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The expenses on computational resources for modern Deep Learning computing can be extremely large. How-
ever, most of them are spent on the chassis and not on the GPU units themselves. Since modern mass market 
graphic cards are usually chipper and have huge performance for video games, it was hypothesized, that a low 
cost cluster, made of several graphic cards, can reach the same performance for computational tasks as ready-
made enterprise GPU-server with significantly lower p rice. The concept of distributed GPU cluster based on 
mass market GPU units is presented in the article. During the experiments, performance of a cluster with two 
mass market GPU units was compared with performance of enterprise GPU-server with 8 GPU-units on the 
Deep Learning bench mark. The results shows benefits and limitations of use proposed distributed c luster. It 
describes cases, when this solution is up to 7 times more effective than enterprise one in terms of cost savings 
for chassis itself as well as for, additional equipment and maintenance.

1 INTRODUCTION

The rapid development of GPU-accelerated comput-
ing systems makes Deep Learning (DL) algorithms
the most powerful Machine Learning solutions. At
the same time, DL models require complex and ex-
pensive enterprise-level High-Performance Comput-
ing (HPC) hardware for training. They require ad-
ditional equipment for operating such as racks, air
conditioning, power supply systems, etc. Moreover,
these solutions require high-qualified personnel. Fi-
nally, enterprise GPU units are generally more expen-
sive than usual servers.

In opposite, mass-market graphic cards do not re-
quire special conditions and maintenance to operate.
Modern ones are good enough to perform DL compu-
tational tasks. Therefore, potentially, if several mass-
market GPU modules are incorporated together in a
single cluster, then the overall cluster’s performance
will be the same as for the enterprise solution but with
a lower price. This may be useful if there is a need
to create a GPU-accelerated computing cluster that is
simple to use and does not require special conditions
to operate.

It is possible to create a computing cluster of mul-
tiple single nodes using technologies like RDMA [1],
MPI [2], and NCCL [3]. Furthermore, the frame-

works like Horovod [4, 5] provide a simple interface
to their technologies for deep learning tasks.

This work aims to confirm the hypothesis that it is
possible to create a cost-effective cluster of multiple
mass-market GPU nodes with a higher performance
than an enterprise solution has.

It is necessary to perform the following tasks to
reach the goal:
 to prepare the testbeds for mass-market and enter-

prise solutions;
 to provide performance measurements on both

testbeds;
 to analyze and conclude the results of the perfor-

mance measurements.

lows: Section 2 describes the hardware and software 
equipment of the current work. Section 3 presents the 
results of the performance measurements of experi-
ments. Finally, Section 4 discusses the results, fol-
lowed by the conclusion in Section 5.

2 EXPERIMENTAL SETUP

The experiments were carried out on two testbeds: 
Single-Chassis GPU Infrastructure and PC Cluster-

The remainder of this paper is structured as fol-
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Based GPU Infrastructure with the same software 
components.

2.1 Hardware Setup

2.1.1 Single-Chassis GPU Infrastructure

The enterprise-level solution for AI and Deep Learn-
ing data centers is represented by the Supermicro 
SYS-4029GP-TVRT server that has eight Tesla V100 
GPUs. The system is shown in the Figure 1. In 
the current work, this testbed is named as Single-
Chassis GPU Infrastructure. The server supports 
Nvidia’s Volta V100 SXM2 form factor GPUs that 
benefit from Nvidia’s NVLINK architecture to deliver 
GPU to CPU data rates of up to 300GB/s compared 
to using PCIe based GPUs which offer only up to 
32GB/s data rates. GPUDirect Remote Direct Mem-
ory Access (RDMA) technology allows direct peer-
to-peer (P2P) data exchanges between other devices 
in the network, bypassing the CPU and reducing GPU 
to GPU latency.

Figure 1: Supermicro SYS-4029GP-TVRT.

The detailed configuration of the Single Chassis
GPU Infrastructure testbed is provided in the Table 1.

Table 1: Single-Chassis GPU Infrastructure Configuration.
System Type Supermicro SYS-4029GP-TVRT

CPU 2x Inel Xeon Platinum 8268, 24-Core, 2.9 GHz, HT, 35,75MB
Cache

Motherboard Dual Socket P (LGA 3647) intel Xeon Scalable, X11DGO-T
Chipset Intel C621, UPI upt to 10.4 GT/sec

GPU 8x Nvidia Tesla V100, 32 GB CoWoS HBM2, SXM2 - NVLink
2.0, CUDA Cores: 5120, Core Clock: 1455 MHz, FP32 Com-
puting Performance: 15.0 TF, Memory Bandwidth: 900 GB/s,
Memory Type: 4096-bit 16 GB HBM2, GPU: GV100 (Volta),

RAM 24x 64 GB DDR4, PC2933, ECC registered
Price 112,000 C (2020)

2.1.2 PC-Cluster Based GPU Infrastructure

The PC-based testbed consists of two nodes. Each 
node is composed of a small-form-factor computer In-
tel NUCs Ghost Canyon 9 Extreame (Figure 2) with 
Intel-i7 CPU and an external GPU module Aorus 
gaming Box RTX 3090 (Figure 3) connected to the 
computer via Thunderbolt 3 (TB3).

Figure 2: Intel Ghost Canyon 9 Extreme PC.

Since a NUC 9 computer has an additional PCIe3 
16x slot, it is equipped with Mellanox ConnectX-5 
100G NIC for high-bandwidth and low-latency net-
work communication that is a crucial part of dis-
tributed computing.

Figure 3: Aorus Gaming Box RTX 3090 eGPU.

The scheme of PC Cluster Based GPU Infrastruc-
ture setup is shown in the Figure 4. The NUC com-
puters, each equipped with Mellanox 100G network 
adapter (NIC), connect to their respective external 
GPU modules via TB3 at the speed up to 40Gbps. In 
this work the NUCs’ network adapters are connected 
via 100G network switch. However it is possible to 
connect them directly in point-to-point manner.
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Figure 4: PC-Cluster Based GPU Infrastructure Setup.

The detailed configuration of PC-Cluster Based
GPU Infrastructure is provided in the Table 2.

Table 2: PC-Cluster Based GPU Infrastructure Configura-
tion.

PC Model NUC 9 Extreme Ghost Canyon [6, 7]
CPU i7-9750H

Motherboard Dual Socket P (LGA 3647) intel Xeon Scalable, X11DGO-T
Chipset Intel C621, UPI upt to 10.4 GT/sec
eGPU Aorus Gaming Box RTX 3090
RAM 16 GB DDR4
NIC Mellanox ConnectX-5, 2x100GbE, QSFP28 [8]

100G Switch Extreme Networks x870-32c
Price for a node 3,900 C (2021)

Price for a switch 27,000 C (2020)

2.2 Software Setup

All tests were performed with the same software set 
for both PC Cluster-Based GPU Infrastructure and 
Single Chassis GPU Infrastructure testbeds.

The computers are equipped with Ubuntu 20.04 
operating system with 5.4.0.97-lowlatency kernel. 
Low latency kernel contains optimizations, such as 
Preempt-RT, to achieve the lowest possible latency for 
applications.

Since the network is the bottleneck that signifi-
cantly affects the scaling factor [9], the operating sys-
tem’s TCP stack was tuned to achieve the bandwidth 
closest to 100 Gbps with the following configuration:

net.core.rmem_max = 16777216
net.core.wmem_max = 16777216
net.core.rmem_default = 16777216
net.core.wmem_default = 16777216
net.ipv4.tcp_rmem = 4096 87380 16777216 
net.ipv4.tcp_wmem = 4096 87380 16777216 
net.ipv4.tcp_mem = 1638400 1638400 1638400 
net.ipv4.tcp_sack = 0

net.ipv4.tcp_dsack = 0
net.ipv4.tcp_fack = 0
net.ipv4.tcp_slow_start_after_idle = 0
jumbo_frames=yes (default no)

In this work, Horovod [4] is used as a distributed
learning framework. Horovod supports the Remote
Direct Memory Access (RDMA) technology [1] im-
proves its efficiency. RDMA provides access to the
memory from one computer to the memory of another
computer without involving either computer’s operat-
ing system. This technology enables high-throughput
and low-latency networking with low CPU utiliza-
tion. The Mellanox ConnectX-5 NICs of the NUCs
were configured with mlnx-en-5.5-1.0.3.2 driver
and MLNX OFED version 4.9-4.1.7.0. These NICs
make use of RDMA over Converged Ethernet (RoCE)
- a network protocol that enables remote direct mem-
ory access (RDMA) over Ethernet.

The network performance was tested using qperf
[10] tool with the following result for TCP:
# qperf nuc2.lab tcp_bw tcp_lat
tcp_bw:

bw = 6.6 GB/sec (52.8 Gbps)
tcp_lat:

latency = 8.6 us

And for RDMA over Converged Ethernet:
# qperf -cm1 nuc2.lab rc_bw rc_lat
rc_bw:

bw = 12.2 GB/sec (97.6 Gbps)
rc_lat:

latency = 5.3 us

This network configuration meets the Horovod [5]
requirements. Horovod is a distributed deep learning
training framework for TensorFlow, Keras, PyTorch,
and Apache MXNet. The goal of Horovod is to make
distributed deep learning fast and easy to use. The
Horovod version 0.22.1 deployed on both NUCs as a
Docker [11] container provided by developers. It is
configured with the following components: Tensor-
Flow [12], PyTorch, MXNet, MPI, Gloo, NCCL, and
CUDA 11.0.

Tensorflow 2.4 [12] is the framework to help de-
velop and run DL-based solutions and is used to es-
timate the performance of distributed learning. Ten-
sorFlow is one of the most popular machine learning
frameworks, and it has been used in a wide variety of
applications and to conduct AI research.

3 EXPERIMENTAL RESULTS

The performance measurement experiments were
provided using Horovod-adopted Tesnsorflow2 syn-
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thetic benchmark with ResNet101 model and batch
size 64. The estimated metric is Images/sec provided
by the Tensorflow2 benchmark. Each run was per-
formed 10 times for each number of GPUs.

Figure 5 shows the performance of the Single-
Chassis GPU setup with 8 Tesla V100 GPUs.

Figure 5: Multi-GPU scaling performance of Single Chassis
GPU infrastructure using TensorFlow. The ideal value is
the value of a single GPU performance multiplied by the
corresponding number of GPUs.

As can be seen, the performance of scaling effi-
ciency drops with each additional GPU. Whereas two
parallel GPUs lose only 5 % of the ideal performance,
the eight GPUs lose 22 %.

Figure 6 shows the performance of PC Cluster-
Based GPU setup with two RTX 3090 GPUs.

Figure 6: A comparison of the images processed per sec-
ond by Horovod framework over plain 100GbE TCP and
100GbE RoCE-capable networking.

In this case, the drop of performance scaling

efficiency is significantly higher than in the previ-
ous experiment. Two GPUs communicated via TCP
stack lose 21% of ideal performance. RDMA brings
slightly better results, the difference between the ideal
value and the actual one is 10%. Nevertheless, the
performance of two GPUs in absolute values in the
PC Cluster-Based GPU testbed is comparable to the
four GPUs in the Single Chassis testbed.

4 THE DISCUSSION OF THE
RESULTS

There is a significant difference between the test sce-
narios in the number of parallel nodes, which makes
the comparison quite challenging. Fortunately, there
is a method that estimates the performance of scal-
able computing systems. The Universal Scalability
Law [13] (USL) is an extension of Amdahl’s Law that
corrects the performance concerning communication
latency between nodes. The USL is given by the (1).

S(n) =
γn

1+α(n−1)+β(n2 −n)
(1)

The coefficient γ represents the slope associated
with linear-rising scalability in the case of ideal par-
allelism, α defines the serial coefficient, and β repre-
sents additional delays (see Figure 7).

Figure 7: The result of fitting the measured data to the USL
formula.

Using the Universal Scalability Law (USL) fit
technique described in [14] the following parameters
for the equation 1 were obtained: α = 0.04, β = 0,
γ = 0.97.

In order to evaluate the performance of the PC-
Cluster Based GPU Infrastructure testbed the only pa-
rameter of additional delay was variated to fit the first
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two points. The result of estimation is shown in the
Figure 8.

Figure 8: The dependency of speedup coefficient o n the 
number of GPUs. The colored frame is an ideal speedup 
value. The stroked column is an extrapolated value of the 
speedup coefficient.

With known speedup coefficients it is possible to 
estimate the absolute performance of the PC-based 
setup. The result of estimation is shown in the Fi-
gure 9.

Figure 9: The dependency plot of learning performance on
the number of GPUs. The colored frame is an ideal perfor-
mance value. The stroked column is an extrapolated value
of the performance.

Relying on the estimation it is possible to con-

clude that PC-Cluster Based GPU Infrastructure
testbed consisting of five nodes orchestrated by
Horovod and communicated via RoCE protocol can
surpass the Single Chassis setup in terms of the num-
ber of processed images/sec.

5 CONCLUSIONS

The experimental results clearly show that the dis-
tributed setup with only two GPUs provides half of
the performance of the modern and professional solu-
tion that costs ca. 14 times higher. However, the scal-
ability of PC-based solutions is limited. The estima-
tion shows that the performance of PC Cluster-Based
solution with 5 GPUs can surpass Single-Chassis,
though, the following scaling is unreasonable. In this
case, the cost-efficiency drops significantly, since the
setup with more than two GPUs requires a 100G net-
work switch. Here the estimated cost win is supposed
to be 2.5 times.

Pros and cons of PC-based Cluster infrastructure:

+ The results show that the PC Cluster-Based solu-
tion is very cost-efficient within the defined limits.

+ The system is easily upgradable.

+ Flexibility is one of the main advantages of this
setup. The PC-based setup can be assembled any
time in many ways. It also might be distributed
from a location perspective. Since the setup is
as compact as a usual desktop, the nodes can be
distributed across working tables, offices, or even
building, if the optical network infrastructure al-
lows it.

+ This is a multi-purpose solution. Since each node
is basically a usual PC, with the corresponding pe-
riphery interfaces (USBs, HDMI, Ethernet, etc), it
might be used as an office workstation during the
day, and as a node of the cluster the rest of the
time.

+ Each node or even element of the node (PC, NIC,
eGPU) can be easily changed in case of malfunc-
tioning. Also, in the event of an overcurrent in a
nodal element, this highly likely will not lead to a
malfunction of the node or the entire system.

- The scaling factor drops with the little number of
nodes. As it was shown, in this particular case,
after five nodes the scaling is meaningless.

- The system is limited in distributed computational
tasks. It is necessary to use special frameworks
which are able to distribute desired tasks across
the nodes.
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