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Abstract: The aim of the paper is to develop ranking techniques for dynamic equipment based on its technical 

conditions, the estimation of recovered resource value and the determination of critical points of time after 

which equipment operation has to be terminated. Accelerometer data, cross-spectrum for wave analysis and 

a TOPSIS-based method have been used to achieve the goal. The most significant result of the work is a 

method of estimating the technical condition of the equipment, which allows: 1) to perform the transition to 

condition-based equipment maintenance by predicting non-normative work time; 2) to plan preventive 

repairs; 3) to select performers for repairs and maintenance of equipment based on objective estimates of work 

quality. The importance of the results is as follows: 1) the application of multi-criteria ranking method allowed 

to make ranking according to the technical condition of the equipment units for which condition monitoring 

groups of sensors are used; 2) it is shown that equipment condition changing is non-linear and there are areas 

of accelerated degradation; when the latter ones are reached, an accelerated condition deterioration is 

encountered; 3) the application of the technique on the data simultaneously taken from four sensors has shown 

its ability to conduct a comprehensive estimation without reference to a specific type of failure in conditions 

when the data from individual accelerometers give different information about the failure due to the different 

distance from the problem area. The verification of the proposed theoretical results is carried out on the basis 

of operating time data before a bearing failure, as well as monitoring data on the operation of wind turbine 

gearboxes. 

1 INTRODUCTION 

The transition to predictive equipment maintenance 

and repair  is one of the ways to improve the 

efficiency of production systems due to the fact that 

it makes it possible to plan equipment maintenance 

based on the upcoming load (deferred maintenance at 

high load and conducting predictive maintenance and 

repair at low load of the production system), as well 

as reduce the ecological load [1]. There are situations 

when monitoring and predicting the condition of 

equipment is a prerequisite for the production systems 

to function. For example, in China, for oil distillation 

stations located in the Gobi Desert [2], each 

maintenance event is very expensive, and because of 

the remoteness of the object, it is difficult to carry out 

timely repairs in case of an unexpected accident. The 

widespread use of wind turbines and their 

construction on the shelves of the seas and other 

remote locations from service centers make the task 

of reducing maintenance costs due to logistical 

features more acute than before [3]. 

To predict equipment failures and make an 

optimal maintenance schedule, statistical approaches 

were initially considered [4]. However, the use of 

statistics on equipment failures yields low accuracy, 

as shown by research in which we proposed to 

identify the equipment operating condition based on 

the analysis of the amplitude characteristics of the 

vibration signal using machine learning methods. 

Furthermore, to process statistical data, methods 

of regression and data mining, machine learning, and 

neural networks are used, which do not give equally 

good results on all data and all types of equipment [5]. 

It is assumed that improving the accuracy is possible 

if one knows the distribution function of the 

occurrence of accidents [6] and the cause of failures, 

which requires large amounts of statistical 

information or data on the operating time of the 

investigated dynamic equipment units [7]. In practice, 

the use of excessive amounts of data leads to the 
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phenomenon of overfitting [8] and erroneous 

prediction of abnormal equipment operation. In 

addition, the collected datasets will be unbalanced 

due to the rarity of some phenomena, which makes 

the use of machine learning methods inefficient [9]. 

Currently, regression methods are used to predict the 

values of critical parameters (equipment 

characteristics) and machine learning methods to 

solve the classification problem (determining the 

current condition of the research object) [10]. In such 

cases, the parameters to be monitored are, as a rule, 

technological parameters secondary to the state of the 

equipment (current consumption values, resistance, 

friction, etc.). 

A large group of methods that have received wide 

applications are wave methods, the implementation of 

which is possible after refining the equipment with 

vibration sensors, installed on the device body, the 

most important blocks or axes of rotating parts. The 

basis of all methods using such data is the suggestion 

that certain changes and/or configurations of recorded 

signals (wave characteristics) will tell about a 

particular condition or the process of approaching 

some desired or not condition [11]. Successful 

applications of wave process analysis can be found in 

various fields of science: 

 To effectively predict strong earthquakes, seismic

wave parameters are analyzed using methods such

as spectral analysis based on Fast Fourier

Transform and continuous wavelet transform. In

seismic exploration, the elastic vibration field data

are processed and further analyzed using

amplitude control, migration, deconvolution,

velocity analysis, and various types of filtering.

 Another example of wave-based diagnostics is the

analysis of human sleep, particularly the detection

of snoring activity, where sound pressure level

and MFCC (Mel-frequency cepstral coefficients)

are used to analyze the sound signal, based on

which the classification models [12] are trained

using the support vector method (SVM), deep

learning and multi-core learning [13], also to

detect apnea and asthma diagnosis, for which the

spectrum analysis of breath noises is used.

 There are widely known cases of application of

wave analysis generated by aircraft equipment for

noise analysis, technical conditions, analysis of

operating modes, and search for solutions to

reduce acoustic cluttering of the space [14].

 Wave quality control of static products and

monitoring of their condition during operation by

wave reflections (it allows to find cracks, material

irregularities, cavities) and analysis of vibrations

of dynamic equipment are carried out.

Methods of this group can be divided into 

methods that evaluate changes in indirect parameters 

(e.g., the frequency parameters of the alternating 

current device), methods that use information from 

specially installed sensors (e.g., accelerometers) and 

methods that require action on the object to evaluate 

its condition (e.g., hammering and evaluation of wave 

propagation parameters) [15]. 

Two types of tasks are considered [16]: 1) 

predicting the equipment lifetime, 2) classification of 

the condition, and identification of faults. 

The use of the wave description allows us to 

formulate a mathematical apparatus that will not 

impose requirements on the mechanisms and 

technical methods of obtaining a wave, i.e., to use any 

sensors capable of obtaining the necessary 

representation of the signal: sound, vibration, 

electromagnetic radiation, current, light, special 

characteristics of control systems. 

In practice, the presence of a single sensor, as a 

rule, turns out to be insufficient, which leads to the 

statement of problems of multicriteria choice, among 

which only methods of ranking of decisions are 

applicable for the decision of the received problems 

as allow to receive stable decisions [17] and, do not 

apply convolution of criteria [18] (such approach 

brings certain assumptions in behavior and 

importance of estimations which lead to errors in 

decisions) and expert estimations [19] (the system 

should work in real-time). 

Currently, a comprehensive equipment condition 

analysis taking into account a group of sensors is not 

carried out. As a result, only a certain type of fault is 

determined on complex devices [20] or the results 

obtained are not reproducible in conditions different 

from the initial conditions [21]. Thus, the purpose of 

this research is to develop a methodology for ranking 

equipment by its technical condition (based on 

information collected from a group of sensors), which 

will allow prioritizing the order of maintenance, 

making predictions about the operating time to 

failure, and estimating the value of restored resource 

after repairs and maintenance. 

2 METHODOLOGY FOR 

INVESTIGATING THE 

CONDITION OF DYNAMIC 

EQUIPMENT 

To analyze the vibration signal, it is necessary to 

identify the features that characterize the degradation 
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of the investigated equipment. For this purpose, the 

spectral analysis of time series was considered. 

Each wave signal can be described by the 

corresponding power spectral density (PSD) of initial 

signals, characterizing the energy, which is carried by 

the considered frequency.  

In general case PSD is defined as the Fourier 

transform of the covariance function[22]: 

𝜑(𝜔) = ∑ 𝑟(𝑘)𝑒−𝑖𝜔𝑡∞
𝑘=−∞ , 

where the covariance function 𝑟(𝑘) = 𝐸{𝑦(𝑡)𝑦∗(𝑡 −
𝑘)}, 𝑦(𝑡) – time series. 

The most common assessment of PSD is the 

periodogram: 

𝜑𝑝(𝜔) =
1

𝑁
|∑ 𝑦(𝑡)𝑒−𝑖𝜔𝑡𝑁

𝑡=1 |
2
.

In practice, the frequency variable 𝜔 must be 

discretized and is usually considered  𝜔 =  
2𝜋

𝑁
𝑘, 𝑘 =

0, … , 𝑁 − 1 
The use of periodograms has the disadvantage of 

large fluctuations relative to the true PSD. To solve 

this problem, smoothing is used using various 

window functions. 

However, the use of window functions can have 

negative consequences [22]: 

 there is the phenomenon of smearing in

smoothing. This arises due to the fact that if two

peaks of the function 𝜑(𝜔) are located at a

frequency of less than 1 𝑁⁄ , they will appear as

one broader peak. Because of this, periodogram-

based methods cannot distinguish details in the 

investigated spectrum that are separated by less 

than 1 𝑁⁄  in cycles per sampling interval. Thus,

1
𝑁⁄  is the limit of spectral resolution for the

periodogram method; 

 there is the effect of leakage, which is caused by

the transfer of power from frequency bands with

a large power concentration to bands with less

or no power. This leads to a false estimation of

the PSD, where the power will be contained at

frequencies where it is absent.

Thus, for the most accurate PSD estimation, it is 

necessary to: 

 Select the window length based on a

compromise relationship between spectral

resolution and statistical variance.

 Select the window type based on a compromise

relationship between smearing and leakage

effects.

It is possible to solve the above–described 

problem of selecting smoothing parameters only 

experimentally for the specifies investigated signal, 

which requires additional research and is beyond the 

scope of this work. 

Therefore, the Daniell window was used in this 

work to obtain the PSD estimation because of the 

simplicity of the software implementation, since this 

method is based on the idea of reducing the variance 

by averaging the periodogram over small intervals. 

 Then the periodogram is calculated as follows 

[23]:  

𝜑𝐷 =
2

𝑓∆𝑁2
∑ |∑ 𝑦(𝑡) ∙ 𝑒

−2𝜋
𝑛

𝑁
(

𝑓
𝑓∆

𝑀⁄
+𝑚−

𝑀−1

2
)

𝑁−1
𝑛=0 |

2

𝑀−1
𝑚=0 , 

where 𝑁 – number of time series elements; 

𝑀 – averaging factor; 𝑓∆ - frequency resolution equal 

to 𝑀 𝑇⁄  ; 𝑇 – time series length.

As a result, the PSD for frequencies in the range 

from 0 Hz to Nyquist frequency is calculated for the 

investigated time series. Nyquist frequency is the 

cutoff frequency equal to half of the sampling 

frequency, i.e., 
𝑓∆𝑁

𝑀
/2. 

Obtaining periodograms for the initial vibration 

signals allows identifying the significant frequencies 

that will characterize the condition of the equipment, 

as can be noticed the spectral density during 

normative operation and emergency operation is 

distributed differently (Figure 1), whereas the 

periodograms of two signals taken during normative 

operation are similar (Figure 2). 

As can be seen from the above figures, it can be 

assumed that the degree of equipment deterioration 

may be identified by comparing the PSD distribution 

of the recorded signal with the benchmark.  

Definition. The characteristic taken at the first 

run of the new equipment can be used as a 

benchmark. 

Thus, the condition of each equipment unit will be 

estimated from the similarity degree of vibration 

signal PSD estimation with the benchmark one, 

thereby allowing to track the deterioration dynamics 

of a particular equipment unit, as well as to compare 

the deterioration degrees of several equipment units 

among themselves. This assumption allows us to 

refuse from singling out the frequencies contributed 

by each component of the investigated equipment unit 

[24] and tracking the changes by the set of these

frequencies. Such an approach, on the one hand,

makes it unnecessary to decompose the signal into

separate components contributed by each element of

the dynamic system but excludes the possibility of

precise identification of the failure cause, which will

require stopping and carrying out maintenance of the

equipment.
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a) b) 

c)      d) 

Figure 1: a) Initial vibration signal during normative wind turbine gearbox operation; b) initial vibration signal during 

emergency wind turbine gearbox operation; c) periodogram of the signal a); d) periodogram of the signal b). 

а) b) 

c)      d) 

Figure 2: Periodograms c), d) of vibration signals a) and b) respectively, taken during normative operation of wind turbine 

gearboxes. 
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To estimate the similarity of PSD of two time 

series a cross-spectrum is used [25]: 

𝜑𝑥𝑦(𝜔) =
1

𝜋
∑ 𝑟𝑥𝑦(𝑘)𝑒−𝑖𝜔𝑘

∞

𝑘=−∞

, 

where 0 < 𝜔 < 𝜋, 

where cross-covariance function 𝑟𝑥𝑦(𝑘) =

𝐸{𝑥(𝑡)𝑦∗(𝑡 − 𝑘)}. 

In contrast to the PSD estimation of a single time 

series by periodogram 𝜑𝑝(𝜔), the function 𝜑𝑥𝑦(𝜔) is

complex: 

𝜑𝑥𝑦(𝜔) = 𝑐(𝜔) − 𝑖𝑞(𝜔),

where the function 𝑐(𝜔) =
1

𝜋
∑ 𝑟𝑥𝑦(𝑘)cos (𝜔𝑘)∞

𝑘=−∞  

– co-spectrum, and the function 𝑞(𝜔) =
1

𝜋
∑ 𝑟𝑥𝑦(𝑘)sin (𝜔𝑘)∞

𝑘=−∞  – quadrature spectrum.

As a result of cross-spectrum calculation for each 

frequency of the investigated vibration signal, the 

similarity with the benchmark signal is evaluated. 

Since the power spectral density is usually 

measured in decibels, it is necessary to convert 

𝑓𝑥𝑦(𝜔) to lg (𝑓𝑥𝑦(𝜔)) before performing any

operation on the obtained cross-spectrum. 

As mentioned earlier, the cross-spectrum allows 

estimating the similarity at each frequency between 

two time series, while the criterion for ranking should 

be one number, which would uniquely characterize 

the state of the investigated equipment. Since the 

closer, the current state to the benchmark condition, 

the greater the cross-spectrum values, and 

respectively the average value across all frequencies 

at normative operation will be greater than at faulty 

operation, and as the equipment wears, the average 

value of the cross-spectrum will decrease. 

Accordingly, the average value of the cross-spectrum 

will be used as a criterion.  

Due to the fact that 𝜑𝑥𝑦(𝜔) is a complex function,

the criterion is also a complex value, but, as seen in 

Figure 3, information about the magnitude of the 

imaginary and real parts of the criterion (averaged co-

spectrum and averaged quadrature spectrum) is not so 

important for the condition evaluation, but the 

criterion closeness to the coordinate origin on the 

complex plane is important, so the complex value of 

the criterion can be replaced by its modulus. 

The dynamic equipment is a complex device 

consisting of many elements, so the signal is taken not 

from one vibration sensor, but from several, located 

on different parts of the equipment. This leads to the 

task of estimating each piece of equipment condition, 

based on multiple signals. 

The task of evaluating dynamic equipment 

conditions is reduced to comparing the current states 

of different pieces of equipment with each other or 

tracking the deterioration dynamics, in other words, 

comparing the current state with the previous 

measurements taken at certain intervals. Then for the 

task of condition estimation according to the data 

from several sensors, one of the solutions is the use of 

outranking methods for multi-criteria ranking of the 

equipment condition. 

Figure 3: Divergence of wind turbine gearbox condition 

estimations by the vibration signal in the complex plane. 

Among outranking methods, the TOPSIS [26] 

method is based on the identification of positive ideal 

(PIS) and negative ideal (NIS) solutions which, in the 

presence of data on the operating time of failure, will 

correspond to the conditions of new equipment and 

out of service (shutdown). Thus, all units of 

equipment or characteristics of one device removed 

during the operation will be systematized in relation 

to these states if we assume that values of criteria 

monotonically increase or decrease (the technical 

condition cannot spontaneously improve during 

operation). 

The work of the method can be described in seven 

steps. 

Step 1: Create a scoring matrix consisting of m 

measurements for n sensors, with scoring values in 

intersections 𝑃𝑖𝑗; 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑛. 

Step 2: Normalize the matrix of 𝑃𝑖𝑗 values and 

obtain a matrix 𝑅 consisting of elements 𝑟𝑖𝑗 calculated 

by the formula: 𝑟𝑖𝑗 =
𝑃𝑖𝑗

√∑ 𝑥𝑘𝑗
2𝑚

𝑘=1

, ∀𝑖, 𝑗. 

Step 3: Calculate the weighted normalized 

decision matrix 𝑡𝑖𝑗 = 𝑟𝑖𝑗 ∙ 𝑤𝑗, ∀𝑖, 𝑗,  where 𝑤𝑗 =
𝑊𝑗

∑ 𝑊𝑘
𝑛
𝑘=1

⁄ , ∀𝑗, where 𝑊𝑗 – is the initial weight 

assigned to the 𝑗- th criterion (indicator). Obtain the 

values of the weights satisfying the following equality 
∑ 𝑤𝑖 = 1𝑛

𝑖=1 .
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Step 4: Determine the worst (𝐴−) and the best 
(𝐴+) alternatives:

𝐴− = {(max(𝑡𝑖𝑗) |𝑗 ∈ 𝐽−), (min(𝑡𝑖𝑗) |𝑗 ∈ 𝐽+)} ≡ 𝑡𝑗
+,

𝐴+ = {(min(𝑡𝑖𝑗) |𝑗 ∈ 𝐽−), (max(𝑡𝑖𝑗) |𝑗 ∈ 𝐽+)} ≡ 𝑡𝑗
−,

∀𝑗, 
where 𝐽− is the set of indicators an increase in the

value of which brings a negative result, 𝐽+ is a set of 

indicators, an increase in the value of which has a 

positive result. 

Step 5: Calculate the Euclidean distance for the i- 

the alternative with the worst solution: 

𝐴− (𝑑𝑖
− = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

−)2𝑛
𝑗=1 , ∀𝑖) 

and with the best solution: 

𝐴+ (𝑑𝑖
+ = √∑ (𝑡𝑖𝑗 − 𝑡𝑗

+)2𝑛
𝑗=1 , ∀𝑖), 

where 𝑑𝑖
− and 𝑑𝑖

+ are the Euclidean distances to the

worst and best solutions. 

Step 6: Calculate the closeness to the best or 

worst state: 𝑠𝑖
− =

𝑑𝑖
−

(𝑑𝑖
− + 𝑑𝑖

+)⁄  или
𝑑𝑖

+

(𝑑𝑖
− + 𝑑𝑖

+)⁄ . 

Step 7: Ranking the alternatives by the values of 

𝑠𝑖
− or 𝑠𝑖

+, ∀𝑖.

For successful application of such approach, it 

is necessary: to choose criteria for ranking; to choose 

the most appropriate ranking method; to determine 

the internal parameters of the chosen ranking method 

(criterion weights, maximization/minimization of 

each specific criterion, etc.). The general scheme of 

the algorithm for a set of sensors can be represented 

in Figure 4. 

 

3 EXPERIMENTAL RESEARCH 

ON THE APPLICABILITY OF 

THE PROPOSED 

METHODOLOGY 

Due to the presence of moving elements in the 

dynamic equipment design, constant state 

degradation of such elements is unavoidable. One of 

the most common elements in dynamic equipment is 

bearings, which ensure the rotation or rolling of the 

connected structural elements with the least 

resistance, so bearing wear will noticeably affect the 

operation of the equipment as a whole. 

To verify the proposed approach, we will use the 

data on the failure time of the bearings, which can be 

downloaded from the link1. The availability of the 

data on the operating time between failures allows 

estimating the distance to the breakdown condition 

The vibration signal is received from two sensors; 

therefore, the ranking will be performed according to 

two criteria. In this case, the task is to track how far 

the technical condition of the equipment is from the 

emergency condition, so we will take the emergency 

condition as an ideal-positive solution, respectively, 

when reducing the criteria, the condition will 

approach the emergency condition, that is, the criteria 

must be minimized. 

So, at the dynamic condition change, it is 

impossible to evaluate which of the sensors most 

clearly shows degradation, the weights will be equal. 

According to the obtained results (Figure 6), it can 

be concluded that the condition is gradually moving 

from normative to emergency and the rating score is 

also increasing, as expected.  

.

Figure. 4: Algorithm for estimating the condition of the equipment with multiple sensors installed. 

1https://drive.google.com/drive/folders/1_ycmG46P

ARiykt82ShfnFfyQsaXv3_VK 
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The problem. There is no monotony of change 

and there are fluctuations in the process of tracking 

the deterioration, and as the bearing rotational speed 

increases, the fluctuations increase  

This problem can be caused by the fact, that the 

experiments were carried out in conditions of 

accelerated degradation far from the normative ones, 

assuming sharp random bursts of vibration signal 

fluctuations, which worsen the method performance. 

as well as when solving the problem of tracking wear 

dynamics, an important factor is the choice of the 

estimation time interval size, the method of 

smoothing, and the size of the smoothing window. 

By increasing the size of the evaluation interval, 

we can notice a decrease in fluctuations in the 

dynamics of change in the condition of the 

investigated equipment (Figure 7), but another 

problem arises, related to the fact that with too large 

an interval the probability of untimely detection of 

critical equipment wear increases. 

a)       b)
Figure 6: Result of 5 bearing deterioration dynamics ranking a) first experiment at 35 Hz rotation speed and 12 kN load, 

b) third experiment at 40 Hz rotation speed and 10 kN load.

a) b) 

c)       d) 

Figure 7:  Influence of the evaluation time interval on the quality of the ranking. With an initial interval of 1 minute for 

experiments a), there were small fluctuations, which were noticeably smoothed out in experiment b) when the interval size 
was changed from 1 minute to 3 minutes. In experiment c) the evaluation was made with an interval of 1 minute and in this 

case very strong fluctuations and sharp jumps can be observed, when the interval is changed to 13 minutes in experiment d) 

it is possible to notice a decrease in the number of fluctuations and emissions, but they are still present. 
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Experiments show that depending on the period of 

the data taken for analysis, there is an increase or 

decrease in the magnitude of fluctuations in the 

analysis data, which indicates the need to choose for 

each equipment unit the value of time for data 

acquisition, as well as the periodicity of these 

operations. 

A more complex example is the gearbox in a wind 

turbine structure. As soon as a failure occurs in the 

wind turbine gearbox, the efficiency of power 

generation inevitably decreases, and eventually, 

unplanned downtime happens [27]. Thus, monitoring 

the condition of dynamic equipment is necessary not 

only to prevent emergency breakdown and resulting 

downtime but also to avoid losses in operational 

efficiency.  

There is open-source data on the performance of 

generators and gearboxes of wind turbines (data 

available on the portal of the U.S. National 

Renewable Energy Laboratory2, but the results 

obtained in the currently known studies carried out on 

them show their effectiveness only on this data [28], 

which confirms the relevance of the goal.  

Since there are four vibration sensors on the 

investigated equipment, the TOPSIS ranking will be 

estimated according to four criteria. 

As mentioned earlier, and as can be seen from 

previous calculation results, the criteria decrease as 

the equipment deteriorates. Since the ranking on this 

dataset involves comparing several wind turbine 

gearboxes relative to each other, the larger the 

criterion, the larger the score should be since it is 

closer to the benchmark condition, therefore each 

criterion within the TOPSIS method should be 

maximized. 

Not all sensors can track the wear of equipment, 

so it is necessary to calculate the matrix of weights 𝑊𝑗 

so that the criteria from the sensors that show the most 

obvious wear of equipment have a greater impact on 

the condition evaluation. 

 Calculate the average values for each criterion

for each state (normative/emergency): 

𝑃𝑗
+ =

∑ 𝑃𝑖𝑗𝑖∈𝑆+

𝑁+  , ∀𝑗,

where 𝑃𝑗
+ – the average value of j-th criterion during

normative operation,  𝑆+ – set of gearboxes operating 

in normal mode, 𝑁+ – the number of gearboxes 

operating in normal mode; 

𝑃𝑗
− =

∑ 𝑃𝑖𝑗𝑖∈𝑆−

𝑁−  , ∀𝑗, 

 

where 𝑃𝑗
− – the average value of j-th criterion during

emergency operation,  𝑆− – set of gearboxes 

operating in emergency mode, 𝑁− – the number of 

gearboxes operating in emergency mode; 

 calculate the weights 𝑊𝑗 =
|𝑃𝑗

+−𝑃𝑗
−|

𝑚𝑎𝑥{|𝑃𝑗
+−𝑃𝑗

−|}
∀𝑗

. 

Thus, the criterion that has on average a large 

difference between the values at different modes of 

operation will have a greater weight. 

Based on the results of the ranking (Figure 8) it 

can be seen that the equipment units, the state of 

which was classified as normative are at the top of the 

rating with some gap, which confirms the hypothesis 

about the divergence of equipment estimates, which 

are in normal and emergency modes. 

Figure 8: Ranking of wind turbine gearboxes by 
deterioration using TOPSIS method.

4 DISCUSSION 

Thus, we obtain several options for using the 

approach described in the article, related to the 

ranking of the same type of equipment by its technical 

condition to determine the maintenance priorities.  

Another way to use the results obtained can be to 

estimate the change in the condition of the equipment 

after maintenance or repair. In this way, it is possible 

to estimate the value of restored lifetime and on the 

basis of such statistics to solve the problem of 

selecting a service provider.  

The performance quality of the algorithm depends 

on the accuracy of the ranking, which in its turn 

depends on such parameters of the algorithm as the 

time period of equipment vibration measurement, the 

number of used signals/sensors, the type of the time 

window function used to build cross-spectrum. 

2https://openei.org/datasets/dataset/gearbox-fault-

diagnosis-data/resource/affa53da-cae6-42f2-b898-

ad018ff91641 
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The proposed algorithm provides the necessity of 

selecting the internal parameters such as the type of 

smoothing window, the size of the smoothing 

window, the size of the estimation time interval, 

which allows for each case to choose the solutions 

best suited by the morphological synthesis method 

(Table 1) and [29]. 

In the literature, tasks related to failure time 

prediction are most often considered. The application 

of the described approach made it possible to reduce 

the amount of information that contains information 

about the equipment condition. Thus, the 

dimensionality of the problem is reduced to one 

degree of freedom (DOF), which simplifies the task 

of selecting the estimation/descriptive data function 

or selecting the ML method for predicting failures 

[24], and also makes it possible to estimate the 

condition by an expert method. 

Experiments show that when using S-curve 

regression methods and machine learning methods, 

the algorithms, correctly, predict trends [30]. In the 

case of S-curves [31], the inflection point shows the 

transition from normative operation to non-normative 

operation (Figure 9), and when using ML algorithms, 

we predict the time of complete failure and shutdown 

of equipment unit (Table 2) [32]. 

Table 1: Example of a morphological table. 

Alternatives 

Parameter 1 2 3 4 … 

A) Smoothing window type for cross-

spectrum calculation

Daniell's 

Window 

Blackman-

Harris Window 

Hann and Hamming 

windows 

Kaiser-Bessel 

Window 
… 

B) Smoothing window size when

calculating the cross-spectrum
2 4 6 8 … 

C) Size of the time interval for the

evaluation of the equipment condition
1 min 2 min 3 min 4 min … 

a) b) 

c)       d) 

Figure 9: Results of S-curves for a) experiment 1_2, b) experiment 2_2, c) experiment 3_1, d) experiment 3_5. 
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Table 2: Comparison of real time to failure in estimation 
intervals with predicted one using models trained by 

ElasticNet, Ridge, and Lasso methods for experiment 2_2.  

Real number 

of evaluation 

intervals to 

failure 

Predicted value 

ElasticNet Ridge Lasso 

140 90.278476 89.387534 88.718160 

130 91.299122 90.818057 90.454385 

120 91.353579 90.635841 90.125312 

110 84.615569 86.434416 83.321456 

100 73.156105 73.173403 72.412751 

90 68.560701 68.295393 67.208324 

80 67.148999 65.342441 66.392584 

70 51.773237 53.533065 53.360640 

60 53.740850 50.701370 51.854554 

50 47.007266 47.528948 50.048620 

40 43.904362 42.878614 45.834927 

30 39.439278 40.118334 42.781805 

20 36.810094 37.415678 41.023638 

10 34.584381 35.482358 39.560329 

Even though the conducted experiments show that 
it is possible to refuse from using all the data collected 
from the sensors, the accuracy of the algorithms is not 
high, which indicates the need for additional 
adjustment associated with the choice of algorithm 
parameters (see Table 1) and additional research 
associated with the choice of data description method 
and/or machine learning method that gives the best 
results in each specific case [5]. 

5 CONCLUSIONS 

The article presented the research related to the 
identification of the equipment condition based on 
vibration signals through vibration diagnostics signal 
analysis, namely: 1) developed a model of equipment 
condition identification, distinguished by the use of 
periodograms of signals coming from vibration 
sensors; 2) developed a method of equipment 
condition estimation, distinguished by the use of 
multi-parameter ranking of equipment condition. 
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