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Abstract: For the successful use of magnetoelectric measuring systems, an important point is the possibility of assessing 

their accuracy in a dynamic mode of operation. To obtain such estimates, methods based on frequency 

transformations and, accordingly, analysis of the composition of the spectral components of the currents of 

the interacting circuit and the magnetic field are traditionally used. At the same time, frequency methods have 

a number of limitations, in particular, due to the finiteness of the number of terms of the Fourier series in the 

analysis of periodic functions of time, as well as some other limitations when using the Fourier integral for 

non-periodic functions. In addition, there are certain limitations when using the well-known complex-spectral 

method and the method of typical effects. In the presented article, in addition to the indicated methods, it is 

proposed to consider the possibility of using a temporary research method to assess the dynamic properties of 

magnetoelectric systems. Also, as an example, the article presents an analysis of the dynamic properties of a 

magnetoelectric measuring system with electromagnetic damping, which can be extended to more complex 

measuring systems of this type. 

1 INTRODUCTION 

When assessing the dynamic accuracy of 
magnetoelectric systems (i.e., those whose operation 
is based on the interaction of a circuit with a current 
and a magnetic field), the frequency method for 
studying linear reproducing systems is usually used 
[1, 2]. This research method is based on the 
assumption that electric currents (initializing 
currents) flowing through the circuit can be 
represented as a set of constantly acting sinusoidal 
components. 

It is easy to conclude that the validity of using the 
frequency method is limited to cases where the 
currents in the circuit are accurately described by 
periodic functions of time, as well as by functions of 
time expressed by the Fourier integral [3, 4]. 

At the same time, experience shows that in 
specific physical examples, the above time functions 
are not enough to accurately describe the currents in 
the circuit, and, consequently, to assess the accuracy 
of reproducing the effects of a specific device. The 
time functions used in such methods of studying 

magnetoelectric systems as the complex spectral 
method and the method of typical effects [5, 6] also 
turn out to be insufficient. 

In this regard, of particular interest is the use of 
the time method for studying linear reproducing 
systems to evaluate the dynamic properties of 
magnetoelectric systems [7]. 

With this research method, to describe the 
impacts, time functions 𝛼𝑖𝑛(𝑡) are used that satisfy
the condition: 

|𝛼𝑖𝑛 
к (𝑡)|{≤𝑀Ωк;   𝑎𝑡  +0≤𝑡≤∞,−∞≤𝑘≤+∞ 

=0;  𝑎𝑡  −∞≤𝑘≤+∞,−∞≤𝑘≤+∞
(1)

where 𝑀 and Ω are some given real positive numbers. 
The set of time functions satisfying condition (1) 

will be referred to below as the class of 
functions 𝑆(𝑀, Ω). 

From a practical point of view, the determination 
of the parameters 𝑀 and required for the time method 
for the class of impacts to be reproduced is associated, 
as a rule, with less difficulties than the determination 
of the spectral composition of these impacts, required 
in the frequency and complex-spectral methods, and 
the determination of the typical impact, required in 
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the method of typical influences. It is characteristic 
that in the study of the reproducing properties of 
magnetoelectric systems, in most practical cases, the 
relation can be used to determine the parameter Ω: 

Ω ≈
|𝑖(1)(𝑡)|

max 𝑚𝑎𝑥

|𝑖(𝑡)|max 𝑚𝑎𝑥
. 

where |𝑖(𝑡)|𝑚𝑎𝑥 𝑚𝑎𝑥 – the limiting value of the

module of the currents to be investigated in the circuit 

at −∞ ≤ 𝑡 ≤ +∞;  

|𝑖(1)(𝑡)|
max 𝑚𝑎𝑥

 – is the limiting value of the modulus

of the rate of change in time of the currents to be 

investigated in the circuit at −∞ ≤ 𝑡 ≤ +∞. 

2 METHODS 

The main purpose of magnetoelectric systems is, as is 

known, the conversion of an electric current flowing 

through a certain circuit, 𝑖к(𝑡), into a deviation of a

pointer mechanically connected to this circuit with a 

current by the value 𝐿(𝑡). The required nature of this 

transformation is described either by the: 

 𝐿0(𝑡) = 𝐾(0)𝑖𝑘(𝑡) (2)

expressing the ideal tracking process, or by the 

  𝐿𝜏(𝑡) = 𝐾(0)𝑖𝑘(𝑡 + 𝜏)         (3) 

expressing the ideal registration process. 

In (2) and (3): 𝐿0(𝑡) and 𝐿𝜏(𝑡) are the functions

of time describing the required reproduction of the 

impact 𝑖𝑘(𝑡): 𝐾(0) is the sensitivity of the device

with the magnetoelectric unit for direct current; 𝜏 – 

admissible time of displacement of registration of the 

investigated currents in the circuit. 

Obviously, the actual reproduction of the impact 

𝑖𝑘(𝑡), described by the time 𝐿(𝑡), function differs

both from 𝐿0(𝑡), and from 𝐿𝜏(𝑡). The mutual

deviation of the time functions 𝐿0(𝑡) and 𝐿(𝑡) is the

instantaneous error of the tracking device (4): 

∆0(𝑡) = 𝐿(𝑡) − 𝐿0(𝑡)         (4) 

and the mutual deviation of the time functions 𝐿𝜏(𝑡)
and 𝐿(𝑡) is the instantaneous registration error (5) 

∆𝜏(𝑡) = 𝐿(𝑡) − 𝐿𝜏(𝑡) .      (5) 

The functions ∆0(𝑡) and ∆𝜏(𝑡) quite fully

characterize the dynamic properties of the 

magnetoelectric system with respect to the current 

𝑖𝑘(𝑡). When determining these functions, we will

proceed from the assumption that the relationship 

between 𝐿(𝑡) and 𝑖к(𝑡) is expressed by a linear

differential equation with constant coefficients. 

In the classical theory of magnetoelectric systems 

[8], the relationship between 𝐿(𝑡) and 𝑖к(𝑡) is

expressed by a linear inhomogeneous second-order 

differential (6): 

(1) (2)

2

0 0

2 1
( ) ( ) ( ) (0) ( ),к

s
L t L t L t K i t

 
   

where 𝑠 - the degree of calming of the moving system 

of the circuit with the investigated currents; 

𝜔0 − natural frequency of the mobile system.

At the same time, a thorough study of the dynamic 

properties of magnetoelectric systems, carried out by 

R. R. Kharchenko and N. N. Evtikhiev, showed that 

to describe the relationship between  𝐿(𝑡) and 𝑖к(𝑡) it

is necessary to use linear differential equations with 

orders higher than the second. Therefore, in this 

paper, to describe the relationship between 𝐿(𝑡) and 

𝑖к(𝑡), we use the linear inhomogeneous differential:

( )

1

( ) ( ) (0) ( ),
n

к

k к

k

L t b L t K i t


 

whose order (the number 𝑛) is not bounded from 

above. 

The coefficients 𝑏𝑘 in this case are real positive

numbers determined by the design features of the 

used magnetoelectric device. 

Consider the structure of the solution of the 

differential (7) for the case when the initializing 

currents  𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω) and the transfer function of

the device (8) 

1

1
( ) (0) ,

1

n
к

к

k

K p K

b p







is an analytic function of a complex variable inside 
|𝑝| < 𝑅𝑚𝑖𝑛 and outside the circle |𝑝| ≤ 𝑅𝑚𝑎𝑥. The

relationship between coefficients 𝑏𝑘 and numbers

𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥 is established by the well-known

theorem from higher algebra on the limits of zeros of 

polynomials with real coefficients [9]. 

A) Initializing currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 
Ω < 𝑅𝑚𝑖𝑛.

It can be proved that when solving the Ω < 𝑅𝑚𝑖𝑛

differential (6), the function 𝐿(𝑡) can be represented 

as the sum of two components (9) 

𝐿(𝑡) = 𝐿(𝑡)𝑓𝑜𝑟𝑐 + 𝐿(𝑡)𝑓𝑟 .  (9) 

The first of these components is forced  - 𝐿(𝑡)𝑓𝑜𝑟𝑐,

due to the reaction of the moving system of the circuit 

with current to smooth changes in time of the current 

𝑖𝑘(𝑡) and its derivatives {𝑖𝑘
(𝑘)(𝑡)} is determined by

the (10):  

(8)

(7)

(6)
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( ) ( )
(0)

0

1
( ) ( ),

!

k k
вын к

k

L t К і t
к






         (10) 

where 

( )

0
(0) lim ( ).

к
к

кp

d
K К р

dp


The second component is free - 𝐿(𝑡)𝑓𝑟, due to the

reaction of the circuit system with current to abrupt 

changes in time of the current 𝑖𝑘(𝑡) and its derivatives

𝑖𝑘
(𝑘)(𝑡), at 𝑡 = 0, can be determined by the (11):

1

1
( ) lim [ ( ) ( )( ) ],

( 1)! к

N к
sk pt

св к ккp
кk

d
L t K p I р р e

s dp





 




where 𝑁 – the number of poles of the transfer function 

of the magnetoelectric system 𝐾(р); 𝛽𝑘 – 𝑘𝑡ℎ pole

𝑠𝑘
𝑡ℎ order 𝐾(𝑝);  𝐼𝑘(𝑝) – image (according to

Laplace) of the initializing current 𝑖𝑘(𝑡).

From the possibility of division into components 

𝐿(𝑡) follows the possibility of division into 

components  ∆𝜏(𝑡) and ∆0(𝑡). Obviously (12) – (14),         

( ) ( )
0

1

1
( ) (0) ( ),

!

к к
вын к

k

t К і t
к





 

( ) 1 ( )
(0) (0) (0)

2

1
( ) [ (1) ] ( ),

!

к к k к
вын к

k

t K К К i t
к




 



  

0 ( ) ( ) ( ) .св св свt t L t   

The above formulas allow us to estimate the 

limiting values |∆0(𝑡)𝑓𝑜𝑟𝑐|
max 𝑚𝑎𝑥 

,

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐|
max 𝑚𝑎𝑥 

 and |𝐿(𝑡)𝑓𝑟|
m𝑎𝑥 𝑚𝑎𝑥 

 for currents

𝑖𝑐(𝑡) ∈ 𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛 at  −∞ < 𝑡 ≤ +∞.

It should be noted that for magnetoelectric 

systems, which are known to be stable systems, of 

greatest interest from a practical point of view are 

estimates of the limiting values |∆0(𝑡)𝑓𝑜𝑟𝑐| and

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐|.

To estimate the limiting values of |∆0(𝑡)𝑓𝑜𝑟𝑐| and

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐|, we use the inequalities

|𝑖𝑐
(𝑘)(𝑡)| ≤ 𝑀, Ω𝑘, 0 ≤ 𝑘 ≤ ∞,

following from (1). The above inequalities allow us 

to write that for −∞ < 𝑡 ≤ +∞ 

( )

0

1

1 (0)
( ) (0) ,

! (0)

к
к

вын

k

K
t K M

к K





  
 (15) 

( ) (1)

1

1 (0) (0)
( ) (0) .

! (0) (0)

к
к

к
вын

k

K К
t К М

к К К






 
     

 


(16) 

Analysis of estimate (15) shows that the minimum 

values |∆0(𝑡)𝑓𝑜𝑟𝑐|
max 𝑚𝑎𝑥 

 for currents 𝑖𝑐(𝑡) ∈

𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛 occur at minimum values of the

coefficients {|
𝐾(𝑘)(0)

𝐾(0)
|} or, the same thing, at the 

minimum values of the coefficients 𝑏𝑘 and ratio
Ω

𝑅𝑚𝑖𝑛
. 

In turn, it follows from estimate (16) that for 

currents 𝑖𝑐(𝑡) ∈ 𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛 , the minimum

values |∆𝜏(𝑡)𝑓𝑜𝑟𝑐|
max 𝑚𝑎𝑥 

 occur at the minimum

values of the coefficients,  

( ) (1)(0) (0)
,

(0) (0)

к
кK К

К К

 
  

    
  
 

which, in particular, is ensured when the following 

relations are performed  

2
2 1

1

1
;

2!

;

1
,

!

n
n

b b

b b
n







 
  (17) 

when for 2 ≤ 𝑘 ≤ 𝑛: 

( ) (1)(0) (0)
0

(0) (0)

к
кK К

К К

 
   
 

For the differential (6) used in the classical theory 

of devices using the magnetoelectric principle, the 

minimization |∆𝜏(𝑡)𝑓𝑜𝑟𝑐|
max 𝑚𝑎𝑥

 conditions 

established by relations (17) are reduced to the 

equality 
2

2
00

1 1 2
,

2!

s



 
  

 

which matches 𝑠 = (√2)−1 or 
1

√2
. 

It should be noted that at 𝑛 ≥ 5, magnetoelectric 

systems that satisfy conditions (17) are physically 

unfeasible, since for  𝑛 ≥ 5, the polynomial 

1

1

1
( ) 1

!

n
к к

k

b p b р
к



 

does not satisfy the Hurwitz stability conditions 

[10 - 12]. 

From a practical point of view, the use of 

inequalities (15) and (16) to assess the dynamic 

accuracy of a magnetoelectric system is 

inappropriate. This is explained, first of all, by the 

well-known difficulties of summing infinite series 

𝐿(𝑡)𝑓𝑜𝑟𝑐 = 

(11)𝐿(𝑡)𝑓𝑟 = 

(12)

(13)

(14)

∆0(𝑡)𝑓𝑜𝑟𝑐 = 

∆𝜏(𝑡)𝑓𝑜𝑟𝑐 =

∆0(𝑡)𝑓𝑟 = ∆𝜏(𝑡)𝑓𝑟 = 𝐿(𝑡)𝑓𝑟 . 

|∆0(𝑡)𝑓𝑜𝑟𝑐| 

\=

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| ≤ 

\=

(15)

(16)

(17)
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! (0)
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and 

( ) (1)

2

1 (0) (0)
,

! (0) (0)
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к

к

k

К К

к К К





 
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 



representing upper bounds for the modules of 

functions  

0

( )
( ) 1

(0)

К р
р

К
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 and 

(1) (0)

(0)( )
( )

(0)

К
р

КК р
р е

К
  

respectively in a circle  |𝑝| ≤ Ω < 𝑅𝑚𝑖𝑛.

In this regard, it is advisable to estimate the 

limiting values |∆0(𝑡)𝑓𝑜𝑟𝑐| and |∆𝜏(𝑡)𝑓𝑜𝑟𝑐| using the

inequalities 

|∆0(𝑡)𝑓𝑜𝑟𝑐| ≤ 𝐾(0)𝑀𝜂𝑖(Ω),     (18) 

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| ≤ 𝐾(0)𝑀𝜑𝑖(Ω),  (19) 

where 𝜂𝑖(Ω) and 𝜑𝑖(Ω) are rather simply calculated 

majorants of the series 

( )

1

1 (0)

! (0)

к
к

k

К

к К







and 

( ) (1)

2

1 (0) (0)
.

! (0) (0)

к
к

к

k

К К

к К К





 
   
 



It can be proved [7] that the function 𝜂𝑖(Ω) can be

used as a majorant 

1
1

1

( ) ,

1

n
к

к

k

n
к

к

k

b

b

 





 

 





and as a majorant 𝜑𝑖(Ω) – the function

1
1 1 1( ) ( ) 1 2 .be b        

It follows from inequalities (18) and (19) that for 

a magnetoelectric device characterized by 

differential (7), a sufficient condition for registering 

an initializing current 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛

with a reproduction scale 𝐾(0), a time offset 

𝜏 =
𝐾(1)(0)

𝐾(0)
= −𝑏1, and limit values |∆0(𝑡)𝑓𝑜𝑟𝑐| and

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐|, not exceeding for −∞ < 𝑡 ≤ +∞ some

numbers  ∆̅0 and ∆̅𝜏, is the fulfillment of the relations 

0(0) ( )iK M   
   (20) 

and 

(0) ( ) ,iK M    
   (21) 

at 0 ≤ Ω < 𝑅𝑚𝑖𝑛.

An analysis of the functions 𝜂1(Ω) and 𝜑1(Ω)
shows that, at sufficiently small values Ω𝑅𝑚𝑖𝑛

−1  the

influence of the coefficients 𝑏𝑘, 2 < 𝑘 ≤ 𝑛 on the

nature of these functions is extremely insignificant. 

This allows, when registering initializing currents 

𝑖с(𝑡) ∈ 𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛 , to estimate the limit

values |∆0(𝑡)𝑓𝑜𝑟𝑐| and |∆𝜏(𝑡)𝑓𝑜𝑟𝑐| , to use the

relations (22), (23)  
2

2
0 0

0 02
0

2
0 0

2

( ) (0) (0)

1 2

вын

s

t K M K M

s

 




 

 


 
    

    

(22) 

and 

0

2

0
0 0 0

( ) (0) 1 4 (0) ,
s

вынt K M e s K M


  
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               
       

0

2

0
0 0 0

( ) (0) 1 4 (0) ,
s

вынt K M e s K M


  
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               
         (23) 

derived from differential (6). 

To estimate the attenuation intensity 𝐿(𝑡)𝑓𝑟  in the

case under consideration, following relation can be 

used 
0

02

0

( ) (0) (0) , .

1 1

s t

св

e
L t K M K M t

s








  
   

   
  

  (24) 

Graphs of the functions 

0
0 0

;  
 

    
   
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0
0 0

;  
 

    
   
    and 0

, t


 
 
 

for different values of 𝑠 are shown in Figures 1-3. 

Figure 1: Graph of the function 𝜀0 (
Ω

𝜔0
). 

Figure 2(20)

(21)

|∆0(𝑡)𝑓𝑜𝑟𝑐| ≤ 

\=

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| ≤ 

\=

(22)

(23)

|𝐿(𝑡)𝑓𝑟| ≤ (24)
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Figure 2: Graph of the function 𝜀𝜏 (
Ω

𝜔0
). 

It follows from these graphs that the circuit with a 

current, characterized by the differential (6) at 

𝐾(0) = 2 mm/mA, 𝜔0 = 500 Hz and 𝑠 = 0,5 will

make it possible to display the initializing current 

𝑖𝑘(𝑡) ∈ 𝑆(𝑀1, Ω), 𝑀 = 100mA, Ω = 25 𝑠−1 with a

limit value  |∆0(𝑡)𝑓𝑜𝑟𝑐|, not exceeding 2 × 100 ×

0,05 = 10 𝑚𝑚, and limit value |∆𝜏(𝑡)𝑓𝑜𝑟𝑐| not

exceeding 2 × 100 × 0,01 = 2 𝑚𝑚, (at 

 𝜏 = −0,002 𝑠). The limiting majorant in this case is 

the function 

25

0

(0) , 275 .tК М t e


 
 

 

Note that currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 𝑀 = 100 mA,

Ω = 25 𝑠−1 include, in particular, currents 

𝑖1𝑘(𝑡) = 100 sin 25𝑡; 𝑖2𝑘(𝑡) = 100𝑒−25𝑡, etc.

In cases where the amplitude-frequency 

characteristic of the magnetoelectric system 𝑀(𝜔) and 

its phase-frequency characteristic  𝜑(𝜔) are known, 

the following relations can be used to estimate the 

limit values |∆0(𝑡)𝑓𝑜𝑟𝑐| and |∆𝜏(𝑡)𝑓𝑜𝑟𝑐|, when

displaying the initializing currents 𝑖𝑐(𝑡) ∈
𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛 ≤ 𝜔𝑘р

(1)
0 ( ) (0) (0) ,вынt М М   

   (25) 

( )
( ) (0) 1 .

(0)
вын

М
t М М

М



  

    (26) 

obtained by substituting into inequalities (20) and 

(17) the relations
( ) (1)

1

1 (0) 1 (0)
,

! (0) 1! (0)

к
к

k

К К

к К К





  
2

( ) (1) (2) (1)
2

2

1 (0) (0) 1 (0) (0)
,

! (0) (0) 2! (0) (0)

к
к

к

k

К К K K

к К К K K





   
          
   



as well as the relations proved in [8] 
(1)

(1)(0)
(0),

(0)

К

К


(2) 21
( ) (0) (0) ,

2!
М М М   

(1)2
(2) (2)1 1 (0)

(0) (0) .
2! 2! (0)

К
М К

К
 

Figure 3: Graph of the function 𝜀 (
Ω

𝜔0
, 𝑡).

∆0|(𝑡)𝑓𝑜𝑟𝑐| ≅ 

\=

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| ≅ 

\=

(25)

(26)
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B) Initializing currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 
Ω > 𝑅𝑚𝑎𝑥.

It can be proved that for Ω > 𝑅𝑚𝑎𝑥, the

representation of 𝐿(𝑡) as a sum of two components  

𝐿(𝑡) = 𝐿(𝑡)𝑓𝑜𝑟𝑐 + 𝐿(𝑡)𝑓𝑟 .

is preserved. The possibility of 

determining 𝐿(𝑡)𝑓𝑟   by formula (11) also remains. At

the same time, formula (10) is not suitable for 

determination  𝐿(𝑡)𝑓𝑜𝑟𝑐.

For  Ω < 𝑅𝑚𝑎𝑥, 𝐿(𝑡)𝑓𝑜𝑟𝑐 is defined this way:

𝐿(𝑡)𝑓𝑜𝑟𝑐 = ∑
1

𝐾!

∞

𝑘=0

𝑄(𝐾)(0)𝑖𝑐
(−𝐾)(𝑡),

where 

( ) 1

0
(0) lim ( ),

к
к

кz

d
Q К z

dz






and 

( ) 1

0

1
( ) ( )( )

( 1)!

t

к к
к кi t i t d

k
   

 
in case if 

1

1
( ) (0) ,

1

n
к

к

k

К р К

b р







for  𝑘 ≤ 𝑛, 𝑄(𝑘)(0) = 0 accordingly,

( ) ( )

1

1
( ) (0) ( ).

!

к к
вын к

k n

L t Q і t
к




 

 
(27) 

Analysis of formula (27) shows that in relation to 

the currents in the circuit 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), Ω > 𝑅𝑚𝑖𝑛,

the magnetoelectric system, characterized by the 

differential (7), manifests itself as an "opaque" 

system with a forced component of the "suppression" 

error of influences 𝛿(𝑡)𝑓𝑜𝑟𝑐, determined by the

𝛿(𝑡)𝑓𝑜𝑟𝑐 =  𝐿(𝑡)𝑓𝑜𝑟𝑐 .

Formula (27) also implies the possibility of using 

the studied magnetoelectric system for (n + 1 + q) - a 

short integration of currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), Ω >
𝑅𝑚𝑎𝑥 with a scale

( 1 )1
(0)

( 1 )!

n qQ
n q

 

 

and a forced component of the integration error 

𝑗(𝑡)𝑓𝑜𝑟𝑐, determined by the

𝑗(𝑡)𝑓𝑜𝑟𝑐 =  𝐿(𝑡)𝑓𝑜𝑟𝑐 −
1

(𝑛+1+𝑞)!
𝑄(𝑛+1+𝑞)(0)𝑖𝑐

(𝑛+1+𝑞)
(𝑡).

The evaluation of the limit values  |𝛿(𝑡)𝑓𝑜𝑟𝑐| and

|𝑗(𝑡)𝑓𝑜𝑟𝑐| for the currents in the circuit 𝑖𝑘(𝑡) ∈

𝑆(𝑀, Ω), Ω > 𝑅𝑚𝑎𝑥 can be made by similar methods

for evaluating the limit values |∆0(𝑡)𝑓𝑜𝑟𝑐| and

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| for the currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 

 Ω < 𝑅𝑚𝑖𝑛.

C) Initializing currents 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 
𝑅𝑚𝑖𝑛 ≤ Ω ≤ 𝑅𝑚𝑎𝑥.

At 𝑅𝑚𝑖𝑛 ≤ Ω ≤ 𝑅𝑚𝑎𝑥, the division of 𝐿(𝑡) into

forced and free components is generally impossible. 

This is explained by the fact that among the currents 

in the circuit 𝑖𝑘(𝑡) ∈ 𝑆(𝑀, Ω), 𝑅𝑚𝑖𝑛 ≤ Ω ≤ 𝑅𝑚𝑎𝑥

there are those that are able to bring the moving 

system of the circuit of the magnetoelectric system 

into a state of generalized resonance, a phenomenon 

first described by S.P. Strelkov. A special case of this 

state is the well-known resonance that occurs when 

sinusoidal currents flow through the circuit of the 

magnetoelectric system, the frequency of which 

coincides with the natural frequencies of the moving 

system of the circuit with current. 

3 RESULTS AND DISCUSSION 

In the above analysis of the properties of the 

magnetoelectric system, it was assumed that the 

nature of the transfer function of the device is 

determined only by its design parameters and is 

completely independent from the parameters of the 

electrical circuit of the device. 

However, this assumption is valid only in cases 

where the influence of EMF generated in a current-

carrying circuit on the properties of the 

magnetoelectric system is practically imperceptible. 

It is justified, in particular, when analyzing the 

properties of magnetoelectric systems with single-

turn circuits with oil and magneto-inductive damping. 

At the same time, for multi-turn circuits with 

electromagnetic damping, the above assumption is 

generally non-uniform. 

As an example, let us analyze the properties of a 

magnetoelectric system with electromagnetic 

damping when using it to study the EMF of 

thermocouples. 

Let 𝑒𝑇(𝑡) be the EMF of thermocouple to be

studied; 𝑟𝑇 is the ohmic resistance of the

thermocouple; 𝑒𝑘(𝑡) – EMF generated by the circuit;

𝑟𝑘 – ohmic resistance of the loop; 𝑟𝜕 – damping loop

resistance (shunt). 

For the case under consideration, the relationship 

between 𝑖𝑘(𝑡), 𝑒𝑇(𝑡) and 𝑒𝑘(𝑡)is expressed by

the (28) 

𝐿(𝑡)𝑓𝑜𝑟𝑐 = (27)
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( ) ( ) ( )
( ) .д Т Т д к
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к Т к д Т д

r e t r r e t
i t
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 


 
   (28) 

Let's pretend that 

𝑒с(𝑡) = −𝑘𝑐𝑢𝑟𝐿(1)(𝑡),

where kcur – constructive constant of the loop with 

current, and 

( )

1

1
( ) ( ) ( )

(0)

n
к

ш к

k

i t L t b L t
К 

 
  

 


   (30) 

in accordance with the differential (7) without taking 

into account the effect of electromagnetic damping of 

the current loop due to the EMF generated by it. 

Substituting the expanded expressions for 𝑒𝑘(𝑡) (29)

and 𝑖𝑘(𝑡) (30) into (28), we can write that

(1) ( )

1

1

(0) ( ) (0)( )
( ) ( ) ( ).

n
кд Т ген Т д

к

kк д к Т Т д к д к Т Т д

K r e t k K r r
L t b L t b L t

r r r r r r r r r r r r 

 
    

    


(1) ( )

1

1

(0) ( ) (0)( )
( ) ( ) ( ).

n
кд Т ген Т д

к

kк д к Т Т д к д к Т Т д

K r e t k K r r
L t b L t b L t

r r r r r r r r r r r r 

 
    

    


(31) 

This means that the transfer function of the 

magnetoelectric system with respect to EMF of 

thermocouple is a fractional rational function 

1

2

(0) 1
( ) .

(0)( )
1

д

n
к д к Т Т д кген Т д

к

kк д к Т Т д

K r
N p

r r r r r r k K r r
b p b p

r r r r r r 

 
   

   
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

1

2

(0) 1
( ) .

(0)( )
1

д

n
к д к Т Т д кген Т д

к

kк д к Т Т д

K r
N p
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 
   

   
  



Let the studying EMF of thermocouple 

𝑖𝑘(𝑡) 𝜖 𝑆(𝑀, Ω), Ω > 𝑅𝑚𝑖𝑛
′ , where 𝑅𝑚𝑖𝑛

′ is the 

convergence radius of the series 

( )

0

1
(0) ( ).

!

к к

k

N р N p
к







By analogy with the previous one, it can be argued 

that in the case under consideration 

𝑖𝑘(𝑡) 𝜖 𝑆(𝑀, Ω), Ω < 𝑅𝑚𝑖𝑛
′ , the effects will be

reproduced by the magnetoelectric system with a 

reproduction scale 

(0)
(0) ,д

к д к Т Т д

K r
N

r r r r r r


 

displacement time 

1

(0)( )ген Т д

к д к Т Т д

k K r r
b

r r r r r r


 
   

  

and limit values |∆0(𝑡)𝑓𝑜𝑟𝑐| and |∆𝜏(𝑡)𝑓𝑜𝑟𝑐|,

estimated with inequalities 

0 1

(0)
( ) ( )д

вын

к д к Т Т д

K r M
t

r r r r r r
  
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where 
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1

1

1

(0)( )
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1 (0) (1)

1 1 1( ) ( ) 1 2 (0).
I

e


  
       

When registering EMF of thermocouple 

𝑒𝑇(𝑡) 𝜖 𝑆(𝑀, Ω), Ω ≪ 𝑅𝑚𝑖𝑛
′ , the condition for 

minimizing the limit value |∆0(𝑡)𝑓𝑜𝑟𝑐| is the 

fulfillment of the relation 

1

(0)( )
0ген Т д

к д к Т Т д

k K r r
b

r r r r r r


 

 
        (34) 

and relations 

𝑏𝑘 = 0 at 2 ≤ 𝑘 ≤ 𝑛.         (35) 

The condition for minimizing the limiting value 

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| in the case under consideration is the

fulfillment of the relations  

1

(0)( )1
,

!

к

ген Т д

к

к д к Т Т д

k K r r
b b

к r r r r r r

 
  

   (36)

at  2 ≤ 𝑘 ≤ 𝑛. 
An analysis of the differential (31), inequalities 

(32) and (33), as well as the conditions for

minimizing the limit values |∆0(𝑡)𝑓𝑜𝑟𝑐| and

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐|, shows that the use of the effect of

electromagnetic damping of the current circuit,

increasing in

1

(0)( )
1

( )

ген Т д

к д к Т Т д

k K r r

r r r r r r b

 
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  

times the damping intensity 𝐿(𝑡)𝑓𝑟 at the same time

leads to an increase in the displacement time 𝜏 and the 

limit value |∆0(𝑡)𝑓𝑜𝑟𝑐|. From conditions (36) it

follows, in particular, that for circuits with current, 

characterized by differential (6), the dynamic 

correction of the magnetoelectric system in order to 

reduce the limit value |∆𝜏(𝑡)𝑓𝑜𝑟𝑐| takes place at

0(0)
,

2(1 2 )

Т д ген

к

Т д

r r k K
r

r r s


 

 
      (37) 

(28)

(29)

𝑖𝑐(𝑡) = 
\= 

𝑘𝑐𝑢𝑟

+ 

(30)

(31)

𝑘𝑐𝑢𝑟

+ 

|∆0(𝑡)𝑓𝑜𝑟𝑐| ≤ 

\=

|∆𝜏(𝑡)𝑓𝑜𝑟𝑐| ≤ 

\=

(32)

(33)

𝑘𝑐𝑢𝑟
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𝑘𝑐𝑢𝑟
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𝑘𝑐𝑢𝑟

+ 

(34)

(36)

+

𝑘𝑐𝑢𝑟

𝑘𝑐𝑢𝑟  

(37)
𝑘𝑐𝑢𝑟
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in cases where 𝑟𝜏 ≫ 𝑟𝜕 condition (37) reduces to the

relation 

0(0)
.

2(1 2 )

ген

д к

k K
r r

s


 


      (38) 

With the resistance of the thermocouple 

0(0)

2(1 2 )

ген

T ш

k K
r r

s


 


, the dynamic correction of the 

magnetoelectric system in order to reduce the limit 

value |𝑎𝜏(𝑡)𝑓𝑜𝑟𝑐|is provided in the absence

of 𝑟𝜕 (i.e., at 𝑟𝜕 = ∞ 1).

Similarly, the properties of more complex 

measuring devices, in which magnetoelectric systems 

are used as recording organs, can be investigated. 

CONCLUSION 

The possibility of using the time method for solving 

problems of dynamic accuracy associated with the 

design and operation of magnetoelectric systems, as 

well as various types of measuring devices, in which 

current-carrying circuits as part of the 

magnetoelectric system are used as recording organs, 

is shown.
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