
29

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

 Abstract—Multi-core processors is a design philosophy that
has become mainstream in scientific and engineering
applications. Increasing performance and gate capacity of
recent FPGA devices has permitted complex logic systems to be
implemented on a single programmable device. By using
VHDL here we present an implementation of one multi-core
processor by using the PLASMA IP core based on the (most)
MIPS I ISA and give an overview of the processor architecture
and share the execution results.

Keywords: FPGA, multi-core processor, MIPS, PLASMA,
core, implementation, architecture, design.

I. INTRODUCTION

The concept of parallelism plays important role in the
computer industry and the scientific community because it
defines a way for the computer to realize two or more
operations simultaneously and as a result the applications or
calculations that are performed usually will finish and give
the desired results more quickly. The improvement of the
parallelism is one of the most important methods for faster
task executions and usually the most applicable results of
these parallelism techniques can be found in the processors.
For example of a parallelism let’s say we transfer two
equally large files on a disk [1]. The transfer speed will
depend on the bandwidth of the disk. If they simultaneously
were transferred on two disks separately then we would
have double transfer bandwidth so the transfer will complete
twice as fast as in the first case.

There are different types of parallelism and different
forms to execute it. One example of usage of the parallelism
concept on system level is the usage of multiple disks and
processors. The workload to meet customer requests can be
distributed between the processors and disks so the result
will be a better responsiveness of the system. When a
system can expand its memory and its number of processors
we call this system a scalable system and this is a highly
valued property of the server systems.

Other type of parallelism concept is the concept of
instruction level parallelism (ILP) [2]. This concept refers
the possibility of execution of more than one instruction in
one program at the same time. These instruction may be
consecutive or not. One of the simpler forms for achieving
this is the use of pipelining which is a technique that was
used in the first processors for achieving the effect of

parallelism. The basic idea behind this technique is to
overlap the execution of the instructions so it can reduce the
execution time needed for a sequence of instructions. A key
factor that leads to pipelining is the fact that not all
instructions depend on the immediately preceding
instruction so therefore they are partially or completely
executed in parallel as much as possible.

II. MULTI-CORE PROCESSORS

Regardless of whether the processor core takes advantage
of the instruction or thread level parallelism, multi-core
processor have the advantage to exploit parallelism at task
level found in the applications. A key factor that gives this
advantage lies in the architecture of the task itself. Namely,
each task has its own program counter, its own address
space, its own registers and its own context so different
tasks can be executed on different cores in the multi-core
processor at virtually the same time [3]. This fact gives
tremendous performance boosts on the execution of the
applications but it is only achievable by good programming
principles and very smart compilers that can order the code
so it can be executed on a multi-core processor. If these
requirements are not met then the performance of the
execution of the application can be same or worse from the
performance of the execution of the same application on a
single-core processor.

III. PLASMA (MOST MIPS I) IP CORE

The PLASMA microprocessor is a 32 bit RISC processor
core designed in VHDL1 that is fully synthesizable. It
executes all the instructions in user mode specified in the
MIPS ISA with the exception of the instructions for
misaligned memory access2 [5]. On [4], the source code of
the latest version of the PLASMA core can be downloaded.
The current implementation incorporates and some
peripherals like UART and Ethernet. It is tested on several
FPGAs from [6] and [7].

1 VHDL presents an acronym that consists from two acronyms: VHSIC
and HDL. VHSIC stands for Very High Speed Integrated Circuit and HDL
stands for ardware Description Language. VHDl is a language defined by
the IEEE (ANSI/IEEE 1076-1993).

2 The implementation of these instructions was not possible due to the
fact that those instructions were patented during the design of the processor.

Bojan Gruevski, Aristotel Tentov, Marija Kalendar
SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies

Karpos II bb, PO Box 574, 1000 Skopje, Macedonia
E-mail: gruevski.bojan@gmail.com, {toto, marijaka}@feit.ukim.edu.mk

Implementation of Multi-Core Processor Based
on PLASMA (most MIPS I) IP Core

30

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Fig. 1. PLASMA core architecture [1].

The processing unit can be implemented two or three
stage pipeline and optional 4kB cache memory. The
working frequency when implemented in [6] or [7] FPGAs
has reached 25 MHz and 50 MHz depending of the FPGA
model. The core is not implemented on a silicon level or at
least it was not reported in the consulted bibliography.

Fig. 1 shows the architecture of the PLASMA core. For
example an ADD instruction will perform the following
steps (stages): the “pc-next” entity will pass the value of the
program counter (PC) to the “mem_ctrl” entity which in
return will fetch the opcode from memory (end of stage 1);
the memory wil return the opcode (end of stage 2); the entity
“mem_ctrl” will pass the opcode to the “control entity”; this
entity will convert the 32 bit opcode to a 60 bit VLIW3 code
and will send control signals to the other entities; based on
the “rs_index” and “rt_index” control signals, the entity
“reg_bank” will send the 32 bit “reg_source” and
“reg_target” values to the entity “bus_mux” (end of stage 3);
based on the “a_source” and “b_source” control signals, the
entity "bus_mux" multiplexes “reg_source” onto “a_bus”
and “reg_target” onto “b_bus”; based on the “alu_func”
control signals, "alu" adds the values from “a_bus” and
“b_bus” and places the result on “c_bus”; based on the
“c_source” control signals, "bus_mux" multiplexes “c_bus”
onto “reg_dest”; based on the “rd_index” control signal,

3 VLIW is an acronym that stands for Very Large Instruction Word

"reg_bank" saves “reg_dest” into the correct register (end of
stage 4, stage 3 if using two stage pipeline); read or write
memory if needed (end of stage 5, stage 4 if using two stage
pipeline).

The result of the simulation of the operation of the
PLASMA core is shown on Fig. 2.

IV. MULTI-CORE PROCESSOR BASED ON PLASMA IP CORE

The multi-core processor showed on Fig. 9 and 10 that
was implemented is a four (or two) core processor that is
based on the PLASMA IP core mentioned before. It consists
of:

Four cores based on the PLASMA IP core: There was
very little core modification so that the architecture of the
multi-processor remains simple. The only modification was
with the addition of an arbiter sub module that will generate
requests to the main bus arbiter in order for the processor to
start read/write memory cycle. Bus arbiter (Fig 3): this is the
module that controls the bus. It assigns the bus to one core at
a time so it eliminates bus conflicts between the cores [8].
The main job of this entity is to make sure that the cores will
access the bus fairly. For example core zero has bigger
priority than one, one has bigger priority than three, three
than four and so forth. When the bus will be freed by a core,
the arbiter assigns the bus to the next core from the FIFO list
that has requested it. Fig. 4 shows the usage of the arbiter.

31

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Fig. 2. Operation of the PLASMA core.

If the bus is free, this module will provide access on it on
the first core that will make request. Subsequent request
(while the bus is in use) are put in a FIFO list in the order

they happen. If there are simultaneous requests the priority
is given by the core number.

The arbiter’s buffer has to be with size equal or larger
than the number of cores to accommodate the worst case
scenario - when all cores have requests for bus utilization.
His work is showed on Fig. 4.

Fig. 3. Architecture of the arbiter.

Bus multiplexer: depending on which core the bus is
allocated, the multiplexer connects the selected core bus
with the main bus [9]. Its architecture is shown on Fig. 5.

There are several peripherals on the processor:
1. UART - standard UART controller which can be

accessed by two registers, one for received data, and the
other for data transmission. The data is consisted from 8 bits
and it is without any parity bit.

2. Registers for interrupt requests - two registers, one for
reading the status of the pending interrupts and the other for
interrupt masking.

3. Counter register - 32 bit register used for counting
clock cycles. It increases its value on every cycle

4. GPIO ports - two registers, one used to write values to
the GPIO pins and the other used to read values from the
GPIO pins.

32

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Fig. 4. Operation of the arbiter.

Fig. 5. Bus multiplexer architecture.

V. RESULTS

The following findings are based on test runs of different
programs and in every succeeding program the number of
instructions was increased [10]. Fig. 6 shows how the
performance improvement in processing performs with
increasing amount of work for the tasks and it is measured
by the number of instructions that the tasks are running. The
result shown are for three different tasks where the
percentage of instructions accessing memory changes. In
the plot on Fig. 6 tasks that have 15%, 4.17% and 3.22 %
access to the processor bus are shown. The results from Fig.
6a and 6b are comparison of a processor with four and two
cores respectively. In all cases it is seen that the
performance rises with increasing the work that the task are
doing. This is because the percentage of time it takes the
operating system to reschedule tasks is declining. Beyond a
certain value this time becomes negligible compared to the
time of actual processing. It is also noticeable that we
always get a limit on the improvement which depends on the
percentage of instructions that access the bus. In the best

33

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

case on Fig. 6a this value is about 4 whereas on Fig. 6b is 2
which are the respective values that theoretically we can
achieve in ideal cases. The ideal case is when we have no
collisions on the bus and the only time we can assure that
this will be possible is when no core will access the bus at
any moment which is impossible. The increase in collisions
causes degraded performance.

The next findings on Fig. 7 are based on testing the
processor, running programs in which the utilization is
increased progressively on the bus [11]. Collisions on the
bus increase with increasing the number of cores and with
increasing the bus utilization every time we add a core.
Evaluation is done on how the efficiency of the core
increases as the collisions decrease. On Fig. 7 it is shown
that the improvement in the processing time of the tasks
decreases along with the increase in the percentage of
instructions that access the bus (for unwanted results, which
is very low percentage, the improvement decreases again).
This is because for these small values, effective processing
time of tasks begins to decrease and the time to reschedule
the tasks is no longer negligible.

Fig. 6. Improvement in execution time when going from one to four cores.
Shows the relationship of times of execution in function of the amount of
processing tasks are run. The amount of processing measuring instructions
that execute tasks.

Fig. 7. Improvement in execution time for four and two cores, compared to
a core function of the percentage of instructions that access to the bus (red -
4 cores, green - 2 cores).

VI. CONCLUSION

In this paper we have presented an implementation of a
multi-core system on which were performed several tests.
The presented result shows dependency of performance with
the number of cores, the type of application (task) and
whether we have memory cache or not. The factors that
determinate the main efficiency of a processor is the bus
usage on behalf the processing that needs to be done.

There are other factors to be evaluated in the future
including other type of arbiter policies and memory cache
that is not shared between data and instructions. Other future
work may involve implementation of a larger multi-core
processor with more than four cores, development of an
operating system that will control the proper distribution of
the tasks that need to be executed. Here we have showed
author’s first implementation of a multi-core processor and
there are a lot of possibilities for further development of the
design.

VII. APPENDIX

Fig. 8. PLASMA core connections.

34

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Fig. 9. Multi-core processor UART interface. Fig. 10. Memory controller of the multi-core processor.

Fig. 12. Connection of the bus multiplexer with one of the cores.Fig. 11. Connection of the bus arbiter with one of the cores.

35

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

REFERENCES

[1] M. J. Flynn, “Computer Architecture: Pipelined and Parallel
Processor Design,”. Jones & Bartlett Learning, Sudbury,
Massachusetts, 1995.

[2] J. L. Hennessy, D. A. Patterson, “Computer Architecture - A
Quantitative Approach,” 4th Edition. Morgan Kaufman
Publishers, Burlington, Massachusetts, 2007.

[3] A. S. Tanenbaum, “Modern Operating Systems,” 2nd edition.
Prentice Hall, Upper Saddle River, New Jersey, 2002.

[4] Plasma – most MIPS I (TM) opcodes: Overview [Online].
Available: http://opencores.org/project,plasma,overview,
(October, 2013)

[5] MIPS M51xx Warrior-M class CPU Core [Online]. Available:
http://www.mips.com/, (November, 2013)

[6] Xilinx [Online]. Available: http://www.xilinx.com/, (October,
2013)

[7] Altera [Online]. Available: http://www.altera.com/, (October,
2013)

[8] David A. Patterson, John L. Hennessy, “Computer Organization
and Design - The Hardware/Software Interface”, 3rd Edition.
Morgan Kaufman Publishers, Burlington, Massachusetts, 2005.

[9] J. M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic
“Digital Integrated Circuits - A Design Perspective”, 2nd
Edition, Prentice-Hall, Upper Saddle River, New Jersey, 2002.

[10] D. Silva, K. Stangherlin, L. Bolzani, F. Vargas, “A Hardware-
Based Approach to Improve the Reliability of RTOS-Based
Embedded Systems,” IEEE Computer Society, 2011, p. 209.

[11] J. Tarrillo, L. Bolzani, and F. Vargas, “A Hardware-Scheduler
for Fault Detection in RTOS-Based Embedded Systems,”
Digital System Design, Architectures, Methods and Tools, 2009,
pp. 341 – 347.

