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Abstract: The development of electrochemical biosensors is cutting-edge in current research in medicine, biology, and
ecology. The modeling and study of the enzyme-substrate-inhibitor interaction are required for biosensor
design. The aim of the paper is to construct a three-stage model for an electrochemical biosensor and to
perform its sensitivity analysis. The research is based on the Morris method. The main results are concerning
the comparative impact of the model parameters related to biochemical reaction rates on the dynamics of
the changes of the concentrations of enzyme, substrate, inhibitor, three complexes, and the reaction product
throughout three stages. The results have both theoretical and practical relevance as the model parameters
studied come from a real case study of biosensors for alpha-chaconine.

1 INTRODUCTION

Sensitivity analysis meaning the study of the effects
of different parameters on outputs plays an impor-
tant role in system research. Such impacts are stud-
ied based on both experimental and simulated data.
Mathematically it can be described as the importance
of factors in nonlinear relations. The complexity of
the sensitivity analysis is essentially growing for the
systems incorporating spatial and temporal relations.

Morris sensitivity was formulated in [1] at first. In
[2] the method was extended by selecting a subset of
trajectories from a large set, to maximize their spread
and may the factors to deviate greatly. The work [3]
generalizes Morris method for the dependent inputs.

Till now Morris analysis leaves a popular tool for
the purpose of qualitative research of the systems.
The comparison of Morris with the Sobol’ techniques
is presented in [4] for environmental models. In [5]
Spearman, Sobol, and Morris approaches are com-
pared for the purpose of radiological impact assess-
ment of a nuclear power plant discharge.

Currently, the most promising approach appears
to be global sensitivity one which is based on the
concept of the active subspace against variance-based
methods like Sobol’ and Morris ones. In [6] active
subspace technique is compared with variance-based
methods using different test functions. Being more
computationally effective, however, the development
of the global sensitivity technique requires expanding

methods for approximating the gradient of the model
function.

Last time Morris method with modifications has
actively been used in a variety of applications, includ-
ing energy storage [7], building engineering [8], ur-
ban water supply [9], [10], environmental modeling
[4], [11], safety systems [12] etc.

The given research is devoted to electrochemical
biosensor designing which requires analysis of the in-
teraction of multiple substances determined by a se-
ries of rate constants. Biosensor outputs are featured
by the parameters, the temporal and spatial impacts of
which should be investigated.

The reactions which are used in electrochem-
ical biosensing come from the reactions that are
catalyzed by an enzyme. They are commonly
known as reversible [13] or irreversible [14] re-
actions. The irreversible one-complex Michaelis-
Menthen (IR1CMM) mechanism is a keystone in
modeling enzyme kinetics. Its reaction scheme

E + S
k1

k–1
C

k2
E + P

represents two-step process [15, 16, 17], where the
enzyme E combines with the substrate S to form a
complex C which then breaks down into the product
P releasing E in the process.

Michaelis-Menthen model was further developed
and applied for describing various reactions lying at
the base of the electrochemical biosensor design. In
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the work [18] we have developed and studied the gen-
eralized model of multi-substrate multi-inhibitor in-
teractions using the law of the delayed mass action.
The method for the estimation of the model parame-
ters based on the machine learning technique was of-
fered.

The objective of the given work is to implement
the sensitivity analysis of the biosensor model with
the respect to the impact of the reaction rates on the
change of the concentrations of the substances.

The experimental data was gathered from the
alpha-chaconin biosensor. For the purpose of the
biosensor design, three-stage experiment was used
[18]. To identify the parameters of the mathemati-
cal model of the biosensor for the determination of
alpha-chaconin, a comparison of simulated and ex-
perimental responses was carried out. Potentiometric
measurements were carried out after placing the trans-
ducers in the measuring cell, which was filled with 5
mM phosphate buffer with a pH of 7.0. The solu-
tion was stirred. After stabilization of the output sig-
nal (the first stage), the necessary amount of substrate
was added to the measuring cell (the second stage),
and after stabilization of the response to the substrate,
certain volumes of concentrated solutions of alpha-
chaconin were introduced to measure the level of in-
hibition (the third stage). Initially, based on the re-
sults of the experiment, the response of the butyryl-
cholinesterase biosensor to the addition of butyryl-
choline chloride to the substrate cell and the subse-
quent introduction of alpha-chaconine was obtained.

2 MODEL DESCRIPTION

Let ne(t), ns(t), ni(t), np(t), nes(t), nei(t), nesi(t) be
concentrations of enzyme, substrate, inhibitor, prod-
uct, as well as enzyme-substrate, enzyme-inhibitory
and enzyme-substrate-inhibitory complexes, which
change over time t; ks, k′s, ki, k′i, and kp be the corre-
sponding rate constants of the forward and backward
reactions of complex formation and the product; a be
a constant whose numerical value determines the in-
hibition or activation of the enzyme. The change in
product concentration time is directly proportional to
the response of the biosensor.

The model of enzyme-substrate-inhibitor interac-
tion is based on the following biochemical assump-
tions.

The rate of the change of ne is additionally
proportional to the rates of forward and
backward reactions of the enzyme with sub-
strate and enzyme with inhibitor. Let ks, ki

s

be the rates of the corresponding forward re-
actions, k′ , ki

′ be the rates of the backward ones.
The product of the reaction of the enzyme with 
the substrate is formed with the rate kp, which 
is also the dissociation rate for the complex 
enzyme-substrate.
Let the formation rate of enzyme-inhibitor 
complexes is proportional to the concentration 
of free (available) enzymes ne and available 
inhibitors ni, and it leads to a decrease of ne.
Let the dissociation of enzyme-substrate 
and enzyme-inhibitor molecules increase the 
concentration of enzymes.
Let a be a constant whose numerical value de-
termines the inhibition or activation of the en-
zyme.

The equations

dne
dt s

dnes
dt s

dnei
dt s

dnesi
dt

s
dns
dt

s s

dni
dt

dnp
dt

= −ksnens − kineni + k′ nes + ki
′nei + kpnes

= ksnens − k′ nes − akinesni + aki
′nesi − kpnes

= kineni − ki
′nei − aksneins + ak′ nesi

= akinesni − aki
′nesi + aksneins − ak′ nesi

= −ksnens − aksneins + k′ nes + ak′ nesi

= −kineni − akinesni + ki
′nei + aki

′nesi

= kpnes

describe the biochemical reactions taking place
for concentrations of enzyme, substrate, inhibitor,
product, enzyme-substrate, enzyme-inhibitory, and
enzyme-substrate-inhibitor.

The first equation is considered for enzyme con-
centration ne(t). The first term on the right-hand side,
−ksnens, represents the change in enzyme concentra-
tion due to the reaction going with a rate −ksnens.
The rate of this reaction is proportional to the enzyme
concentration ne and to the substrate concentration ns.
The negative sign in this differential equation means
that the process of ES formation results in a decrease
in the concentration of the enzyme E.

The next term, −kineni, similarly to the first term,
accounts for the reaction E + I EI. The forma-
tion rate of EI complexes is proportional to the con-
centration of free (available) enzymes ne(t) and avail-
able inhibitors ni(t), and it leads to a decrease of ne(t),
so it goes in negative.

Dissociation of ES and EI molecules increases the
concentration of enzymes. It is taken into account by
adding terms k′snes and k′inei. Formation of the prod-
uct also releases enzyme molecules as kpnes. All the
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other equations are composed according to the fol-
lowing reactions

E + S
ks

k′s
ES

kp
E + P

+

I

k
i

k ′i

EI + S
aks

ak′s
ESI

+

I

ak
i

ak ′i

3 METHOD OF MORRIS
SENSITIVITY ANALYSIS

Morris proposed his sensitivity analysis method in
1991 [1]. The method is described in details in
[19]. This method is also called the elementary ef-
fects method [27], which can effectively identify and
rank the importance of input parameters of a model
by changing the value of only one parameter in an
instance and finding its effect on the model output.
Therefore, it is possible to calculate the “elementary
effect (EE)” of each parameter on the output, one by
one, and finally evaluate the influence of all of them
on the results. On this basis, sensitivity factors can be
compared globally and the nonlinearity of the model
can be described qualitatively.

The experimental plan is composed of individ-
ually random One-At-a-Time (OAT) experiments.
Each model input X = (ks,ki,k′s,k

′
i,kp,a) ∈ R6 is as-

sumed to vary across p selected levels in the space of
the input factors. Hence, the region of experimenta-
tion, Ω, is a 6-dimensional p-level grid. According to
the principle of Morris sensitivity analysis, the factors
are assumed to be uniformly distributed in the range
of [0,1] and are then transformed from the unit hyper-
cube to their actual distribution space.

For a given value of X , the elementary effect of
the input factor ks on the model solution ne is defined
as follows:

EEks(X , t,∆) :=
ne(X + e1∆(kmax

s − kmin
s ), t)−ne(X , t)

∆ ,

where ∆ is a perturbation value that is selected from
the collection 1/(p−1), ...,1−1/(p−1), p is the
number of levels, X ∈ Ω is any selected value in Ω,
such that the transformed point X + e1∆(kmax

s − kmin
s )

is still in Ω, and e1 ∈ R6 is a vector of zeros, but with
a unit as its first component. The finite distribution of
each elementary effect of the input factor ks on out-
put ne(t) is obtained by randomly sampling different

parameter ks ki k′s ki
′ kp a

minimal 
value 50 2000 0.5 0.2 0.001 0.1

maximal 
value 5000 200000 50 20 0.1 0.9

Table 1: Ranges of values of the parameters analyzed.

X vectors from Ω and is denoted by Fne
ks

. The distri-
bution for overall outputs is denoted be Fks .

In a similar way, we may introduce the elemen-
tary effects of arbitrary input factors ks,ki,k′s,k

′
i,kp,a

on any output from ne,nes,nei,nesi,ns,ni,np and the
corresponding distributions.

In addition, Morris proposed two sensitivity mea-
sures for each elementary factor, µ⋆ and σ, which are,
respectively, the mean and standard deviation of Fks .
In order to estimate these quantities, Morris suggested
performing sampling on r elementary effects from Fks
via an efficient design that constructs r trajectories of
(k+1) points in the input space, each providing k ele-
mentary effects, one per input factor. The formula for
computing µ⋆ and σ is given by the following

µ⋆ks
=

1
N

N

∑
r=1

EEks,r

σks =

√
1

N −1

N

∑
r=1

(EEks,r −µ⋆ks
)2

where EEks,r corresponds to the rth EE of ks and N
is the sample size. The higher the value of µ⋆, the
greater the influence of the corresponding parameters
on the output value of the model. The higher the value
of σ, the greater the interaction of a certain parameter
with other parameters. Thus, the effect of that certain
parameter has on the model output is nonlinear.

4 RESULTS

The effects of rates ks,ki,k′s,k′i,kp,a on concentra-
tions ne,nes,nei,nesi,ns,ni,np were investigated with
the help of the method presented above. The sensi-
tivity was analyzed for the parameters at the ranges
presented in Table 1.

The charts on the Figure 1 show us the Mor-
ris indicators of sensitivity µ⋆, σ for six parameters,
namely, ks, k′s, ki, k′i kp, a, and their effect on ne

The plot on the left side displays the change of
mean value µ⋆ of the effect of the parameters. We see
that the biggest impact on ne during the time inter-
val (180-300s) is related to the dissociation rate k′s (in
green).

With time, the influence of the dissociation rate,
k′s, on ne decreases. Another analyzed factor is kp.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), March 2023 

135 



As you can see after the 300s, this factor has a deci-
sive influence on ne. Moreover, it can be seen that the
value of µ⋆ for kp is close to a constant value, which
means that the influence of kp on ne is linear and ad-
ditive. The least influence on ne at this stage makes
ks, which decreases over time.

From the σ diagram it can be seen that the seriality
of k′s, kp, ks is preserved for non-linearity and the level
of interaction of the influence of parameters on ne. All
other parameters have no effect on ne, which can also
be seen from the equations of the model at this stage.

The charts in the Figure 2 show us the Morris indi-
cators of sensitivity µ⋆, σ for six parameters, namely,
ks, k′s, ki, k′i, kp, a, and their effect on ns.

The plot on the left side displays the change of
mean value µ⋆ of the effect of the parameters. We see
that the biggest impact on ns during the time interval
(180-460s) is related to the rate of formation of the
enzyme-substrate complex (ks) which increases with
time similar to the speed of product development (kp).
With time, the influence of the dissociation rate, k′s on
ns decreases.

In the time frame (460-750s), the influence of fac-
tors k′s, ki, ks, kp, ki is noticeable and it increases with
time. It is worth noticing that influence on ns comes
from the dissociation rate k′s (in green) is greater than
influence comes from ki, ks, kp, k′i parameters. The ef-
fect of the factors on parameter σ (on the right) looks
very similar except for the effect of the parameters
kp and k′i. In the time interval (460-750s) the effect
coming from the dissociation of the enzyme-inhibitor
complex (ki) outweighs the effect coming from the
formation of the reaction product (kp).

The charts in the Figure 3 show us the Morris indi-
cators of sensitivity µ⋆, σ for six parameters, namely,
ks, k′s, ki, k′i, kp, a, and their effect on ni. The plot
on the left side displays the change of mean value
µ⋆ of the effect of the parameters. In a time frame
(180-460s) significant effect on the inhibitor concen-
tration (ni) of the dissociation constant of the enzyme-
inhibitor complex (k′i) was noted. This influence in-
creases with time. Other parameters ki, kp, ki, ks are
constant over time. In time intervals (460-750s) value
that comes from the formation of the reaction product
is close to constant, which means that the effect of kp
on ni is linear and additive. The nature of the changes
seen in the graphs σ is similar to µ⋆.

Figure 4 illustrates sensitivity analysis indicators
from nes at different stages of modeling. As time
passes (180-460s) on left, the effect on nes of the pa-
rameter k′s (in green) and ks (red) is noticeable, which
decreases with time. In contrast, the parameter kp, de-
notes the formation of the reaction product which is
almost constant over time with a slight upward trend.

Figure 1: Sensitivity analysis indicators for ne at the differ-
ent stages of modeling.

The similar nature of the changes for k′s and ks
is shown in the graph for σ, on right. The param-
eter kp slightly decreases up to 270s, in the interval
(271-320s) it remains constant, while from 350-460s)
a slight upward trend is noticeable.

Taking into consideration the change of mean
value µ⋆ of the effect of the parameters in the
time frame (460-750s) the biggest influence on nes
comes from ki (binding constant of complex enzyme-
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s

Figure 2: Sensitivity analysis indicators for ns at the differ-
ent stages of modeling.

inhibitor) like k′ (in green), ki
′ (in blue) and ks (in red) 

the influence of these factors decreases with time. The 
influence of the parameter (kp) derived from the for-
mation of the product reaction increases with time. A 
similar character  of  changes  is  shown  in  the  graph 
for σ.

Figure 5 illustrates sensitivity analysis indicators 
from np at different stages of modeling. As time 
passes (180-460s) on left, the effect on product con-

Figure 3: Sensitivity analysis indicators for ni at the differ-
ent stages of modeling.

centration of the parameters ks, kp, and k′s is noted.
With the passage of time there is a noticeable in-
crease in the influence of the parameters kp and ks
(for ks minimally larger) in contrast to the parameter
k′s, which decreases over time.

In the time frame (460-750s) There is a noticeable
effect on the concentration of the product (np) of all
parameters, i.e. parameters ki, k′s, kp, ki′ and kp. This
influence increases with time.
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Figure 4: Sensitivity analysis indicators for nes at the differ-
ent stages of modeling.

A similar nature of the changes was observed for
the σ except for the influence of the parameter kp,
which in the time interval (460-750s) for µ⋆ exceeds
the influence from k⋆ and kp in contrast to σ, where
its influence is the smallest.

On Figure 6 on the left side, displays the change
of mean value µ⋆ of the effect of the parameters on
nei. We see a definite increasing effect over time of
the dissociation rate of enzyme-inhibitor complex (k′i)

Figure 5: Sensitivity analysis indicators for np at the differ-
ent stages of modeling.

in the time interval (180-460s). Other parameters are
constant over time.

A similar character of changes was observed for σ,
on the right side. In the time frame (460-750s) char-
acter of changes for µ⋆ and σ is also similar. We see
the dominant influence of the factor derived from the
formation of the enzyme-inhibitor complex (in yel-
low), which over time is almost constant with a slight
upward trend, as is the kp factor. The k′s factor de-
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Figure 6: Sensitivity analysis indicators for nei at the differ-
ent stages of modeling.

rived from the dissociation rate of complex enzyme-
substrate decreases with time, as the ksi and k′i factors
for which the nature of the changes is smoother.

As is shown on Figure 7 on left, in time frame
(180-460s) significant effect on the inhibitor concen-
tration (ni) of the dissociation constant of the enzyme-
inhibitor complex (k′i) was noted. This influence in-
creases with time. Other parameters ki, kp, ki, ks are
constant over time.

Figure 7: Sensitivity analysis indicators for nesi at the dif-
ferent stages of modeling.

In the time interval (460-750s) the greatest ef-
fect on nesi on k′s ( dissociation rate of the enzyme-
inhibitor complex), which decreases with time simi-
larly to ks (binding constant of enzyme-substrate com-
plex). The influence of the parameter ki on nesi is in-
variant over time, while the influence of the param-
eters k′i and kp presents a slight upward trend with
time. The trend of changes for σ is similar, although it
is possible to weigh in the range (460-750s) reduced
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influence of binding constant of complex enzyme-

substrate(ks) (in red) and equalization the influence 

coming from ki′ and kp. 

5 CONCLUSIONS 

For the reasons given in the work we have shown the 

Morris method is powerful tool for sensitivity 

analysis of the models for biochemical reactions. 

Here we have applied the method for studying the 

enzyme-substrate-inhibitor interactions which is used 

during the design of electrochemical biosensor. 

The method can be applied for the comparative 

investigation of the influence of the parameters 

(factors) on the model outputs (trajectories). 

Moreover such study can be conducted for the various 

stages of the experiment. 

In turn it is of importance when constructing the 

calibration curves basing on the responses of the 

biosensor. 
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