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Abstract: In this work, the indicator of sustainable development goal (SDG) 2.4.1 for Ukraine is calculated based on 

geospatial and satellite data. The generally accepted technology for calculating the given indicator cannot be 

applied for the territory of Ukraine due to the lack of systematic collection of the necessary indicators. 

Therefore, the authors have developed the complex method for land degradation estimation that uses different 

schemes for separate land cover and crop types at the country level based on satellite and modeling data using 

WOFOST model. The paper describes the sources of information used to create crop type classification maps 

and the data required for leaf area index (LAI) modeling for the WOFOST model. Calculated indicators from 

2018 to 2022 for each of the regions of Ukraine. In 2022, the decrease of the indicator is monitored in almost 

all regions of Ukraine, which is a direct result of military actions on the territory of Ukraine. 

1 INTRODUCTION 

To monitor the sustainable development of the 

environment in the world the global indicator 

framework for Sustainable Development Goals was 

developed by the Inter-Agency and Expert Group on 

SDG Indicators (IAEG-SDGs) and agreed upon at the 

48th session of the United Nations Statistical 

Commission held in March 2017 [1]. According to 

the proposed methodology, each country evaluates 

the indicators for its country, thereby receiving an 

assessment of the improvement or deterioration of the 

corresponding indicator for its country. 
According to the study [2] geospatial data and 

data supplied by citizens are the most potential big 
data sources for SDG indicators assessment. Only a 
few SDG indicators may benefit directly from other 
large data sources such mobile phone data, web data 
(for example, data on prices or employment), postal 
data, and electricity data. 

The climate change initiative land use data, data 

from the European Space Agency and the 30-meter 

global land cover dataset (GlobeLand30) [3] were 

included for multi-scenario simulation of land use [4]. 

The data source used to create multispectral photos 

included photographs from the China Environmental 

Disaster Mitigation Satellite, Landsat TM5, ETM+, 

and OLI, as well as HJ-1 multispectral images. 

The relationship between agricultural 

interventions, dietary changes, and nutrition, which 

incorporates a few complex issues both within and 

outside of SDG-2, cannot be adequately captured by 

any one set of metrics (food production, diet 

diversification, biofortification, food safety). On the 

other hand, indicators 2.4.2 and 2.4.3 appear to be 

included into indicator 2.4.1 in the sense that 

sustainability has social, environmental, and 

economic components, which permeate every SDG 

and SDG-2 indicator [5]. However, access to high-

quality assessment data is crucial for the SDG11 

implementation to be successful [6]. Three SDG11 

indicators were measured between 2013 and 2020 in 

Guilin's urban functional boundary. The main data 

sources employed were geospatial big data and high-

resolution remote sensing pictures. After 

preprocessing, image fusion was used to combine the 

panchromatic and multispectral pictures. 

In the analysis of urban growth processes, for 

example, remote sensing photos are combined with 

geoinformation systems and machine learning. In 
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work [7], [8] authors developed a technique for land 

productivity assessment and land cover classification 

using deep learning techniques and satellite data with 

medium and high spatial resolution. 

Ukraine is one of the largest exporters of grain 

products in Europe, so regular analysis of the quality 

of agricultural land and its suitability for growing 

agricultural products, assessment of possible losses 

and yield [9] is an important task. With the onset of 

the war, the whole world was shaken by the problem 

of the possibility of a shortage of grain for importing 

countries, and as a result of the emergence of famine 

[10], as well as any other problems in the field of food 

security. The goal 2: End hunger, achieve food 

security and improved nutrition and promote 

sustainable agriculture is generally responsible for the 

agricultural sector. In particular Indicator 2.4.1: 

“Proportion of agricultural area under productive and 

sustainable agriculture”, which is calculated in this 

study for the territory of Ukraine. 

The generally accepted scheme for calculating 

indicators of sustainable development goals is set out 

in reference [11], in particular for SDG 2.4.1 in 

document [12] and it is recommended to be collected 

at least every three years. Through a consultative 

process that has lasted over two years, 11 themes and 

sub-indicators have been identified, which make up 

SDG 2.4.1 (Table 1).  

Table 1: Themes and sub-indicators for SDG 2.4.1 

assessment. 

№ Themes Sub-indicators 

1 Land productivity 
Farm output value per 

hectare 

2 Profitability Net farm income 

3 Resilience 
Risk mitigation 

mechanisms 

4 Soil health 
Prevalence of soil 

degradation 

5 Water use 
Variation in water 

availability 

6 
Fertilizer 

pollution risk 
Management of fertilizers 

7 Pesticide risk Management of pesticides 

8 Biodiversity 
Use of agro-biodiversity-

supportive practices 

9 
Decent 

employment 
Wage rate in agriculture 

10 Food security 
Food Insecurity Experience 

Scale (FIES) 

11 Land tenure Secure tenure rights to land 

Unfortunately, for Ukraine, there is no available 

data for calculating the indicator in a standard way, 

and the use of general global land use products is not 

accurate in terms of spatial resolution. Therefore, the 

authors of this study developed their own technology 

for land productivity assessment [13], which takes 

into account crops types information, soil parameters, 

and meteorological indicators during the growing 

season. 

2 DATA USED 

2.1 Land Cover / Crop Type 
Classification 

The land cover and crop type classification maps 

based on own classification methodology [14] were 

used. For classification processing 2 bands (VV, VH) 

of SAR Sentinel-1 descending data with main 

preprocessing steps (correction of coordinates in 

orbit, specl-filtration, calibration, the Range-Doppler 

Terrain Correction, data transfer in decibel, creating 

a data stack, saving imagery bands, and merging of 

bands VV and VH within a single granule) with 10-

meters spatial resolution are used. Also, for 

classification processing 4 bands (Red B4, Green B3, 

Blue B2, InfraRed B8) of Sentinel-2 data with 

preprocessing Level-2A and 10-meters spatial 

resolution are used. The revisit time of Sentinel-2 is 5 

days, but due to high cloud cover, monthly 

composites was used obtained as the median value of 

all possible values for every 5 days in the respective 

bands. A Scene Classification Map (SCL) band with 

a spatial resolution of 20 meters is used to mask 

clouds from optical data. Optical composites are 

obtained in the Google Earth Engine cloud platform.  

The multilayer perceptron (MLP) is used for 

training neural network. Compared to deep neural 

network algorithms, in particular convolutional 

neural networks, the MLP algorithm loses in accuracy 

by 1%, but requires much more powerful computing 

resources and time to obtain the final product. That is 

why we use MLP neural network algorithm.  

As an input to the neural network model, we have 

a stack of rasters - a time series of satellite data. 

Together with the satellite data stack, training in-situ 

data is fed to the input of the neural network model, 

which is collected along the roads every year in the 

form of vector contours of the fields, indicating the 

corresponding land cover or crop type class. The 

output of the model is a raster georeferenced image, 

where each pixel contains the corresponding land 

cover or crop type class. The validation independent 

in-situ data set is used to obtain class accuracies and 

the overall accuracy of the resulting classification 

map. 
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2.2 Leaf Area Index Modelling 

The simulation model for the quantitative analysis of 

the growth and production of annual field crops 

WOFOST (WOrld FOod STudies) [15] was used to 

simulate LAI for agricultural crops. The main input 

parameters for this model are soil profiles (including 

various soil characteristics), crop profiles (including 

sowing dates, flowering, maturity and other important 

characteristics), as well as meteorological indicators. 

2.2.1 Soil Profiles 

Soil parameters are important input data for 

estimating the model value of LAI. There are 40 main 

types of soils for Ukraine (Figure 1). For each type of 

soil parameters are recorded in profiles and used as 

input of the model. The soil parameters, in particular 

(soil moisture content at saturation, at wilting point, 

and at field capacity) are available according to 

European Soil Database [16]. 

Figure 1: Soil map for Ukraine. 

2.2.2 Crop Profiles 

The most important characteristic in crop profiles is 

the accumulated sum of temperature from emergence 

to anthesis (TSUM1), as well as temperature sum 

from anthesis to maturity (TSUM2). For winter crops, 

an important characteristic is the sum of temperatures 

that exceed 4 degrees Celsius for the continuation of 

vegetation after wintering.  

2.2.3 Meteorological Data 

The WOFOST system uses daily meteorological 

parameters from NASA Prediction of the Worldwide 

Energy Resources (POWER) Project [17], in 

particular temperature, precipitation, irradiation, 

wind power and direction. That resolution is 1.0° 

latitude by 1.0° longitude for the radiation data sets 

and 0.5° latitude by 0.625° longitude for the 

meteorological data sets (or approximately 55.5 km x 

69 km). The Figure 2 shows the geospatial ratio of 

meteorological data pixels to oblasts of Ukraine. 

Figure 2: Soil map for Ukraine. 

2.2.4 Grid Creation for Ukraine 

Considering the rather low spatial resolution of 

meteorological data, as well as the fact that a single 

soil can extend over a long area, a new markup is 

created for the use of the WOFOST model, which is 

the intersection of meteorological data and soils 

(Figure 3). Thus, we increase the variability and 

taking into account the agro-climatic zones of 

Ukraine. For each polygon created, a point for which 

a soil profile, crop profile and meteorological 

indicators are assigned is set in accordance. 

Figure 3: Grid for WOFOST model using for Ukraine. 

3 METHODOLOGY 

Our method of land productivity assessment is based 

on the land cover and crop type classification from 

satellite imagery and application of different schemes 
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of land degradation assessment for each of them [13] 

(Figure 4).  

We consider forest cuts as land degradation for 

forests and assess them using deep learning models 

[18]. Land degradation for croplands is estimated by 

difference of real leaf area index (LAI) based on 

MODIS data [19] and ideal LAI, calculated with the 

biophysical crop development model WOFOST [15], 

which takes into account the biophysical 

characteristics of the soil (soil moisture content at 

saturation, at wilting point, and at field capacity), 

meteorological conditions (precipitation, 

temperature, wind direction and strength), altitude 

above sea level. 

Figure 4: General scheme of the complex method of land 

degradation estimation [13]. 

The sustainability criteria are the distance from 

the 90th percentile of the national distribution [12]:  

 Green (desirable or productive): Sub-indicator

value is ≥ 2/3 of the corresponding 90th

percentile.

 Yellow (acceptable or sustainable): Sub-

indicator value is ≥ 1/3 and < 2/3 of the

corresponding 90th percentile.

 Red (unsustainable or degradation): Sub-

indicator value is < 1/3 of the corresponding

90th percentile.

The land degradation for grassland is determined 

with a traditional approach based on trend of 

vegetation index NDVI [20] extracted from satellite 

imagery. 

The indicator 2.4.1 is defined by the (1): 

2.4.1

Area under productive and sustainable agriculture
SDG

Agriculture land area
 , (1) 

where area under productive and area under 

sustainable agriculture calculated based on land 

degradation map, and agriculture land area based on 

crop type classification map. 

4 RESULTS 

According to the developed technology for indicator 

2.4.1 calculation, the land degradation maps were 

calculated, which include three classes (productive, 

sustainable and degradation land) for the calculation 

of which the crop type maps for 2018 - 2022 were 

used. On the basis of the obtained maps, according to 

(1), the SDG indicator 2.4.1 was calculated for each 

region of Ukraine (Figure 5). 

Figure 5: SDG 2.4.1 indicator for Ukraine (2018 – 2022). 
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During 2018 - 2021, a worse situation is observed 

in the southern regions in terms of the value of the 

indicator, which may be caused by the annual crop 

rotation violation in this zone [21].

The situation in 2022 has significantly worsened 

in almost all regions of Ukraine, in particular in the 

south-eastern regions, where hostilities continue. The 

worsening situation in other regions may also be due 

to shortages of fuel, resources for productive 

agriculture, and human resources, as many workers 

have gone to war.  

The Table 2 shows the calculated SDG indicators 

2.4.1 for 5 years, as well as their comparison with 

2022 in percentage. The cases where the indicator 

decreased are marked in pink color, and the cases in 

which the indicator increased are marked in green 

color. From Table 2, it can be concluded that in 

almost all regions of Ukraine, compared to the 

previous 4 years, the condition of the land has 

deteriorated. Kherson region has higher indicators 

than other territories under occupation, as it contains 

the largest areas of irrigated territories in Ukraine, 

which helped it. 

Table 2: Indicator SDG 2.4.1 for Ukraine (2018 – 2022). 

SDG 2.4.1 Difference (in %) with 2022 

Oblasts 2018 2019 2020 2021 2022 2018 2019 2020 2021 

Vinnytska 0,92 0,97 0,86 0,98 0,68 -25,7 -29,3 -20,2 -30,5

Zakarpatska 0,81 0,69 0,72 0,63 0,50 -38,0 -26,7 -30,2 -20,3

Kirovohradska 0,83 0,72 0,69 0,85 0,57 -31,5 -21,7 -18,0 -33,6

Luhanska 0,79 0,63 0,70 0,94 0,51 -36,4 -19,8 -28,0 -46,3

Dnipropetrovska 0,77 0,40 0,37 0,71 0,34 -56,4 -14,9 -8,9 -52,8

Kharkivska 0,91 0,95 0,97 0,93 0,81 -10,5 -14,8 -16,2 -12,9

Zaporizka 0,46 0,46 0,45 0,54 0,41 -9,9 -10,8 -7,6 -23,5

Odeska 0,86 0,74 0,80 0,96 0,67 -22,6 -10,1 -16,9 -30,4

Volynska 0,90 0,87 0,79 0,89 0,79 -12,1 -9,1 -0,3 -11,3

Chernihivska 0,97 0,96 0,99 0,99 0,88 -8,9 -8,4 -11,0 -10,7

Chernivetska 0,97 0,82 0,96 0,97 0,76 -21,2 -7,6 -20,3 -21,6

Cherkaska 0,89 0,87 0,90 0,96 0,82 -7,4 -6,0 -8,3 -14,1

Lvivska 0,93 0,90 0,93 0,96 0,86 -7,9 -4,9 -7,1 -9,9

Kyivska 0,94 0,87 0,91 0,94 0,83 -11,5 -4,7 -8,3 -11,2

Poltavska 0,86 0,81 0,84 0,86 0,77 -10,3 -4,4 -7,4 -10,1

Zhytomyrska 0,93 0,83 0,81 0,90 0,80 -14,7 -4,0 -1,6 -11,3

Ternopilska 0,96 0,94 0,87 0,97 0,91 -4,8 -3,7 4,4 -6,7

Khmel'nytska 0,93 0,92 0,94 0,96 0,90 -3,1 -2,1 -3,7 -6,6

Ivano-Frankivska 0,93 0,88 0,93 0,98 0,88 -5,2 -0,7 -6,1 -10,4

Donetska 0,75 0,46 0,58 0,65 0,53 -29,2 14,7 -8,5 -18,2

Mykolaivska 0,60 0,57 0,69 0,82 0,58 -2,7 1,0 -16,4 -29,4

AR of Crimea 0,44 0,57 0,42 0,72 0,61 38,4 8,3 46,0 -14,3

Khersonska 0,51 0,71 0,77 0,87 0,80 56,8 13,0 3,1 -7,9

Sumska 0,97 0,98 0,98 0,98 0,99 2,4 0,6 0,6 0,5 

Rivnenska 0,94 0,79 0,90 0,91 0,96 1,7 21,4 6,5 5,7 

Ukraine 0,83 0,77 0,79 0,87 0,73 -12,5 -6,1 -8,1 -17,0
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5 CONCLUSIONS 

In this study, we calculated indicator 2.4.1 for 2018-

2022 for the territory of Ukraine using a previously 

developed geospatial method for assessing land 

degradation based on remote sensing data, neural 

networks, and biophysical modeling [13]. It takes into 

account different land cover/land use classes and 

provides a specific way of assessing land degradation 

for each of them. Due to the high computational 

complexity of the method, it is implemented in the 

CREODIAS cloud environment, thanks to the 

resources within the EO4UA initiative. According to 

our research, most of the territory of Ukraine remains 

stable. The most land degradation is observed on 

arable lands in the southeastern regions due to 

environmentally unfavorable methods of farming and 

military operations. 

The developed technology is flexible and 

applicable for different climatic zones, because 

during the biophysical simulation according to the 

WOFOST model, it takes into account precipitation, 

temperature, as well as the main stages of crop growth 

- seedlings, maturation, maturity. After receiving the

annual maps of degradation according to the

described methodology, the changes at the level of the

regions of Ukraine were analyzed, and as a result it

was concluded that in 2022 there was a significant

deterioration compared to the previous 4 years. On

the basis of the obtained result, it is possible to make

appropriate management decisions regarding the

prevention and regulation of land quality in Ukraine.

The proposed technology can be used for any 

country in the world. The only information required 

is a crop type classification map for the required area. 

In particular, the data technology is also applied to 

calculate the indicator of the sustainable development 

goal 2.4.1 for the territory of Germany within the 

framework of the Horizon 2020 e-shape project.  
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