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 Abstract—Multi-core processors is a design philosophy that 
has become mainstream in scientific and engineering 
applications. Increasing performance and gate capacity of 
recent FPGA devices has permitted complex logic systems to be 
implemented on a single programmable device. By using 
VHDL here we present an implementation of one multi-core 
processor by using the PLASMA IP core based on the (most) 
MIPS I ISA and give an overview of the processor architecture 
and share the execution results.

Keywords: FPGA, multi-core processor, MIPS, PLASMA, 
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I. INTRODUCTION

The concept of parallelism plays important role in the 
computer industry and the scientific community because it 
defines a way for the computer to realize two or more 
operations simultaneously and as a result the applications or 
calculations that are performed usually will finish and give 
the desired results more quickly. The improvement of the 
parallelism is one of the most important methods for faster 
task executions and usually the most applicable results of 
these parallelism techniques can be found in the processors. 
For example of a parallelism let’s say we transfer two 
equally large files on a disk [1]. The transfer speed will 
depend on the bandwidth of the disk. If they simultaneously 
were transferred on two disks separately then we would 
have double transfer bandwidth so the transfer will complete 
twice as fast as in the first case.

There are different types of parallelism and different 
forms to execute it. One example of usage of the parallelism 
concept on system level is the usage of multiple disks and 
processors. The workload to meet customer requests can be 
distributed between the processors and disks so the result 
will be a better responsiveness of the system. When a 
system can expand its memory and its number of processors 
we call this system a scalable system and this is a highly 
valued property of the server systems. 

Other type of parallelism concept is the concept of 
instruction level parallelism (ILP) [2]. This concept refers 
the possibility of execution of more than one instruction in 
one program at the same time. These instruction may be 
consecutive or not. One of the simpler forms for achieving 
this is the use of pipelining which is a technique that was 
used in the first processors for achieving the effect of 

parallelism. The basic idea behind this technique is to 
overlap the execution of the instructions so it can reduce the 
execution time needed for a sequence of instructions. A key 
factor that leads to pipelining is the fact that not all 
instructions depend on the immediately preceding 
instruction so therefore they are partially or completely 
executed in parallel as much as possible.

II. MULTI-CORE PROCESSORS

Regardless of whether the processor core takes advantage 
of the instruction or thread level parallelism, multi-core 
processor have the advantage to exploit parallelism at task 
level found in the applications. A key factor that gives this 
advantage lies in the architecture of the task itself. Namely, 
each task has its own program counter, its own address 
space, its own registers and its own context so different 
tasks can be executed on different cores in the multi-core 
processor at virtually the same time [3]. This fact gives 
tremendous performance boosts on the execution of the 
applications but it is only achievable by good programming 
principles and very smart compilers that can order the code 
so it can be executed on a multi-core processor. If these 
requirements are not met then the performance of the 
execution of the application can be same or worse from the 
performance of the execution of the same application on a 
single-core processor.

III. PLASMA (MOST MIPS I) IP CORE

The PLASMA microprocessor is a 32 bit RISC processor 
core designed in VHDL1 that is fully synthesizable. It 
executes all the instructions in user mode specified in the 
MIPS ISA with the exception of the instructions for 
misaligned memory access2 [5]. On [4], the source code of 
the latest version of the PLASMA core can be downloaded. 
The current implementation incorporates and some 
peripherals like UART and Ethernet. It is tested on several 
FPGAs from [6] and [7].

1 VHDL presents an acronym that consists from two acronyms: VHSIC 
and HDL. VHSIC stands for Very High Speed Integrated Circuit and HDL 
stands for ardware Description Language. VHDl is a language defined by 
the IEEE (ANSI/IEEE 1076-1993).

2 The implementation of these instructions was not possible due to the 
fact that those instructions were patented during the design of the processor.
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Fig. 1. PLASMA core architecture [1].

The processing unit can be implemented two or three 
stage pipeline and optional 4kB cache memory. The 
working frequency when implemented in [6] or [7] FPGAs 
has reached 25 MHz and 50 MHz depending of the FPGA 
model. The core is not implemented on a silicon level or at 
least it was not reported in the consulted bibliography.

Fig. 1 shows the architecture of the PLASMA core. For 
example an ADD instruction will perform the following 
steps (stages): the “pc-next” entity will pass the value of the 
program counter (PC) to the “mem_ctrl” entity which in 
return will fetch the opcode from memory (end of stage 1); 
the memory wil return the opcode (end of stage 2); the entity 
“mem_ctrl” will pass the opcode to the “control entity”; this 
entity will convert the 32 bit opcode to a 60 bit VLIW3 code 
and will send control signals to the other entities; based on 
the “rs_index” and “rt_index” control signals, the entity 
“reg_bank” will send the 32 bit “reg_source” and 
“reg_target” values to the entity “bus_mux” (end of stage 3); 
based on the “a_source” and “b_source” control signals, the 
entity "bus_mux" multiplexes “reg_source” onto “a_bus”
and “reg_target” onto “b_bus”; based on the “alu_func”
control signals, "alu" adds the values from “a_bus” and 
“b_bus” and places the result on “c_bus”; based on the 
“c_source” control signals, "bus_mux" multiplexes “c_bus”
onto “reg_dest”; based on the “rd_index” control signal, 

3 VLIW is an acronym that stands for Very Large Instruction Word

"reg_bank" saves “reg_dest” into the correct register (end of 
stage 4, stage 3 if using two stage pipeline); read or write 
memory if needed (end of stage 5, stage 4 if using two stage 
pipeline).

The result of the simulation of the operation of the 
PLASMA core is shown on Fig. 2.

IV. MULTI-CORE PROCESSOR BASED ON PLASMA IP CORE

The multi-core processor showed on Fig. 9 and 10 that 
was implemented is a four (or two) core processor that is 
based on the PLASMA IP core mentioned before. It consists 
of:

Four cores based on the PLASMA IP core: There was 
very little core modification so that the architecture of the 
multi-processor remains simple. The only modification was 
with the addition of an arbiter sub module that will generate 
requests to the main bus arbiter in order for the processor to 
start read/write memory cycle. Bus arbiter (Fig 3): this is the 
module that controls the bus. It assigns the bus to one core at 
a time so it eliminates bus conflicts between the cores [8]. 
The main job of this entity is to make sure that the cores will 
access the bus fairly. For example core zero has bigger 
priority than one, one has bigger priority than three, three 
than four and so forth. When the bus will be freed by a core, 
the arbiter assigns the bus to the next core from the FIFO list 
that has requested it. Fig. 4 shows the usage of the arbiter.
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Fig. 2. Operation of the PLASMA core.

If the bus is free, this module will provide access on it on 
the first core that will make request. Subsequent request 
(while the bus is in use) are put in a FIFO list in the order 

they happen. If there are simultaneous requests the priority 
is given by the core number.

The arbiter’s buffer has to be with size equal or larger 
than the number of cores to accommodate the worst case 
scenario - when all cores have requests for bus utilization. 
His work is showed on Fig. 4.

Fig. 3. Architecture of the arbiter.

Bus multiplexer: depending on which core the bus is 
allocated, the multiplexer connects the selected core bus 
with the main bus [9]. Its architecture is shown on Fig. 5.

There are several peripherals on the processor:
1. UART - standard UART controller which can be 

accessed by two registers, one for received data, and the 
other for data transmission. The data is consisted from 8 bits 
and it is without any parity bit.

2. Registers for interrupt requests - two registers, one for 
reading the status of the pending interrupts and the other for 
interrupt masking.

3. Counter register - 32 bit register used for counting 
clock cycles. It increases its value on every cycle

4. GPIO ports - two registers, one used to write values to 
the GPIO pins and the other used to read values from the 
GPIO pins.
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Fig. 4. Operation of the arbiter.

Fig. 5. Bus multiplexer architecture.

V. RESULTS

The following findings are based on test runs of different 
programs and in every succeeding program the number of 
instructions was increased [10]. Fig. 6 shows how the 
performance improvement in processing performs with 
increasing amount of work for the tasks and it is measured 
by the number of instructions that the tasks are running. The 
result shown are for three different tasks where the 
percentage of instructions accessing memory changes. In 
the plot on Fig. 6 tasks that have 15%, 4.17% and 3.22 % 
access to the processor bus are shown. The results from Fig.
6a and 6b are comparison of a processor with four and two 
cores respectively. In all cases it is seen that the 
performance rises with increasing the work that the task are 
doing. This is because the percentage of time it takes the 
operating system to reschedule tasks is declining. Beyond a 
certain value this time becomes negligible compared to the 
time of actual processing. It is also noticeable that we 
always get a limit on the improvement which depends on the 
percentage of instructions that access the bus. In the best 
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case on Fig. 6a this value is about 4 whereas on Fig. 6b is 2 
which are the respective values that theoretically we can 
achieve in ideal cases. The ideal case is when we have no 
collisions on the bus and the only time we can assure that 
this will be possible is when no core will access the bus at 
any moment which is impossible. The increase in collisions 
causes degraded performance.

The next findings on Fig. 7 are based on testing the 
processor, running programs in which the utilization is 
increased progressively on the bus [11]. Collisions on the 
bus increase with increasing the number of cores and with
increasing the bus utilization every time we add a core. 
Evaluation is done on how the efficiency of the core 
increases as the collisions decrease. On Fig. 7 it is shown 
that the improvement in the processing time of the tasks 
decreases along with the increase in the percentage of 
instructions that access the bus (for unwanted results, which 
is very low percentage, the improvement decreases again). 
This is because for these small values, effective processing 
time of tasks begins to decrease and the time to reschedule 
the tasks is no longer negligible.

Fig. 6. Improvement in execution time when going from one to four cores.
Shows the relationship of times of execution in function of the amount of 
processing tasks are run. The amount of processing measuring instructions 
that execute tasks.

Fig. 7. Improvement in execution time for four and two cores, compared to 
a core function of the percentage of instructions that access to the bus (red -
4 cores, green - 2 cores).

VI. CONCLUSION

In this paper we have presented an implementation of a 
multi-core system on which were performed several tests. 
The presented result shows dependency of performance with 
the number of cores, the type of application (task) and 
whether we have memory cache or not. The factors that 
determinate the main efficiency of a processor is the bus 
usage on behalf the processing that needs to be done. 

There are other factors to be evaluated in the future 
including other type of arbiter policies and memory cache 
that is not shared between data and instructions. Other future 
work may involve implementation of a larger multi-core 
processor with more than four cores, development of an 
operating system that will control the proper distribution of 
the tasks that need to be executed. Here we have showed 
author’s first implementation of a multi-core processor and 
there are a lot of possibilities for further development of the 
design.

VII. APPENDIX

Fig. 8. PLASMA core connections.
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Fig. 9. Multi-core processor UART interface.                                                               Fig. 10. Memory controller of the multi-core processor.

Fig. 12. Connection of the bus multiplexer with one of the cores.Fig. 11. Connection of the bus arbiter with one of the cores.
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