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Industrial network communication requirements are changing within Industry 4.0. Current static industrial 
networks will require flexibility and need on demand s tream reservation with real-time c apabilities. Time-
sensitive Networking (TSN) offers real-time communication for Ethernet while also providing a mechanism 
to dynamically request streams (IEEE 802.1Qcc). The standard does not provide concrete specifications for 
the implementation. This paper evaluates the OpenFlow protocol known from Software-Defined Networking 
(SDN) for network management in TSN-networks. Requirements for a centralized TSN-controller were identi-
fied and OpenFlow has been evaluated if it can fulfill these requirements. An architecture for a TSN-controller 
has been presented. A proof-of-concept has been implemented and evaluated.

1 INTRODUCTION

Future production facilities are changing within In-
dustry 4.0. New needs emerge for self configura-
tion of network devices. This flexibility allows de-
vices to request their own communication streams.
Furthermore, networks have to react on changed
configuration while monitoring its health e.g. link
failures. These features are not new but getting
more demanded when including control and field
levels. Current Ethernet-based real-time solutions
are often incompatible to standard Ethernet [1] and
are also proprietary. As an open standards solu-
tion, Time-Sensitive Networking (TSN) guarantees
”packet transport with bounded latency, low packet
delay variation, and low packet loss” [2] in IEEE 802
networks. The IEEE 802.1Qcc standard [3] specifies
on demand TSN stream reservation which is visual-
ized in Figure 1. In combination with the machine
to machine communication protocol OPC Unified Ar-
chitecture (OPC UA), a standard for OPC UA over
TSN [4] is currently in standardization. Within the
OPC UA PubSub [5] architecture, a centralized com-
munication broker handles the registration of TSN-
streams for all communication partners.

The IEEE 802.1Qcc standard does not pro-
vide concrete specifications regarding implementa-
tion which raises questions for the selection of a
User/Network Interface (UNI) protocol for user re-

quests, algorithms for schedule calculation and the se-
lection for a protocol for deploying configurations.

This paper proposes the OpenFlow [6] protocol 
for the configuration d e ployment. OpenFlow is com-
monly used for Software-Defined N e tworks [ 7 ] and 
already offers a high degree of flexibility. B  ased on 
a requirements analysis, an architecture is presented 
which integrates OpenFlow in the context of TSN. A 
working prototype has been implemented using an ex-
isting open source SDN-controller in accordance with 
IEEE 802.1Qcc.

This paper is structured as follows. First, the ba-
sics of TSN and SDN are presented. Section 3 dis-
cusses related work. In Section 4 features and re-
quirements for the in Section 5 presented architecture 
are described. A proof-of-concept implementation, a 
testbed and an evaluation is presented in Section 6. 
Finally, Section 7 concludes and presents future work.

2 BASICS

This chapter gives an overview of the basic functions 
of TSN. A more detailed view of the IEEE 802.1Qcc 
standard is given. Later, information about SDN and 
the OpenFlow protocol are provided.

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020 

7 



Data-Plane

Control-Plane

TSN Bridge

TSN Bridge

TSN Bridge

Application
ApplicationTSN Listener 

End-Point

Application
ApplicationTSN Talker 

End-Point

Centralized User
Configuration (CUC)

Centralized Network
Configuration (CNC)

Use
r-o

nly
 pr

oto
co

l

Management protocol

Unified Network Interface

User-only protocol

Figure 1: IEEE 802.1Qcc - Fully centralized model.

2.1 TSN Basics

TSN aims on deterministic communication in 802 
networks. A bounded latency is achieved by the use 
of time-slots for network devices (IEEE 802.1Qbv 
- Enhancements for Scheduled Traffic [8]).
Traffic is divided into traffic classes (TC) and
assigned to time-slots with cyclical repetition. A
configuration is specified in a Gate Control List
(GCL). It defines the opening and closing of gates
of queues based on the current time. An end-to-end
connection in TSN is called a stream. It can for
example be identified by the MAC address, IP
address or the transport proto-col port. All devices
on a TSN-stream path have to be configured properly
to transfer frames of a TC. This requires a network-
wide precise time-synchronization (IEEE 802.1AS-
Rev - Timing and Synchronization for Time-
Sensitive Applications [9]). This standard specifies
the use of the Precision Time Protocol (PTP) in the
context of TSN. Furthermore TSN provides a
standard for reliability (IEEE 802.1CB - Frame Repli-
cation and Elimination for Reliability [10]), where
frames are replicated to be transferred over multi-
ple paths while the duplicated packet is eliminated
later. Another standard provides frame preemption
(IEEE 802.1Qbu - Frame Preemption [11]), where
time-critical frames can suspend the transmission of
a non-time-critical frame which will be resumed later.

2.2 Dynamic Stream Reservation

TSN also introduces on demand stream reservation 
for deterministic streams. An interface for stream 
requests, a module for schedule calculation for all 
network devices and the deployment of the con-
figurations are addressed (IEEE 802.1Qcc - Stream

Reservation Protocol (SRP) Enhancements and Per-
formance Improvements).

The standard defines t hree d i fferent architectural 
models for the realization.

1) Fully distributed model: In a decentralized
manner without any centralized configuration enti-
ties, applications can request their streams directly 
over the network by propagating the request along the 
topology using an UNI protocol. Each bridge on a 
path configures i t self w i th t h e r e quirement informa-
tion given in the request within their limited knowl-
edge of the network.

2) Centralized network/distributed user model:
Due to the computational complexity which raises 
with the amount of devices and streams, a central-
ized entity, called Centralized Network Configuration 
(CNC), is introduced. The CNC has global knowl-
edge over all streams and devices in a network. Sim-
ilar to the fully distributed model, stream requests are 
send directly over the UNI. The first bridge directs the 
request to the CNC which configures t he b ridges af-
ter finishing the computation and the generation of the 
bridges GCLs.

3) Fully centralized model: For more complex
use cases, where the talkers and listeners have to 
be configured too, a Centralized User Configuration 
(CUC) is introduced as visualized in Figure 1. It dis-
covers end stations and their capabilities, handles ap-
plication requirements and configures TSN features in 
the end stations. The CUC forwards the stream infor-
mation to the CNC using the UNI.

2.3 Software-Defined Networking

Software-Defined Networking (SDN) decouples the 
data-plane from the control-plane which are con-
ventionally located in the same devices like in
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switches and routers. The control-plane defines how 
frames/packets are forwarded in a devices specific 
forwarding table, called flow table. In an SDN-
domain, all SDN-switches are connected to a logi-
cally centralized SDN-controller. Forwarding rules 
are specified in the application-plane where applica-
tions for different purposes decide how to route the 
traffic. An application can be a shortest path rout-
ing application or a firewall. Communication between 
the SDN-switches and the SDN-controller takes place 
over the southbound interface. Here, the OpenFlow 
[6] protocol is dominant and usually supported by all
SDN-switches.

3 RELATED WORK

An approach to combine TSN and SDN was first men-
tioned by Nayak et al. [12]. Their work, called Time-
Sensitive Software-Defined N etworking, f ocused on 
the calculation of schedules using Integer Linear Pro-
gramming (ILP). Dürkop et al. presented an approach 
for the automatic configuration o f r eal-time Ether-
net (RTE) solutions [13]. Their approach was based 
on Dynamic Host Configuration P rotocol (DHCP). 
Du and Herlich et al. also proposed the usage of 
SDN for the network management in RTE [14, 15]. 
Their proof-of-concept implementation is based on 
the Powerlink protocol [16]. This RTE implementa-
tion works with off-the-shelf switches. Changes on 
the data-plane are not required. The Powerlink proto-
col uses a special token to provide deterministic me-
dia access. The Powerlink protocol used by Du and 
Herlich et al. uses different concepts compared to 
IEEE 802.1 TSN. This paper proposes OpenFlow as 
a network management protocol for TSN-networks.

4 REQUIREMENTS

This Chapter describes requirements for a TSN-
controller. Based on these, OpenFlow is evaluated. 
Additional features which OpenFlow can not provide 
are described.

The following requirements were identified for the 
TSN-controller which includes the CUC and CNC.

 Topology detection: The controller needs to be
able to detect the topology of the bridges associ-
ated.

 Host detection: The controller needs to detect
each talker and listener in its TSN-network.

 Time-synchronization: TSN-bridges, talkers,
listeners and the controller need a common time-

base (IEEE 802.1As-rev) for the use of IEEE
802.1Qbv.

 Time-Aware Shaper: The GCL of each TSN-
bridge needs to be calculated and configured.

 Traffic Classes: The controller needs to assign
Ethernet frames to a queue of the time-aware
shaper.

 Ingress/Egress Policing and Metering: The
controller requires a mechanism to assure that
each TSN-stream adheres to the amount of band-
width it requested.

 UNI for Talkers/Listeners: The controller needs
to provide a user/network interface (UNI) which
offers the ability to request TSN-streams.

Table 1 verifies, if the requirements for the TSN- 
controller can be fulfilled with the OpenFlow proto-
col.

OpenFlow does not provide management func-
tionalities for time-aware shapers and also does 
not provide time-synchronization. For the time-
synchronization an additional protocol like Precision 
Time Protocol (PTP) [17], which is a master/slave 
protocol, has to be used. The management of the 
time-aware shapers can either be implemented as 
a protocol extension of the OpenFlow protocol in 
the form of experimenter messages or by the use 
of existing configuration p rotocols l ike NETCONF 
[18]. The UNI for the stream request can be imple-
mented as an extension of the controller. Besides 
the control-plane, data-plane devices need to sup-
port time-synchronization (e.g. PTP) and time-aware 
shapers.

5 ARCHITECTURE

This chapter presents an architecture for a TSN-
controller based on the requirements presented in 
Chapter 4. The architecture is shown in Figure 2. On 
the top, it shows the TSN-controller while at the bot-
tom, the functions for a compatible TSN-bridge are 
shown. Both will further be described.

5.1 TSN-Controller

First of all, the TSN-controller is separated by the 
CUC and the CNC. The CUC constists of an End-
point Request Handler to provide an UNI which is 
compatible to IEEE 802.1Qcc [3]. It can be imple-
mented as a REST API. Requests are forwarded from 
the CUC to the CNC. The Path Control and Reser-
vation module has global knowledge about the net-
work and finds p aths t hrough t he n etwork w hile re-
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TSN-Controller Functions OpenFlow
Topology detection OpenFlow networks use LLDP to detect available links.
Host detection In OpenFlow networks, the controller detects new hosts with the

ARP protocol. Each ARP frame received by an OpenFlow-switch
is copied and forwarded to the controller.

Time-synchronization OpenFlow does not provide mechanisms for time-synchronization.
Time-Aware Shaper OpenFlow provides credit-based shaping to reserve bandwidth for a

specific traffic class. There are currently no time-based shapers in the
OpenFlow specification.

Traffic Classes OpenFlow provides an enqueue action which can be used to assign an
Ethernet frame to a queue. These queues can be used to implement
traffic classes.

Ingress/Egress Policing and Metering OpenFlow provides ingress and egress metering.
UNI for Talkers/Listeners OpenFlow does not provide an UNI.

Table 1: OpenFlow protocol feature evaluation for TSN network management.

Figure 2: Architecture of the TSN-controller.

specting the TSN-bridges utilization. In the 
Sched-ule Configuration module, a configuration 
(GCL) for each device on a path is calculated. This 
process has a very high algorithmic complexity and a 
lot of research is taking place in this area [19, 20]. 
The configura-tion has to be represented in a 
format which can be applied by the TSN-bridges. 
Here, the YANG Data Model is used which is 
transferred using the NET-CONF protocol. For 
the Time-Synchronization, the TSN-controller 
needs to be part of a PTP-domain.

Logically, the master clock should be located in the 
controller. The OpenFlow Provider is used to config-
ure the forwarding behaviour of the TSN-bridges.

5.2 TSN-Bridge

First of all, TSN-bridges need to support a Traffic 
Scheduler resp. IEEE 802.1Qbv. For proper function-
ing of the Traffic Scheduler, the TSN-bridge is timely 
synchronized. The Stream Filtering and Policing 
module takes care, that TSN-streams do not exceed 
their requested resources. The TSN-bridge needs to 
be compatible with a YANG Data Model to offer flexi-
ble reconfiguration. Over the OpenFlow Provider, the 
TSN-bridge is able to be configured w i th t he Open-
Flow protocol. Forwarding behaviour is located in the 
Flow Table.

6 IMPLEMENTATION AND
EVALUATION

This chapter describes a proof-of-concept implemen-
tation based on the architecture presented in 
Chapter 5. Later the proof-of-concept will be 
evaluated.

6.1 Implementation

The proof-of-concept implementation is based on 
the open-source SDN-controller Ryu [21] written in 
Python. The data-plane consists of two TSN-bridges 
(Trustnode) from the company Innoroute which al-
ready support IEEE 802.1Qbv, PTP, Netconf and 
OpenFlow. The Openflow implementation on the 
bridges is based on Open vSwitch [22]. The talker 
uses an Intel i210 network card and a kernel extension
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Figure 3: Architecture of the TSN test-bed.

Two aspects of the system have been evaluated. 
The function and performance of the time-aware 
shaper and the overall set-up time of a TSN-stream. 
To test the time-aware shaper, two streams have been 
requested using two different traffic classes. TC 1 has 
a time-slot length of 7 ms and TC 2 has a time-slot 
length of 3 ms resulting in a total cycle length of 10 
ms. The talker generates frames at a rate of 100 µs 
(10 frames per ms) for both TC. Figure 4 shows the 
arrival of the packets on the listener site. The packets 
are distributed according to their specified time-slots. 
Once a time-slot starts, all buffered frames, which ar-
rived outside of their time-slot, are sent.
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Figure 4: IEEE 802.1Qbv scheduled traffic - 10ms cycle 
time, 2 traffic classes (7ms and 3ms).

The second measured aspect was the set-up time 
of the UNI. Here, the talker requests 1 stream every 
second. Each stream is removed before the next one

is created. The UNI protocol request response time, 
the time between request and response, is measured 
using Wireshark. For 1000 requests an average set-up 
time of 3.176 ms with a standard deviation of 1.031 
ms has been measured.

The results show, that existing software which is 
originally developed for SDN can be easily extended 
to support TSN. It also shows, that TSN-streams can 
be requested within a few milliseconds. It has to be 
noted, that the calculation for the schedule is simpli-
fied in this proof-of-concept implementation.

7 CONCLUSION

This paper evaluated the use of OpenFlow for an 
implementation of a TSN-controller with respect to 
IEEE 802.1Qcc. Requirements for a TSN-controller 
have been identified, a nd v erified if Op enFlow can 
fulfill t hese r equirements. P otential e xtensions and 
companion protocols have been discussed and an ar-
chitecture for a TSN-controller has been presented. 
Later, a proof-of-concept has been implemented with 
real hardware. The implementation has been evalu-
ated while achieving an average set-up time of 3.176 
ms.

OpenFlow itself is only able to partly fulfill the re-
quirements identified. More protocols are needed for 
a full-featured TSN-controller. The proof-of-concept 
shows the feasibility of dynamic TSN-stream regis-
trations.

In the future more TSN standards like frame 
preemption have to be investigated and added to 
the architecture presented in this paper. OpenFlow 
should also be considered for the realization of IEEE 
802.1CB (Frame Replication and Elimination for Re-
liability). OpenFlow allows the duplication of frames 
and the forwarding on multiple output ports.
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to support time stamped packet transmission for 
TSN-traffic [23]. Except the TSN-briges, all system 
are based on Ubuntu 18.04 using an Intel Core 
i7-6700 CPU and 16GB RAM. Every module from 
Figure 2 is implemented separately. The schedule 
calculation is simplified due to the complexity of this 
module. For the CUC interface, the existing REST 
API from the Ryu controller has been extended.

6.2 Evaluation

To evaluate the proof-of-concept implementation, a 
test-bed has been set-up as visualized in Figure 3.

TSN-Control
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