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Abstract: An algorithm for large-scale adaptation of prototype functions representing image classes is proposed. The 

algorithm identifies the parameters of nonlinear scale distortions contained in the functions representing the 

observed image realizations, and then transforms the original prototype function using the previously 

proposed model. The algorithm works on a class of images of regular phase processes that have the property 

of quasi-similarity of shape. Two models of large-scale nonlinear transformations are considered: symmetric 

and asymmetric. The differences between the models and the practical results of their application are given. 

The algorithm was experimentally tested on the images of prototypes of fragments of speech signals, 

electrocardiosignals, and engine cylinder pressure detector signals. Examples and experimental data 

confirming the effectiveness of the algorithm are given. Conclusions are formulated about the possibility of 

using the algorithm with both models in practical problems. 

1 INTRODUCTION 

Most image recognition methods for various 

physical processes use the operation of comparing 

the current image with the prototype (etalon) image. 

For example, speech recognition algorithms use 

many prototype spectral images of phonemes, 

algorithms for processing data of technical and 

medical diagnostics can use prototypes of signals or 

spectral functions characterizing changes in the 

parameters of controlled physical processes in 

various modes and states (normal operation, 

pathology of certain types, etc.). If the features of 

images belonging to the same class change little 

over time (within small limits relative to statistical 

averages), then the prototype images remain 

unchanged during the analysis. If the specified 

parameters can dynamically change within large 

limits during the processing of the registered image 

implementations, then for the reliable operation of 

the recognition algorithm, the parameters of the 

prototype images must adapt to these changes. That 

is, the prototype images must be dynamic. 

In applied problems, prototype images are often 

represented in the form of real functions: fragments 

of signals of finite duration, analytically defined 

functions approximating these fragments, power 

spectral densities, etc. In the case of dynamic 

images, if the image of the prototype is represented 

by a function 
0 ( )y x , and recorded on the interval T 

(T X , X is the real axis) current image of the 

function ( )Ty x , then before comparison it is

necessary to perform the transformation 

0 ( ) ( )Ty x y x prototype functions 
0 ( )y x in some

new function ( )Ty x that has the meaning of the

adapted prototype with which to compare a function 

( )Ty x  that represents the current image. 

Among the physical processes that are the 

sources of the analysed images, a significant place is 

occupied by the class of regular phase processes 

(RF-processes) [1, 2, 3]. In particular, such 

processes include dynamic processes occurring in 

internal combustion engines, electrical processes of 

polarization and depolarization of the heart muscle, 

etc. A characteristic feature of the class of images of 

RF processes is that all registered implementations 

of image functions ( )Ty x from this class have the

property of "similarity of form" (resemblance, but 

not coincidence). In [4], such images were called 

"pulsating" and two models for their formation were 

proposed. In general, these models can be 

represented in the form of a converter ( , )k aH s s that 

performs large-scale transformations of the 
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prototype 
0 ( )y x  into simulated implementations of 

ˆ( )y x : 

0
ˆ( ) ( , )[ ( )]k ay x H s s y x  

where :ks x kx ,
0 0:as y ay is the scale 

transformations with random parameters ,k a . If the 

parameters of the scale transformations are not 

constants, but are themselves functions of the 

argument x : ( ), ( )k k x a a x  , then the scale 

distortions are nonlinear, and the functions ( )Ty x

generated according to (1) will have the specified 

shape similarity property. 

The aim of this work is to develop and 

experimentally test an algorithm designed to identify 

the parameters of nonlinear scale distortions 

contained in the observed implementations of a class 

of functions, and to construct an adapted prototype 

function representing this class of images. 

2 THE ADAPTATION TASK 

Let 0( ( ), ( ))Te y x y x be the deviation calculated in 

some way between the observed function ( )Ty x and 

the prototype 
0 ( )y x . The task of adaptation is set as

follows: 

Having an observable function ( )Ty x , a 

prototype function 
0 ( )y x , and a model of scale 

transformations ( , )k aH s s , we need to obtain 

estimates of the transformation parameters ,k a  for 

which the function 
0

ˆ( ) ( , )[ ( )]k ay x H s s y x  satisfies 

the condition 

0
ˆ( ( ), ( )) ( ( ), ( ))T Te y x y x e y x y x  

where ˆ( ( ), ( ))Te y x y x is the deviation between the 

corresponding functions. 

The model function ˆ( )y x  that satisfies condition 

(2) can be used as an adapted prototype function

ˆ( ) ( )Ty x y x , with which the implementation of 

( )Ty x  representing the current image should be

compared. A possible modification of such a 

statement of the problem may consist in replacing 

condition (2) with condition 

ˆ( ( ), ( )) д

Te y x y x e , 

where 
дe is the specified value of the permissible

deviation. Obviously, in both cases, the problem 

may have many solutions or not have a solution, and 

the problem statement itself contains a conceptual 

scheme for obtaining a solution, if any. 

This scheme involves the following steps: 

 processing of implementation ( )Ty x , as a 

result of which estimates of the parameters of 

scale transformations ,k as s  should be 

obtained; 

 substitution of the obtained parameter values

into the used model of the converter

( , )k aH s s and generation of the adapted

prototype function 
0

ˆ( ) ( , )[ ( )]k ay x H s s y x ; 

 checking condition (2) and, if it is fulfilled,

replacing the original prototype function

0 ( )y x  with an adapted prototype function

ˆ( ) ( )Ty x y x .

3 SCALE CONVERTER MODEL 

As a model of the transformer ( , )k aH s s , we can use

a modification of the relations obtained in [4] to 

model a set of implementations of ( )ny x  by 

stochastic nonlinear scale distortions of the 

prototype function 
0 ( )y x . In this work, the relations

given below do not contain the index n, since they 

are used not for modelling, but for generating an 

adapted function when performing the second stage 

of the above conceptual adaptation scheme. 

The prototype function is given in the form of a 

piecewise function 
(1)

0 (0) (1)

0

( )

0 ( 1) ( )

( ), 0 ,

( ) ...

( ), ,m

m m

y x x x x

y x

y x x x x b

 

  



   


 


  

defined by some partition 

( 1) ( ) ( 1) ( )

(0) (1) ( )

( ) { | [ , ), 1,..., , [ , ],

0 ... }

m i i i i m m m

m

D d d x x i m d x x

x x x b

     

 

   

   

    

of the domain of the function definition [0, ]D b   

with nodal points 
( ) ( )( , )i iq x y 

[5, 6].

Modelling of ˆ( )y x  is performed by linear scale 

transformations ( ) ( )

0
ˆ( ) ( )i iy x y x of each i-th 

segment of the piecewise prototype function, but 

with different values of the scale transformation 

parameters for different segments. 

The functions ( )ˆ ( )iy x  formed at the output of the 

converter are determined by the relations: 
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( ) ( 1)

( 1)( ) ( ) ( )

0 ( )

( ) ( )

0 ( 1)

(1 )
ˆ ( )

( )(1 ) ,

i i

ii i i

i

i i

i

x x b
y x a y

r b

y x a





 







   
  

 
 

  



where 
( )ia ,

( )ib is the coefficients of scale 

transformations: 
( ) ( 1)

( )

0 ( ) 0 ( 1)

1 ,
( ) ( )

i i

i

i i

a
y x y x

  

 




 



( ) ( 1)

( )

( ) ( 1)

1 ,
i i

i

i i

b
x x

  

 




 



that depend on the values of random parameters 
( ) ( ),i i  with the characteristics:

( ){ } 0iM   , ( ) ( ) ( )[ , ]i i i

y y    , 

( ){ } 0iM   , 
( ) ( ) ( )[ , ]i i i

x x    , 

r const is the coefficient of linear change in the

scale of argument x  over the entire interval 

[0, ]D b  . 

The use of a constant coefficient r  leads to

linear compression/expansion of the prototype 

function 
0 ( )y x , and the use of different values of 

the coefficients of scale transformations 
( )ia , ( )ib  for

its different segments leads to nonlinearity of scale 

distortions that will be contained in the resulting 

function ˆ ˆˆ( ), [0, ],y x x T b b rb   . 

Internal node points 
( ) ( )( , )i iq x y  of the modelled 

piecewise function (with the exception of the 

boundary points 
(0) (0) ( ) ( )( , ( )), ( , ( ))m mq x y x q x y x ) 

satisfy the constraint: 
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

0 ( ) 0 ( )

( , ) [ , ]

[ ( ) , ( ) ]

i i

i i i i x i x

i i

i y i y

x y x x

y x y x

 

 

     

   


which means that they fall into the rectangles of 

movement of nodal points ( )i . 

This feature binds the contours of the simulated 

functions ˆ( )y x  to the contour of the prototype 

0 ( )y x and preserves the similarity property of their

shapes. The values of 
( ) ( ),i i

x y   set the allowable 

increments of the ranges of the definition areas and 

the ranges of values of the corresponding segments 

of the functions 
( ) ( )iy x , provided that the adjacent 

rectangles ( )i should not intersect: 

( ) ( 1)i i   . Therefore,
( ) ( ),i i

x y  is defined 

as: 

 





( )

( ) ( 1) ( 1) ( )

( )

0 ( ) 0 ( 1)

0 ( 1) 0 ( )

min ( ), ( ) ,

min ( ( ) ( )),

( ( ) ( )) ,

0 , 0.5.

i

x x i i i i

i

y y i i

i i

x y

c x x x x

c y x y x

y x y x

c c

   

 

 



 



   

  



 



The rectangles ( )i defined in this way are 

symmetric with respect to the node points 

( ) ( )( , )i iq x y  of the prototype 0 ( )y x . 

A possible modification of this method is to set 

the rectangles that are not symmetric in the 

coordinate while maintaining the condition 

( ) ( 1) :i i  

( ) ( )

( ) ( ) ( )

( ) ( )

0 ( ) 0 ( )

[ , ]

[ ( ) , ( ) ],

i i

i i x i x

i i

i y i y

x x

y x y x

 

 

     

   


( )

( ) ( 1)( )i

x x i ic x x 

   ,  ( )

( 1) ( )( )i

x x i ic x x 

   . 

From relation (3) it follows that for an 

unambiguous specification of the converter it is 

necessary to determine the value of r and the set of 

values  ( ) ( )( , ), 1, 1i i

n n i m     , on which the

parameters of scale transformations 
( )ia , ( )ib

depend. 

4 ALGORITHM DESCRIPTION 

For modelling functions with a specific shape, it was 

suggested in [4] to choose as the nodal points of the 

prototype function not arbitrary points [7, 8], but 

essential points 0( , ), ( )q x y y y x , where significant

changes in the properties of the function occur. The 

set of formal features used to identify each essential 

point ( , )q x y  (for example, the features of the 

extremums of a function) and determining the 

behaviour of the function 
0 ( )y x  in its 

neighbourhood determines the type ( )type q  of this 

point [1, 2]. The choice of the composition of the 

types of essential points and the method (algorithm) 

of their automatic identification depends on the form 

or other properties of the function and is carried out 

by the developer of the signal processing system 

based on knowledge of the subject. The set of node 

points and their function types 0 ( )y x will be 

denoted as Q

 and TYPE , respectively:

 ( ) ( )( , ), (1, )i iQ q x y i m    , 
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 ( ) ( )( , ), (1, )i iTYPE type q x y i m    . 

The logic of the algorithm for identifying the 

parameters of scale distortions of functions given 

below is based on the following considerations. 

The desired scale-adapted function 

0
ˆ( ) ( , )[ ( )]k ay x H s s y x must have a geometric

similarity of shape both with any of the

implementations of ( )ny x modelled using model 

(3), including the prototype function 0 ( )y x , and 

with the observed function ( )Ty x . The characteristic

features of the form of a function are largely 

determined by the quantitative relations between the 

values of the coordinates of its essential points, as 

well as the order in which their types are located. In 

order to ensure the specified similarity, the 

following conditions must be met: 

 types of nodal points ( ) ( )
ˆ ˆ ˆ( , )i iq x y  of the

function ˆ( )y x  needs to match the types of the 

nodal points 
( ) ( )( , )i iq x y   of the original 

function prototype 0 ( )y x , and the points to get 

into the rectangles of movement of nodal 

points ( )i : 

( ) ( ) ( ) ( )
ˆ ˆ( , ) ( , )i i i itype x y type q x y  , 

( ) ( ) ( )
ˆ ˆ( , )i i ix y  ; 

 the transformation
( ) ( )( , )i iq x y   ( ) ( )

ˆ ˆ ˆ( , )i iq x y  of 

the node points of the prototype function 

0 ( )y x  to the node points (with new 

coordinates) of the function ˆ( )y x  should be 

performed only if the corresponding rectangle 

( )i  contains at least one essential point 

( , )q x y of the
( ) ( )( , )i itype q x y 

of the observed

function ( )Ty x , that is, if the condition is met: 

( ) ( )( , ) , ( , ) ( , )i i ix y type q x y type q x y   . 

In addition, the domain [0, ]D b   of the

prototype 0 ( )y x must be adjusted to the domain

[0, ]T b of the observed function ( )Ty x . To do 

this, perform a linear transformation of the scale of 

the argument x  and create a prototype: 

0 0( ) , /
x

y x y r b b
r

 
   

 
 

The coordinates of the node points 
iq of the 

prototype 
0 ( )y x will be ( ) 0 ( )( , ( ))i irx y rx  . These 

conditions are taken into account in the algorithm 

when identifying scale distortions and constructing a 

scale-adapted function ˆ( )y x . 

Algorithm A1. Algorithm for dynamic scale 

adaptation of the function. 

Input: 

0 ( )y x – the prototype function; 

( )Ty x – the observed function; 

 ( ) ( )( , ), (1, )i iQ q x y i m    – the set of nodal

points for the function 
0 ( )y x ;  

 ( ) ( )( , ), (1, )i iTYPE type q x y i m    – the set

of types of nodal points for the function 
0 ( )y x . 

Output: 

( )Ty x – the scale-adapted prototype function.

Step 1. Using the relations (7), create a 

prototype 
0 ( )y x : 

0 0( ) , [0, ], /
x

y x y x T b r b b
r

 
     

 

(The coordinates of the nodal points 
iq of the

prototype 
0 ( )y x will be

( ) 0 ( )( , ( ))i irx y rx  ); 

Step 2. Define the set of essential points Q  of 

the observed function ( )y x  as: 

 ( ) ( ) ( ) ( )( , ) | ( , ) , (1, )j j j jQ q x y typeq x y TYPE j n  

(to determine this set, we can use the algorithm for 

constructing a piecewise monotone function from 

[1]); 

Step 3. Calculate the deviation 
0( ( ), ( ))e y x y x

between the observed function ( )y x  and the 

prototype 
0 ( )y x : 

0 0

0

( ( ), ( )) ( ) ( )

b

e y x y x y x y x dx  

Step 4. For each node point of the prototype 

function 
0 ( )y x , define symmetric: 

( ) ( )

( ) ( ) ( )

( ) ( )

0 ( ) 0 ( )

[ , ]

[ ( ) , ( ) ]

i i

i i x i x

i i

i y i y

rx rx

y rx y rx

 

 

     

     

or non-symmetric (optional): 
( ) ( )

( ) ( ) ( )

( ) ( )

0 ( ) 0 ( )

[ , ]

[ ( ) , ( ) ]

i i

i i x i x

i i

i y i y

rx rx

y rx y rx

 

 

     

     

rectangles, respectively (see relations (5-6)); 
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Step 5. Generate sets 
iC of essential points with 

( ) ( )( , )i itype q x y  of the observed function ( )y x

falling into rectangles ( )i : 





( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( , ) | ( , ) ,

( , ) , ( , ) ( , )

i j j j j

j j i j j i i

C q x y q x y Q

x y type q x y type q x y 

 

 

and determine the cardinalities 
iN of these sets (

iC

may be empty); 

Step 6. Determine the coordinates of the node 

points ( ) ( )
ˆ ˆ ˆ( , )i iq x y  of the function ˆ( )y x  as 

( ) ( )
ˆ ˆ

( ) ( )

1 1

( ) ( ) ( ) ( )

( ) ( )

1 1
, ,

ˆ ˆ( , ) ( , ) , ,

( , ), ,

i iN N

j j

j ji i

i i j j i i

i i i

x y
N N

x y q x y С if С

x y if С

 

 

 
 
  


   


 



 

and the set   of estimates of the scale distortion 

parameters 
( ) ( )( , )i i  as 

( ) ( ) ( ) ( )( ) ( )
ˆ ˆ( , ), ,

( , )
0, ;

i i i i ii i

i

x rx y y if С

if С
 

     
 

 

Step 7. Using the relations (3) and the found 

values of the scale distortion parameters 
( ) ( )( , )i i  , 

construct a piecewise function ˆ( )y x . 

Step 8. Calculate deviation 

0

ˆ ˆ( ( ), ( )) ( ) ( )

b

e y x y x y x y x dx  ; 

Step 9. Define a scale-adapted function 

0

0 0

ˆ ˆ( ), ( ( ), ( )) ( ( ), ( )),
( )

ˆ( ), ( ( ), ( )) ( ( ), ( )).
T

y x if e y x y x e y x y x
y x

y x if e y x y x e y x y x


 



End. 

5 EXPERIMENTS 

In the experimental testing of the algorithm, the 

prototype images of 0 ( )y x  were used: 

a) spectral power density of fragments of speech

signals corresponding to certain sounds of human 

speech (phonemes) [9, 10, 11, 12]; 

b) fragment of an electrocardiogram (ECG) that

corresponds to several complete cycles of the heart 

at a certain heart rate, seismo- or gyro-cardiogram 

signals [13, 14, 15]; 

с) fragment of the function of pressure in the 

cylinder of a four-stroke internal combustion engine 

(ICE) versus time (the standards were obtained by 

analytical calculation at 8900 rpm) [16]. 

Two types of points were used as the nodal 

points of the prototype 0 ( )y x : local minima and

maxima, which divide the function into intervals 

( )Ty x  of non-strict monotony, on which the 

function has a positive or negative trend [7]. As 

observed functions ( )Ty x  with nonlinear scale

distortions, we used implementations ( )ny x

generated using the model (3) with 10000 

implementations for each case (a) and (b). In the 

algorithm, both methods of determining the 

rectangles of movement of the nodal points ( )i

were implemented: symmetric and asymmetric. 

An illustration of the algorithm is shown in 

Figure 1, Figure 2  and Figure 2. In Figure 1, the 

broken line shows the prototype spectrum 0 ( )y x for 

the phoneme "E", the dotted line shows the observed 

spectrum ( )Ty x , the solid line shows the scale-

adapted prototype ˆ( ) ( )Ty x y x , as well as the

symmetrical rectangles of the movement of the 

nodal points ( )i . Similar ECG graphs are shown in

Figure 2. 

Figure 1 shows that the nodal points of the 

observed spectrum ( )Ty x  fall into the second and 

third rectangles, so the average peak of the adapted 

spectrum ( )Ty x  is pulled up to the average peak of 

the observed spectrum ( )Ty x and in this area differs 

significantly from the prototype 0 ( )y x . 

From Figure 2 it can be seen that the nodal 

points of the observed ECG cycle fall into four 

rectangles and the scale adaptation is performed in 

the area corresponding to the QRS complex and the 

T wave. 

In fig. 3, it can be seen that the key points 

corresponding to the maximum pressure value that is 

observed at the moment of ignition of the 

combustible mixture fall into the movement 

rectangles, and the standard is adapted for one-

cylinder operation cycle. 

In all cases, the deviation of the adapted 

prototype from the observed function is reduced, in 

particular, for the example shown in Figure 1, the 

deviation is 0( ( ), ( ))Te y x y x  133476, 

( ( ), ( ))T Te y x y x =119742, which is 10% less and

satisfies the condition (2). 

Tables 1, 2 and 3 provide a summary of the 

results of experiments to evaluate the effectiveness 

of the algorithm. Two indicators were evaluated: 
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Figure 1: Illustration of the algorithm for the speech signal. 

Figure 2: Illustration of the algorithm for the electro cardio signal. 

Figure 3: Illustration of the algorithm for cylinder pressure function. 

 adaptation rate expressed as the percentage of

cases in which the algorithm performed

prototype adaptation with a decrease in

deviation, relative to the total number of

experiments;

 the relative decrease R of the deviation

ˆ( ( ), ( ))Te y x y x compared to the deviation 

0( ( ), ( ))Te y x y x , calculated as

0

0

ˆ( ( ), ( )) ( ( ), ( ))
100%

( ( ), ( ))

T T

T

e y x y x e y x y x
R

e y x y x


 . 

The minimum, maximum, and average R values 

of 10000 implementations are calculated separately. 

These indicators are of interest, since they 

characterize the "degree of relevance" of applying 

the procedure for adapting etalon images 

(prototypes) in the problems of parametric 

identification and pattern recognition in specific 
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applied areas. The higher the values of these 

indicators, the higher the “degree of relevance” of 

applying the adaptation procedure using the above 

algorithm. These indicators were calculated using 

the symmetric and asymmetric rectangles algorithm. 

Table 1: Results for the speech signal. 

Rectangle 

type 

Adaptation 

rate, % 

Relative deviation 

decrease R, % 

Min Average Max 

Symmetrical 65 0,02 5,06 14,24 

Asymmetrical 91 0,23 7,95 21,52 

Table 2: Results for the electro cardio signal. 

Rectangle 

type 

Adaptation 

rate, % 

Relative deviation 

decrease R, % 

Min Average Max 

Symmetrical 94 0,17 29,21 58,95 

Asymmetrical 97 0,32 38,06 71,85 

Table 3: Results for the cylinder pressure function. 

Rectangle 
type 

Adaptation 
rate, % 

Relative deviation 
decrease R, % 

Min Average Max 

Symmetrical 93 0,00 20,97 47,74 

Asymmetrical 99 19,6 49,67 77,03 

6 CONCLUSIONS 

Two main conclusions follow from the analysis of 

the results obtained. 

The frequency of adaptation of the prototype of 

more than 50% indicates the adequacy of the 

algorithm of the real situation, which was discussed 

at the beginning of this work. Static definition of an 

image class in the form of an immutable prototype 

function can lead to significant deviations of the 

functions representing the observed images from this 

class, due to their scale distortions, and to 

recognition errors, in which an image belonging to 

class  0 ( )y x  is recognized as not belonging to it.

Using the prototype adaptation algorithm allows you 

to significantly reduce these deviations. 

When using asymmetrical rectangles, the 

expected higher adaptation rates are achieved. At the 

same time, if the value of the constant 
xc , which 

defines the asymmetrical rectangles in the relations 

(6), is not selected correctly (for example, close to 

0.5), a different kind of error may occur, when the 

prototype 
0 ( )y x can be adapted to the image of 

another class. In this case, an image that does not 

belong to class  0 ( )y x  will be incorrectly

recognized as belonging to it. 
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