUTION
Algorithm 1. Search of optimum graph partition from n

vertex on k subgraphs by straightforward enumeration.
[It is supposed that procedure of generation of partition

schemes is available (described in literature) and generation
procedure of all graph partition for the partition scheme set is
available (not presented in literature)]

Step 1. Regular scheme of partition is generated.
Step 2. The next partition for the current scheme is

generated.
Step 3. If partition is accepted (provides acyclicity for

subgraphs), we pass to a Step 4, else to Step 5.
Step 4. The total weight of interconnections for the current

partition is calculated and correct the minimum value of
criterion.

Step 5. If not all partitions for the current scheme are
received, transition to a Step 2, else to a Step 6.

Step 6. If not all schemes of partition are received,
transition to a Step 1, else Stop.

The main shortcomings of this algorithm are: need of
development of generation procedure for all graph partitions
for the partition scheme set and the exponential growth of
algorithm operating time at increase in number of graph
vertexes.

It is possible to offer simple algorithm of quasioptimum
partition search (Algorithm 2), free from the first
shortcoming which is overcome by generation of random
permutations of a set of graph vertexes and "appoint" it - the
current partition. Of course, there is a problem of repeatability
of partition appears, as it is obvious that two various
permutations can correspond to the same partition for the
scheme set.

For example, for the scheme of 4=2+2 permutation
(1,3,2,4) and (4,2,3,1) will be identical because they set the
same graph partition into subgraphs with vertexes (1,3) and
(2,4). However repeatability of partition can be referred to the
property of a quasioptimality of this algorithm. It is obvious
that the end condition of the offered algorithm of random
permutations (step 5) is performance of the set number of
iterations (for example, 10000).

Offered algorithm of random permutations is simplest and
it is possible to achieve much better effect from use of random
factor in case of application the standard scheme of the
genetic algorithm (GA) [7]-[10] which can be "built in"
algorithm 1 instead of steps 2-5 (we will call it Algorithm 3).

Obvious way of decisions coding (chromosomes on
terminology of GA) in the considered task are permutation,
as in this case the phenotype and a genotype coincide and
coding/decoding operations aren't necessary, and the total
weight of interconnections for the current partition will be
used as fitness function.

It should be noted that at generation of the next decision
(chromosome in the form of permutation) when forming
initial population or as a result of performance of
mutation/crossing operations it is necessary to carry out two
checks:

1) whether this decision is admissible from the point
of view of ensuring acyclicity for subgraphs;

2) whether this decision (chromosome) coincides
with one of already available in population, or with a
chromosome before a mutation, or from one of parental
chromosomes.

III. PRACTICAL REALISATION OF ALGORITHM
For formalization we will use the formal-language notation

on the basis of language C++ that allows to apply exclusively
effective in this case object-oriented approach [11-13]. The
object model of the considered task is based on several
interconnected classes.

Class Graph encapsulates a set of vertex (set<int> vertex)
and weighted edges (vector<Edge> edges, where
Edge = pair<pair<int,int>, int>) and contain in open part
necessary functionality:
 function void push_back(Edge), including edge in graph,
 function size_t size(),returning quantity of vertex of the

graph,

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

33

 function bool isEdge(pair<int,int>), checking whether
there couple of numbers that corresponds to any edge of
the graph;

 function bool one_direction(vector<int>, vector<int>),
checking whether all edges connecting vertexes of two
subgraphs have one direction;

 function double bind_size(vector<int>, vector<int>),
returning the total power of interconnections of two
subgraphs.

Class Partition encapsulates partition – array of subgraphs
(vector<vector<int>> P). Besides, static fields are stored in
open part of this class: the scheme of graph partition
(static vector<int> Scheme) and the index on graph
(static Graph* G) that establishes between the classes
Partition and Graph the dependence relation. Functionality of
the class Partition is provided with the following functions:

 two constructors: by default Partition() and
constructor of type transformation
Partition(vector<int>), allowing to initialize a class
sample by permutation;

 overloaded operation of assignment void operator=
(vector <int>), interfaced to the constructor of type
transformation;

 overloaded operation of checking of two partitions
into identity bool operator==(const Partition&);

 function bool isAcyclic(), checking partition into
acyclicity;

 function int bind_size(),returning total power of
interconnections for all subgraphs.

For organization of calculation with usage of classes Graph
и Partition it is necessary:
 to declare static fields in global area of visibility

vector<int> Partition::Scheme and Graph*
Partition::G;

 to create graph in the body of main program Graph Gr,
fill it with data (edges) through of Gr.push_back(…) and
to pass a pointer to Gr in class Partition: Partition::G =
&Gr.

In the subsequent it will be necessary to transfer to the class
Partition the current scheme of partition by value assignment
to the static field Partition::Scheme, for example:
Partition::Scheme = {4,5,6}.

The object model of genetic algorithm includes the
following classes:

Class Chromosome encapsulates a chromosome as an
array of genes (vector <int> genes) and an assessment of
"fitness" of a chromosome (double fitness), as well as the
static index on fitness function which will be set in the main
program (static F fit_fun where F = double (*) (vector <int>
&)). Functionality of the class Chromosome is provided with
the following functions:
 two constructors: by default Chromosome() and

constructor of type conversion Chromosome
(vector<int>), allowing to initialize chromosome by
permutation and on the fly and to assess its "fitness" with
the help of fitness-function fit_fun;

 two functions for “retrieval” values of fields:
vector<int> get_genes() and double get_fitness();

 overloaded external functions of comparison of two
chromosome (==, < and >).

Class Population encapsulates population as an array of
(vector<Chromosome> pop). Functionality of the class
Population is provided with the following functions:
 constructors by default Population();
 function of chromosome inclusion in population

void insert(const Chromosome& c), which automatically
maintains orderliness of chromosomes in population on
increase of value of fitness;

 overloaded operation of access to population elements on
index Chromosome operator[](int i);

 function of obtaining size of population int size();
 function of the table frequencies (roulette wheel) creation

for population elements vector<double> get_freq();
 function of the next population creation void next_pop().

The most difficult is the function next_pop() which realizes
the GA scheme, consistently by following steps:
 select "elite" (the most adapted chromosomes) and

includes it in the next population (next generation);
 the rest of the next generation is filled with chromosomes

descendants which are formed as a result of application
crossing operation (crossover) to two "parental"
chromosomes selected from the current population by
means of "roulette wheel";

 mutation operation is applied to some chromosomes
from the created new generation.

Developed and realized set of classes has allowed to make
record of the main algorithm of the problem solution
exclusively compact: it is only necessary to create initial
population by means of the generator of casual permutation
and then the set number of times (for example, 10000) to call
the next_pop function ().

Fig.1 shows graph from 20 vertexes and its optimum
partition into subgraphs A, B and C according to the scheme
{5,6,9}. The size of population has been set 50, and the
number of iterations (generations) – 500. We will notice that
there are 77 597 520 options of partition for that graph
according to the scheme {5,6,9}.

Fig. 1. Initial graph and its optimal partition by scheme {5,6,9}

The integrated representation of initial EP in the form of
three modules is shown on the Fig.2. Similar structurization
allows optimizing process of training by allocation of a small
amount of logically complete educational modules and
orienting student to the ordered passing of all set of
educational objects [15].

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

34

Fig. 2. Graph representation in the form of three subgraphs (modules).

IV. CONCLUSIONS
The numerical experiments executed by authors on model

examples have shown high efficiency of the offered
algorithm of creation of quasioptimum graph partition with
use of genetic algorithm and coding of decisions by
permutations at rather large number of vertexes. Optimized
structure of the educational program consisting of a set of the
interconnected educational objects is offered by means of
problem solution of optimum partition of the acyclic weighed
graph. The condition of acyclicity preservation for subgraphs
is formulated and the quantitative assessment of decision
options is executed. The original algorithm of search of
quasioptimum partition using the genetic algorithm scheme
with coding chromosomes by permutation is developed.

REFERENCES
[1] Thanassis Hadzilacos, Dimitris Kalles, Dionysis Karaiskakis, Maria

Pouliopoulou. Using Graphs in Developing Educational Material //
Proceedings of the 2nd International Workshop on Building
Technology Enhanced Learning Solutions for Communities of
Practice. TEL-CoPs'07. Sissi, Lassithi Crete. Greece, 18 September,
2007. URL: http://ceur-ws.org/Vol-308/paper04.pdf

[2] Ivanchenko A. N., Nguyen Van Ngon. Simulation modeling of the
process study of the modular curriculum // University News. North-
Caucasian Region. Technical Sciences Series. 2015; 3: 28-33

[3] Ivanchenko A. N., Nguyen Van Ngon. Modelling of e-learning using
temporal and random graphs // University News. North-Caucasian
Region. Technical Sciences Series. 2016; 1: 15-19

[4] D.L. Kreher and D.R. Stinson, Combinatorial Algorithms: Generation,
Enumeration and Search, CRC press LTC , Boca Raton, Florida, 1998.
340p.

[5] W. Kocay and D.L. Kreher, Graphs, Algorithms, and Optimization,
Chapman \& Hall/CRC Press, Boca Raton, Florida, 2005.

[6] CME342/AA220/CS238 - Parallel Methods in Numerical Analysis.
Graph Partitioning Algorithms. Stanford University. Stanford,
California. URL:
http://web.stanford.edu/class/cs238/lect_notes/lecture12-13-05.pdf

[7] Gladkov L.A. The bioinspired methods in optimization / L.A. Gladkov,
V. V. Kureychik, V. M. Kureychik, P. V. Sorokoletov. – M.:
FIZMATLIT, 2009. - 384 pages.

[8] Kureychik, V. V. Theory of evolutionary calculations / V. V.
Kureychik, V. M. Kureychik, S. I. Rodzin. – M.: Fizmatlit, 2012. – 260
pages .

[9] Rutkovskaya D. Neural networks, genetic algorithms and indistinct
systems / D. Rutkovskaya, M. Pilinsky, L. Rutkovsky. – M.: The hot
line – Telecom, 2013. – 384 pages.

[10] Karpenko A.P. Modern algorithms of search optimization. The
algorithms inspired by the nature: manual / A.P. The Karpenka – M.:
MGTU publishing house of N.E Bauman, 2014. – 446 pages.

[11] Nicolai M. Josuttis. The C++ Standard library: A Tutorial and reference
(2nd edition) / Nicolai M. Josuttis // Publisher Addison-Wesley
Professional. - 2012. - 1128p.

[12] Musser D.A., Stepanov A.A. Generic Programming / David A. Musser,
Alexander A. Stepanov // Proceeding of International Symposium on

Symbolic and Algebraic Computation, vol. 358 of Lecture Notes in
Computer Science, pp. 13–25, Rome, Italy, 1988.

[13] Stepanov A.A., Mac-Jones P. Beginnings of programming: Transl.
from English / A.A. Stepanov, P. Mac-Jones//M.: LLC I.D. Williams,
2011. – 272 pages.

[14] Petrochenkov A. Practical Aspects of Genetic Algorithms’
Implementation in Life Cycle Management of Electrotechnical
Equipment. Proc. of the 3rd International Conference on Applied
Innovations in IT, (ICAIIT), March 2015. URL:
http://icaiit.org/proceedings/ 3rd_ICAIIT/1.pdf

[15] Grinchenkov D.V., Kushchy D. N. Methodological, technological and
legal aspects of use of electronic educational resources. // University
News. North-Caucasian Region. Technical Sciences Series. 2013. No.
2 (171). Page 118-123.

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

