
Dynamic Real-Time Stream Reservation for IEEE 802.1 Time-Sensitive
Networks with OpenFlow

Preparation of Camera-Ready Contributions to ICAIIT Proceedings

Martin Böhm, Jannis Ohms, Manish Kumar, Olaf Gebauer and Diederich Wermser
Research Group Communication Systems, Ostfalia University, Salzdahlumer Str. 46/48, D-38302 Wolfenbüttel

{ma.boehm, jannis.ohms2, m.kumar, ola.gebauer, d.wermser}@ostfalia.de

Keywords:

Abstract:

Time-Sensitive Networking, Software-Defined Networking, Network Management, Industry 4.0.

Industrial network communication requirements are changing within Industry 4.0. Current static industrial
networks will require flexibility and need on demand s tream reservation with real-time c apabilities. Time-
sensitive Networking (TSN) offers real-time communication for Ethernet while also providing a mechanism
to dynamically request streams (IEEE 802.1Qcc). The standard does not provide concrete specifications for
the implementation. This paper evaluates the OpenFlow protocol known from Software-Defined Networking
(SDN) for network management in TSN-networks. Requirements for a centralized TSN-controller were identi-
fied and OpenFlow has been evaluated if it can fulfill these requirements. An architecture for a TSN-controller
has been presented. A proof-of-concept has been implemented and evaluated.

1 INTRODUCTION

Future production facilities are changing within In-
dustry 4.0. New needs emerge for self configura-
tion of network devices. This flexibility allows de-
vices to request their own communication streams.
Furthermore, networks have to react on changed
configuration while monitoring its health e.g. link
failures. These features are not new but getting
more demanded when including control and field
levels. Current Ethernet-based real-time solutions
are often incompatible to standard Ethernet [1] and
are also proprietary. As an open standards solu-
tion, Time-Sensitive Networking (TSN) guarantees
”packet transport with bounded latency, low packet
delay variation, and low packet loss” [2] in IEEE 802
networks. The IEEE 802.1Qcc standard [3] specifies
on demand TSN stream reservation which is visual-
ized in Figure 1. In combination with the machine
to machine communication protocol OPC Unified Ar-
chitecture (OPC UA), a standard for OPC UA over
TSN [4] is currently in standardization. Within the
OPC UA PubSub [5] architecture, a centralized com-
munication broker handles the registration of TSN-
streams for all communication partners.

The IEEE 802.1Qcc standard does not pro-
vide concrete specifications regarding implementa-
tion which raises questions for the selection of a
User/Network Interface (UNI) protocol for user re-

quests, algorithms for schedule calculation and the se-
lection for a protocol for deploying configurations.

This paper proposes the OpenFlow [6] protocol
for the configuration d e ployment. OpenFlow is com-
monly used for Software-Defined N e tworks [7] and
already offers a high degree of flexibility. B ased on
a requirements analysis, an architecture is presented
which integrates OpenFlow in the context of TSN. A
working prototype has been implemented using an ex-
isting open source SDN-controller in accordance with
IEEE 802.1Qcc.

This paper is structured as follows. First, the ba-
sics of TSN and SDN are presented. Section 3 dis-
cusses related work. In Section 4 features and re-
quirements for the in Section 5 presented architecture
are described. A proof-of-concept implementation, a
testbed and an evaluation is presented in Section 6.
Finally, Section 7 concludes and presents future work.

2 BASICS

This chapter gives an overview of the basic functions
of TSN. A more detailed view of the IEEE 802.1Qcc
standard is given. Later, information about SDN and
the OpenFlow protocol are provided.

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

7

Data-Plane

Control-Plane

TSN Bridge

TSN Bridge

TSN Bridge

Application
ApplicationTSN Listener

End-Point

Application
ApplicationTSN Talker

End-Point

Centralized User
Configuration (CUC)

Centralized Network
Configuration (CNC)

Use
r-o

nly
 pr

oto
co

l

Management protocol

Unified Network Interface

User-only protocol

Figure 1: IEEE 802.1Qcc - Fully centralized model.

2.1 TSN Basics

TSN aims on deterministic communication in 802
networks. A bounded latency is achieved by the use
of time-slots for network devices (IEEE 802.1Qbv
- Enhancements for Scheduled Traffic [8]).
Traffic is divided into traffic classes (TC) and
assigned to time-slots with cyclical repetition. A
configuration is specified in a Gate Control List
(GCL). It defines the opening and closing of gates
of queues based on the current time. An end-to-end
connection in TSN is called a stream. It can for
example be identified by the MAC address, IP
address or the transport proto-col port. All devices
on a TSN-stream path have to be configured properly
to transfer frames of a TC. This requires a network-
wide precise time-synchronization (IEEE 802.1AS-
Rev - Timing and Synchronization for Time-
Sensitive Applications [9]). This standard specifies
the use of the Precision Time Protocol (PTP) in the
context of TSN. Furthermore TSN provides a
standard for reliability (IEEE 802.1CB - Frame Repli-
cation and Elimination for Reliability [10]), where
frames are replicated to be transferred over multi-
ple paths while the duplicated packet is eliminated
later. Another standard provides frame preemption
(IEEE 802.1Qbu - Frame Preemption [11]), where
time-critical frames can suspend the transmission of
a non-time-critical frame which will be resumed later.

2.2 Dynamic Stream Reservation

TSN also introduces on demand stream reservation
for deterministic streams. An interface for stream
requests, a module for schedule calculation for all
network devices and the deployment of the con-
figurations are addressed (IEEE 802.1Qcc - Stream

Reservation Protocol (SRP) Enhancements and Per-
formance Improvements).

The standard defines t hree d i fferent architectural
models for the realization.

1) Fully distributed model: In a decentralized
manner without any centralized configuration enti-
ties, applications can request their streams directly
over the network by propagating the request along the
topology using an UNI protocol. Each bridge on a
path configures i t self w i th t h e r e quirement informa-
tion given in the request within their limited knowl-
edge of the network.

2) Centralized network/distributed user model:
Due to the computational complexity which raises
with the amount of devices and streams, a central-
ized entity, called Centralized Network Configuration
(CNC), is introduced. The CNC has global knowl-
edge over all streams and devices in a network. Sim-
ilar to the fully distributed model, stream requests are
send directly over the UNI. The first bridge directs the
request to the CNC which configures t he b ridges af-
ter finishing the computation and the generation of the
bridges GCLs.

3) Fully centralized model: For more complex
use cases, where the talkers and listeners have to
be configured too, a Centralized User Configuration
(CUC) is introduced as visualized in Figure 1. It dis-
covers end stations and their capabilities, handles ap-
plication requirements and configures TSN features in
the end stations. The CUC forwards the stream infor-
mation to the CNC using the UNI.

2.3 Software-Defined Networking

Software-Defined Networking (SDN) decouples the
data-plane from the control-plane which are con-
ventionally located in the same devices like in

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

8

switches and routers. The control-plane defines how
frames/packets are forwarded in a devices specific
forwarding table, called flow table. In an SDN-
domain, all SDN-switches are connected to a logi-
cally centralized SDN-controller. Forwarding rules
are specified in the application-plane where applica-
tions for different purposes decide how to route the
traffic. An application can be a shortest path rout-
ing application or a firewall. Communication between
the SDN-switches and the SDN-controller takes place
over the southbound interface. Here, the OpenFlow
[6] protocol is dominant and usually supported by all
SDN-switches.

3 RELATED WORK

An approach to combine TSN and SDN was first men-
tioned by Nayak et al. [12]. Their work, called Time-
Sensitive Software-Defined N etworking, f ocused on
the calculation of schedules using Integer Linear Pro-
gramming (ILP). Dürkop et al. presented an approach
for the automatic configuration o f r eal-time Ether-
net (RTE) solutions [13]. Their approach was based
on Dynamic Host Configuration P rotocol (DHCP).
Du and Herlich et al. also proposed the usage of
SDN for the network management in RTE [14, 15].
Their proof-of-concept implementation is based on
the Powerlink protocol [16]. This RTE implementa-
tion works with off-the-shelf switches. Changes on
the data-plane are not required. The Powerlink proto-
col uses a special token to provide deterministic me-
dia access. The Powerlink protocol used by Du and
Herlich et al. uses different concepts compared to
IEEE 802.1 TSN. This paper proposes OpenFlow as
a network management protocol for TSN-networks.

4 REQUIREMENTS

This Chapter describes requirements for a TSN-
controller. Based on these, OpenFlow is evaluated.
Additional features which OpenFlow can not provide
are described.

The following requirements were identified for the
TSN-controller which includes the CUC and CNC.

 Topology detection: The controller needs to be
able to detect the topology of the bridges associ-
ated.

 Host detection: The controller needs to detect
each talker and listener in its TSN-network.

 Time-synchronization: TSN-bridges, talkers,
listeners and the controller need a common time-

base (IEEE 802.1As-rev) for the use of IEEE
802.1Qbv.

 Time-Aware Shaper: The GCL of each TSN-
bridge needs to be calculated and configured.

 Traffic Classes: The controller needs to assign
Ethernet frames to a queue of the time-aware
shaper.

 Ingress/Egress Policing and Metering: The
controller requires a mechanism to assure that
each TSN-stream adheres to the amount of band-
width it requested.

 UNI for Talkers/Listeners: The controller needs
to provide a user/network interface (UNI) which
offers the ability to request TSN-streams.

Table 1 verifies, if the requirements for the TSN-
controller can be fulfilled with the OpenFlow proto-
col.

OpenFlow does not provide management func-
tionalities for time-aware shapers and also does
not provide time-synchronization. For the time-
synchronization an additional protocol like Precision
Time Protocol (PTP) [17], which is a master/slave
protocol, has to be used. The management of the
time-aware shapers can either be implemented as
a protocol extension of the OpenFlow protocol in
the form of experimenter messages or by the use
of existing configuration p rotocols l ike NETCONF
[18]. The UNI for the stream request can be imple-
mented as an extension of the controller. Besides
the control-plane, data-plane devices need to sup-
port time-synchronization (e.g. PTP) and time-aware
shapers.

5 ARCHITECTURE

This chapter presents an architecture for a TSN-
controller based on the requirements presented in
Chapter 4. The architecture is shown in Figure 2. On
the top, it shows the TSN-controller while at the bot-
tom, the functions for a compatible TSN-bridge are
shown. Both will further be described.

5.1 TSN-Controller

First of all, the TSN-controller is separated by the
CUC and the CNC. The CUC constists of an End-
point Request Handler to provide an UNI which is
compatible to IEEE 802.1Qcc [3]. It can be imple-
mented as a REST API. Requests are forwarded from
the CUC to the CNC. The Path Control and Reser-
vation module has global knowledge about the net-
work and finds p aths t hrough t he n etwork w hile re-

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

9

TSN-Controller Functions OpenFlow
Topology detection OpenFlow networks use LLDP to detect available links.
Host detection In OpenFlow networks, the controller detects new hosts with the

ARP protocol. Each ARP frame received by an OpenFlow-switch
is copied and forwarded to the controller.

Time-synchronization OpenFlow does not provide mechanisms for time-synchronization.
Time-Aware Shaper OpenFlow provides credit-based shaping to reserve bandwidth for a

specific traffic class. There are currently no time-based shapers in the
OpenFlow specification.

Traffic Classes OpenFlow provides an enqueue action which can be used to assign an
Ethernet frame to a queue. These queues can be used to implement
traffic classes.

Ingress/Egress Policing and Metering OpenFlow provides ingress and egress metering.
UNI for Talkers/Listeners OpenFlow does not provide an UNI.

Table 1: OpenFlow protocol feature evaluation for TSN network management.

Figure 2: Architecture of the TSN-controller.

specting the TSN-bridges utilization. In the
Sched-ule Configuration module, a configuration
(GCL) for each device on a path is calculated. This
process has a very high algorithmic complexity and a
lot of research is taking place in this area [19, 20].
The configura-tion has to be represented in a
format which can be applied by the TSN-bridges.
Here, the YANG Data Model is used which is
transferred using the NET-CONF protocol. For
the Time-Synchronization, the TSN-controller
needs to be part of a PTP-domain.

Logically, the master clock should be located in the
controller. The OpenFlow Provider is used to config-
ure the forwarding behaviour of the TSN-bridges.

5.2 TSN-Bridge

First of all, TSN-bridges need to support a Traffic
Scheduler resp. IEEE 802.1Qbv. For proper function-
ing of the Traffic Scheduler, the TSN-bridge is timely
synchronized. The Stream Filtering and Policing
module takes care, that TSN-streams do not exceed
their requested resources. The TSN-bridge needs to
be compatible with a YANG Data Model to offer flexi-
ble reconfiguration. Over the OpenFlow Provider, the
TSN-bridge is able to be configured w i th t he Open-
Flow protocol. Forwarding behaviour is located in the
Flow Table.

6 IMPLEMENTATION AND
EVALUATION

This chapter describes a proof-of-concept implemen-
tation based on the architecture presented in
Chapter 5. Later the proof-of-concept will be
evaluated.

6.1 Implementation

The proof-of-concept implementation is based on
the open-source SDN-controller Ryu [21] written in
Python. The data-plane consists of two TSN-bridges
(Trustnode) from the company Innoroute which al-
ready support IEEE 802.1Qbv, PTP, Netconf and
OpenFlow. The Openflow implementation on the
bridges is based on Open vSwitch [22]. The talker
uses an Intel i210 network card and a kernel extension

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

10

ListenerTalker

TSN-Bridge TSN-Bridge

Figure 3: Architecture of the TSN test-bed.

Two aspects of the system have been evaluated.
The function and performance of the time-aware
shaper and the overall set-up time of a TSN-stream.
To test the time-aware shaper, two streams have been
requested using two different traffic classes. TC 1 has
a time-slot length of 7 ms and TC 2 has a time-slot
length of 3 ms resulting in a total cycle length of 10
ms. The talker generates frames at a rate of 100 µs
(10 frames per ms) for both TC. Figure 4 shows the
arrival of the packets on the listener site. The packets
are distributed according to their specified time-slots.
Once a time-slot starts, all buffered frames, which ar-
rived outside of their time-slot, are sent.

0 5 10 15 20

0

20

40

60

80

Pa
ck

et
s/

m
s

TC 1
TC 2

Time (in ms)

Figure 4: IEEE 802.1Qbv scheduled traffic - 10ms cycle
time, 2 traffic classes (7ms and 3ms).

The second measured aspect was the set-up time
of the UNI. Here, the talker requests 1 stream every
second. Each stream is removed before the next one

is created. The UNI protocol request response time,
the time between request and response, is measured
using Wireshark. For 1000 requests an average set-up
time of 3.176 ms with a standard deviation of 1.031
ms has been measured.

The results show, that existing software which is
originally developed for SDN can be easily extended
to support TSN. It also shows, that TSN-streams can
be requested within a few milliseconds. It has to be
noted, that the calculation for the schedule is simpli-
fied in this proof-of-concept implementation.

7 CONCLUSION

This paper evaluated the use of OpenFlow for an
implementation of a TSN-controller with respect to
IEEE 802.1Qcc. Requirements for a TSN-controller
have been identified, a nd v erified if Op enFlow can
fulfill t hese r equirements. P otential e xtensions and
companion protocols have been discussed and an ar-
chitecture for a TSN-controller has been presented.
Later, a proof-of-concept has been implemented with
real hardware. The implementation has been evalu-
ated while achieving an average set-up time of 3.176
ms.

OpenFlow itself is only able to partly fulfill the re-
quirements identified. More protocols are needed for
a full-featured TSN-controller. The proof-of-concept
shows the feasibility of dynamic TSN-stream regis-
trations.

In the future more TSN standards like frame
preemption have to be investigated and added to
the architecture presented in this paper. OpenFlow
should also be considered for the realization of IEEE
802.1CB (Frame Replication and Elimination for Re-
liability). OpenFlow allows the duplication of frames
and the forwarding on multiple output ports.

ACKNOWLEDGEMENTS

This work was partly funded by the Ministry for
Science and Culture of Lower Saxony as a part of
the research project SecuRIn (VWZN3224) and the
Federal Ministry for Education and Research within
the KMU-innovativ program as a part of MONAT
(16KIS0782).

to support time stamped packet transmission for
TSN-traffic [23]. Except the TSN-briges, all system
are based on Ubuntu 18.04 using an Intel Core
i7-6700 CPU and 16GB RAM. Every module from
Figure 2 is implemented separately. The schedule
calculation is simplified due to the complexity of this
module. For the CUC interface, the existing REST
API from the Ryu controller has been extended.

6.2 Evaluation

To evaluate the proof-of-concept implementation, a
test-bed has been set-up as visualized in Figure 3.

TSN-Control

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

11

REFERENCES

[1]

[2]

M. Wollschlaeger, T. Sauter and J. Jasperneite,
“The future of industrial communication:
Automation net-works in the era of the internet of
things and industry 4.0,” IEEE Industrial Electronics
Magazine, vol. 11, no. 1, 2017, pp. 17-27.
IEEE 802.1 Working Group, “Time-
Sensitive Networking (TSN) Task Group”,
[Online]. Avaible: https://1.ieee802.org/tsn/.

[3] “IEEE Standard for Local and Metropolitan Area Net-
works – Bridges and Bridged Networks – Amend-
ment 31: Stream Reservation Protocol (SRP) En-
hancements and Performance Improvements,” IEEE
Std 802.1Qcc-2018 (Amendment to IEEE Std
802.1Q-2018 as amended by IEEE Std
802.1Qcp-2018), pp. 1-208, October 2018.

[4] D. Bruckner, R. Blair, M. Stanica, A. Ademaj,
W. Skeffington, D. Kutscher, S. Schriegel,

R. Wilmes, K. Wachswender, L. Leurs et al., “Opc
ua tsn-a new solution for industrial
communication,” Whitepaper. Shaper Group, 2018.

[5] OPC Foundation. Part 14: Pubsub. [Online].
Available: https://opcfoundation.org/developer-tools/
specifications-unified-architecture/part-14-pubsub

[6] Open Networking Foundation. Openflow switch
specification version 1.5.1. [Online].
Avail-able: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[7] ONF, “SDN architecture,” Open Net-
Foundation, Tech. Rep. Is-working

sue 1, TR-502, 2014. [Online]. Avail-
able: https://www.opennetworking.org/wp-
content/uploads/2013/02/TR SDN ARCH 1.0
06062014.pdf

[8] “IEEE Standard for Local and metropolitan area net-
works – Bridges and Bridged Networks – Amendment
25: Enhancements for Scheduled Traffic,” IEEE
Std 802.1Qbv-2015, pp. 1-57, March 2016.

[9] “IEEE Draft Standard for Local and Metropoli-
tan Area Networks – Timing and Synchronization
for Time-Sensitive Applications,” IEEE
P802.1AS-Rev/D7.0, March 2018, pp. 1-496,
August 2018.

[10] “IEEE Standard for Local and metropolitan area net-
works – Frame Replication and Elimination for Relia-
bility,” IEEE Std 802.1CB-2017, pp. 1-102, Oct
2017.

[11] “IEEE Standard for Local and metropolitan area net-
works – Bridges and Bridged Networks – Amend-
ment 26: Frame Preemption,” IEEE Std
802.1Qbu-2016 (Amendment to IEEE Std
802.1Q-2014), pp. 1-52, August 2016.

[12] N.G. Nayak, F. Dürr, and K. Rothermel,
“Software-defined Environment for Reconfigurable
Manufactur-ing Systems,” in 2015 5th International
Conference on the Internet of Things (IOT).
IEEE, 2015, pp. 122-129.

[13]

[14] J.L. Du and M. Herlich, “Software-defined Network-
ing for Real-time Ethernet,” in ICINCO (2), 2016,
pp. 584-589.

[15] M. Herlich, J.L. Du, F. Schörghofer and P. Dorfin-
ger, “Proof-of-concept for a Software-defined Real-
time Ethernet,” in 2016 IEEE 21st International Con-
ference on Emerging Technologies and Factory Au-
tomation (ETFA). IEEE, 2016, pp. 1-4.

[16] W. Wallner and J. Baumgartner, “openpowerlink in
linux userspace: Implementation and performance
evaluation of the real-time ethernet protocol stack in
linux userspace,” in Proc. 13th Real-Time Linux Work-
shop (RTLWS).(Prague, Czech Republic, 2011,
pp. 155-164.

[17] “IEEE Standard Profile for Use of IEEE 1588 Pre-
cision Time Protocol in Power System Applica-
tions,” IEEE Std C37.238-2017 (Revision of IEEE Std
C37.238-2011), pp. 1-42, June 2017.

[18] A. Bierman and M. Bjorklund, “Network Configura-
tion Protocol (NETCONF) Access Control Model,”
Internet Requests for Comments, RFC Editor, RFC
6536, March 2012.

[19] S.S. Craciunas, R.S. Oliver, and W. Steiner, “Formal
scheduling constraints for time-sensitive networks,”
arXiv preprint arXiv:1712.02246, 2017.

[20] W. Steiner, S. S. Craciunas, and R.S. Oliver, “Traf-
fic planning for time-sensitive communication,” IEEE
Communications Standards Magazine, vol. 2, no. 2,
pp. 42-47, 2018.

[21] Ryu SDN Framework Community. Ryu sdn frame-
work. [Online]. Available: https://osrg.github.io/ryu/

[22] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. She-
lar et al., “The design and implementation of open
vswitch.” in NSDI, vol. 15, 2015, pp. 117-130.

[23] M. Kumar, M. Boehm, J. Ohms, O. Shulha, and
O. Gebauer, “Evaluation of the time-aware priority
queueing discipline with regard to time-sensitive net-
working in particular ieee 802.1 qbv,” in Proceedings
of International Conference on Applied Innovation in
IT, vol. 7, no. 1. Anhalt University of Applied Sci-
ences, 2019, pp. 1-6.

L. Dürkop, J. Jasperneite and A. Fay, “An Analysis of
Real-Time Ethernets With Regard to Their Automatic
Configuration,” in WFCS, 2015, pp. 1-8.

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

12

