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Abstract: Oil well production efficiency depends on the accuracy of the flow rate prediction. The electrical 
submersible pumps are selecting and the well production control is carrying out based on the predicted 
values of flow rate. Inaccurate prediction may cause limitations of well deliverability or inefficient 
pumping. The prediction accuracy of flow rate changes in time related to initial data uncertainty that causes 
deviations between calculated flow rate values and measured ones. To minimize operating costs the same 
pump selection and control methods are used for groups of wells operating under the same conditions. 
However, sometimes wells demonstrate very different behavior even under the same conditions. In these 
wells flow rate changes becomes unpredictable by the common methods and additional studies required for 
correct prediction. The problem of finding wells with unpredictable flow rates at the early operation stages 
is very important because their inefficiency can significantly increase in time without special operation 
methods. The article considers the method of finding wells with potentially unpredictable flow rate changes 
with use of the entropy concept. The main feature of this method is that it is appropriate for data of any 
distribution types with given probability density function. The article discusses the relation between the 
value of joint reduction in uncertainty obtained from entropies of calculated flow rates and measured ones 
for a single well and the deviations between these flow rates. The novelty of the article is that the joint 
reduction in uncertainty in calculated value of well rate when knowing measured well rate is proposed as the 
measure of the well flow rate predictability. 

1 INTRODUCTION 

At present oil remains the main energy source for 
many fields of activity. However, its production 
becomes more difficult and energy intensive every 
year. This is caused both by oil reserves depletion 
and by increase in number of fields is being operated 
under complex geological conditions [1]. 

Today the main oil producing method is 
pumping with use of electric driven submersible 
pumps (ESP). ESP can work with high performance 
and efficiency in deep wells but its use in new oil 
fields and under complex geological conditions is 
limited. The limitations appears mainly when 
selecting the submersible equipment. The ESP 
energy efficiency is ultimately depends on accurate 
equipment selection for specific operating 
conditions. Incorrect selection can cause inefficient 
well operation for all pump life cycle (since the ESP 

replacement is carrying out only in case of its 
failure). 

Large number of parameters are used when 
selecting ESP equipment. Some of them are found 
by statistical methods. The most significant 
parameter that determines energy efficiency is the 
desired well flow rate [2]. It is usually calculated 
under conditions of uncertainty and data 
incompleteness (especially in the early stages of 
field exploitation). Uncertainty is caused by the 
inability of detailed study of the reservoir and the 
data incompleteness is caused by experiment 
limitations. Various statistical models of wells are 
developed to solve this problem. Since each well has 
individual conditions, it requires an individual 
model. In practice, it is impossible to build 
individual models for each well, so the generalized 
models are used. The models are usually based on 
regression equations, their coefficients are found 
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either with using experiments or by studying large 
datasets. These approaches are effective for well-
studied fields that have been operating for a long 
time and for fields without special geological 
conditions. However, they do not consider 
geological factors that appear in individual wells and 
cause additional uncertainty of calculated 
parameters. This additional uncertainty together with 
data incompleteness can cause significant deviation 
between desirable flow rate and actual one. This in 
turn can be the reason of incorrect equipment 
selection or ineffective well production control. In 
addition, regression models usually require large 
amount of data that is unavailable at the early stage 
of well operation. 

The article presents the investigation of the 
uncertainty that is existing in desirable (calculated 
with models) and actual (measured in well) flow 
rates of various oil wells with use of entropy 
concept. The ability of using information entropy for 
estimating the flow rates uncertainty for 
insufficiently known wells or for wells that operates 
in special regimes is studied. The main hypothesis is 
that when the entropies of both desirable and actual 
well flow datasets are known, the mutual 
information of these datasets will increase with 
decreasing flow rate predictability. This dependency 
will help to classify wells by flow rate predictability 
and select the most unpredictable wells for 
additional study. 

Since the information entropy was originally 
introduced for discrete random variables [3], in this 
study the differential entropy of a continuous 
random variable is used instead. In general it is not 
an analogue of information entropy for continuous 
variables. However, when knowing the differential 
entropy, it is possible to obtain the mutual 
information for the case of continuous random 
variable. 

When the above hypothesis is proven, the 
proposed method of predictability classifying will 
easily be applied in practice as it requires only 
knowing the data distribution law and allows data to 
have any distribution with given probability density 
function (PDF). 

The research aim is to check the above 
hypothesis on the real data. The article considers the 
example of exponentially distributed data but the 
general algorithm of applying the method for any 
other distribution types is presented in the last part 
of the article. 

The article includes four parts. First part presents 
short overview of commonly used flow rate 
calculation model and studies the causes of 

uncertainty. Second part considers data preparation 
and preliminary classification of statistical data 
obtained from oil fields. Third part considers 
determining the appropriate distribution law for 
classified datasets and presents the results of 
uncertainty analysis. The last part presents the 
generalized algorithm of applying the method for 
data of any distribution with given PDF. 

2 CAUSES OF UNCERTAINTY IN 
WELL FLOW RATES 

The ESP efficiency depends on current load of the 
motor that is represented by load factor (Kl). Its 
value can be calculated by (1). 

l
NK

Nn
= (1) 

where N is an electric power that is currently being 
consumed by ESP (found by (2)), Nn is rated ESP 
power. ESP efficiency has maximal value when Kl is 
one. 
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In the above equation Ppump is a pump pressure 
required to lift oil to the surface, ηpump, ηmotor are 
efficiencies of pump and motor respectively, Q is 
desirable (or actual) well flow rate. Pump pressure 
required for lifting oil to the surface and equipment 
efficiencies depend on well design and current 
operational regime. These parameters are usually 
constants for given regime. Therefore ESP load 
changes (and ESP efficiency) are ruled mostly by 
flow rate changes. These changes are typical not 
only for oil wells [4]. Moreover, desirable flow rate 
is used for ESP equipment selection. When pump 
has high performance and well has low flow rate 
the efficiency becomes significantly less than one. 
Nevertheless, in this case there is an ability to 
increase efficiency with using another regime. When 
pump has low performance and well has high flow 
rate, the efficiency will be low again but in this case 
efficiency increasing is more complicated than in 
previous one. Detailed description of these 
dependencies is given in [2]. 

Given considerations illustrate the significance 
of accurate calculation the desired well flow rate 
before well starts operating. 

Standard well flow calculation model is based on 
Dupuit equation [2]. This equation represents the 
flow rate to the cylindrical well placed in the center 
of an “ideal” reservoir. “Ideal” reservoir must have 
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regular geometry and be fully saturated with oil. 
Since there are no “ideal” reservoirs in real life, the 
equation is only useful for some sections in the real 
reservoir that fit the above requirements. These 
sections are usually separated from each other and 
have individual geometry. The production efficiency 
reaches its maximum if the reservoir can be divided 
into homogeneous sections of regular geometric 
shape with one or more wells operating in each 
section. 

To find such sections, experimental data of 
similar fields are used. These data have uncertainty 
caused by experiment limitations and lack of 
information about field being studied. Analysis of 
the data obtained at the fields showed that the 
uncertainty of the reservoir structure and properties 
has a maximum value at the beginning of the field 
lifecycle and reaches the minimum at the end of its 
operation. Besides that, external factors such as rock 
destruction or changes in fluid properties also affect 
uncertainty [1], [5]. 

According to the Dupuit equation the 
deliverability of a given well is determined by 
productivity index (PI). In addition, flow rate 
depends on difference between reservoir pressure 
and bottomhole pressure (ΔPf). PI and ΔPf as well as 
reservoir geometry are either obtained 
experimentally or calculated with models. 

Thus, the uncertainty of flow rate includes three 
components: the uncertainty of the reservoir 
geometry, the uncertainty of PI calculation and the 
uncertainty of ΔPf calculation. 

The actual flow rate value is measured by special 
sensors. The sensors have a measurement error that 
can usually be included in the rate value. 

In these conditions, the comparative analysis of 
the uncertainties appearing in desirable and actual 
flow rates over long time periods can give 
significant results for understanding the ways of 
initial data uncertainty resolution. 

It should be noted however that wells could have 
different operational conditions and work in 
different operational regimes. At that, desirable and 
actual flow rates must have different uncertainty. 

3 PRELIMINARY DATA 
ANALYSIS 

Statistical data for the study were obtained from 27 
oil fields that are operating under different 
geological conditions. Obtained dataset includes 440 
values of average annual well flow rates (220 values 

corresponds to desirable flow rates, others – actual 
ones). 

At the first stage of the research the accuracy of 
predicting the actual flow rates was studied. For this 
purpose, the initial dataset was divided into subsets, 
each of that included the average annual values of 
the desirable and actual flow rates of a single well 
for all years of its operation. After that, the pairs of 
graphs (desirable rates changes in time and actual 
rates changes in time) were built for all wells. The 
graphs were classified according to the form of 
deviations of the desirable and actual flow rate 
curves. Figure 1 illustrates obtained classes of 
curves deviation. 

Figure 1: The classes of well flow curves deviations. Blue 
line corresponds to desirable rates, red line – actual rates. 

The following classes were found: 
 Class A – the desirable flow rate curve

matches the actual flow rate curve;
 Class B – there is a single deviation inside

desirable and actual flow rate curves;
 Class C – flow rate curves converges to the

same shape;
 Class D – flow rate curves diverges from the

same shape.

It should be noted that classification was built 
only by form of curves but not by value of 
deviations. For example class B includes both curves 
where desirable flow rates are below actual ones (as 
shown on figure) and vice versa. The classification 
tree (Figure 2) represents the probabilities of getting 
pairs of graphs into the classes A to D. 

The tree includes two layers. The first one 
defines general form of discrepancy between graphs 
(classes A and B corresponds to generally coincident 
graphs; in opposite, graphs B and C correspond to 
not coincident ones). The second layer determines 
the belonging of the graphs to the specified class. 
The classification results can be interpreted as 
follows: the probability of accurate prediction of 
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flow rate changes is 40% (class A), the probability 
of incorrect prediction of flow rate changes after 
some time period is 37% (classes B and D), the 
probability of incorrect prediction of flow rate 
changes in initial time period is 22 %. The overall 
probability of the prediction error is 59 %. Thus, the 
probability of accurate prediction is relatively small 
that possibly indicates the presence of large 
uncertainty in the initial data. 
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Figure 2: Classification tree for typical graph forms. 

For further research, samples for each class and 
joint samples including samples of more than one 
class were obtained. Since the size of samples for 
classes C and D is small, they were combined in one 
sample. Table 1 includes samples that were used in 
the study for entropy analysis. 

Table 1: Datasets used for uncertainty analysis (P – 
separate sets of desirable flow rates; F – separate sets of 
actual flow rates). 

Classes included in sample (sample type) 
A (P, F) 
B (P, F) 

C+D (P, F) 
B+C+D (P, F) 

A+B+C+D (P, F) 

4 ENTROPY CALCULATION 

The general (3) is commonly used for differential 
entropy calculation [3]. 

[ ]( ) ( ) log ( )
S

H x f x f x dx= −∫ (3) 

where S is a support set of the random variable with 
given continuous distribution, f(x) is a PDF for given 
X. The logarithm base defines the units of entropy.
At the following study the base 2 is used, so the
entropy is measuring in bits.

PDFs for statistical data were found by using the 
probability distribution histogram. The (4) was used 
for calculating the PDF value in each interval. 

( ) i
i

m
f x

hN
= (4) 

where mi is a number of values from dataset that are 
included in the i-th interval, h is interval length, N is 
a number of values in sample. At the next step, the 
histogram was interpolated with PDF of appropriate 
theoretical distribution (Figure 3) and the 
distribution parameters were calculated. In the study 
it was hypothesized that all distributions have 
exponential distribution with PDFs given by (5) [6]. 

Figure 3: Histogram for probability density function and 
exponential probability density curve for dataset 
B+C+D FULL. 

( ) : 0
0 : 0
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x
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<
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where λ is a distribution ratio obtained by the (6) [6]: 
1
x

λ = , (6) 

where x  is the mean value for a given dataset. 
The hypotheses of the distribution were proven 

by F-test. 
The distribution ratios for different samples are 

given in the Table 2. 

Table 2: The values of the distribution ratio for different 
datasets. 

Dataset λ 

A P 0.062 
A F 0.055 
B P 0.070 
B F 0.071 

C+D P 0.045 
C+D F 0.051 

B+C+D P 0.060 
B+C+D F 0.060 

A+B+C+D P 0.058 
A+B+C+D F 0.057 
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Differential entropy for exponential distribution 
is obtained by the following (7) [7]: 

2( ) log eH X
λ

 =  
 

, (7) 

The values of differential entropy for the datasets 
are given in Table 3. 

Table 3: The values of the differential entropy for datasets. 

Dataset Differential entropy 
A P 5.034 
A F 4.945 
B P 5.067 
B F 5.014 

C+D P 5.602 
C+D F 5.401 

B+C+D P 5.446 
B+C+D F 5.351 

A+B+C+D P 5.357 
A+B+C+D F 5.464 

The numeric value of differential entropy for a 
continuous distribution of random variable is not 
meaningful in practical tasks. Instead of this, the 
mutual information (IXY) obtained from one random 
variable when given another random variable is the 
most important measure. For better understanding 
the interrelation between uncertainty and mutual 
information it is suggested to use term “joint 
reduction in uncertainty” in case of continuous 
variables [7]. This term is also more convenient for 
the following study because it describes the potential 
ability of reducing the uncertainty when obtaining 
datasets with different characteristics. 

For two continuous random variables X and Y, 
the IXY can be found by the following (8): 

2
( , )( , ) log

( ) ( )
XY

XY XY
X Y

f x yI f x y dxdy
f x f y

 
= −  

 
∫ ∫ (8) 

where fXY(x,y) is a joint PDF of X and Y, fX(x), 
fX(y) are marginal distributions of X and Y 
respectively. If the differential entropies of the X 
and Y distributions are given, the (9) can be 
rewritten as follows: 

XY X Y XYI = H + −H H  
Here HX and HY are the differential entropies of X 
and Y distributions themselves and HXY is an entropy 
of joint distribution of X and Y that is obtained by 
the (10). 

2

2

( , ) log ( ( , ))

(log ( , ))

XY XY XY
X Y

XY

H f x y f x y dxdy

E f x y

= − =

= −

∫ ∫ (10) 

The above equation requires knowing the joint 
PDF of X and Y. For completely independent 
random variables the joint PDF is simply the product 
of PDFs for X and Y. If the variables are not 
independent, their dependency level is estimated 
by correlation coefficient ρ. In this case calculation 
of the joint PDF becomes more complicated as the 
dependency needs to be considered. 

Since all samples in the table 1 have exponential 
distribution with PDFs given by (5), the joint PDFs or 
all the samples will be the PDFs of two 
exponentially distributed random variables and will 
have bivariate exponential distribution. Several 
studies consider the obtaining the bivariate 
exponential PDF for different cases [8-11]. In the 
following study the joint PDF is calculated as 
follows (11): 

1 2 3

1 2 3

3

1 2

2 1

3

( , ) : ( , ) | 0

( , ) : ( , ) | 0

( , ) : ( , ) | 0

x y y
XY

x y x
XY

x
XX

f x y e x y x y

f x y e x y y x

f x x e x y x y

λ λ λ

λ λ λ

λ

λ γ

λ γ

λ

− − −

− − −

−

 = < <


= < <
 = < =

(11) 

The (11) was obtained from general equation 
for bivariate exponential PDF given in [12] after 
some mathematical manipulations.

Parameters λ1 and λ2 in the equation are ratios of 
the corresponding PDFs for variables X and Y. λ3 is 
the parameter that considers dependence between X 
and Y. It is obtained by the (12). 

3

1 2 3

λ
ρ

λ λ λ
=

+ +
, (12) 

where ρ is the correlation coefficient of X      and 
Y. 

Studying changes of IXY for calculated and actual 
well flow rates in different samples allows finding 
the sets with the highest joint reduction of 
uncertainty (JR). These sets as hypothesized include 
wells with potentially the most unpredictable flow 
rates. In opposite, the sets with lowest JR values 
demonstrate the most predictable behavior. 
Therefore, it is expected that the JR value increases 
with decreasing of flow rate predictability. The 
predictability is estimated by deviations between 
calculated and measured well flow rates. 

In the study the values of JR in uncertainty were 
calculated for datasets from the table 1. The 
calculation results along with the degree of 
dependency ρ are presented in Table 4. 

The sample of full data including all classes 
from A to D has the relatively small JR value. This 
sample has a large part belonging to the classes A 
and B and a small part belonging to the other 
classes. In this case the uncertainty of the initial data 

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019 

69 

(9)



is small and the data are high correlated. As a result 
there is not big uncertainty reduction for the 
calculated data when knowing the measured ones 
and this set has relatively good predictability. The 
JR value for data belonging to the class A itself is 
only a few smaller than this for class B. The 
maximal JR value was obtained for dataset of 
classes C and D. These classes include the 
potentially unpredictable wells. 

Table 4: Joint reduction in uncertainty for pairs of datasets 
corresponding to calculated and actual (measured) values 
of flow rate. 

Datasets ρ HX+HY HXY IXY
A P + A F 0.952 9.979 4.781 5.198 
B P +B F 0.914 10.081 4.619 5.462 
C+D P + 
C+D F 0.576 11.003 0.0565 10.947 

B+C+D P + 
B+C+D F 0.721 10.797 6.945 3.852 

A+B+C+D 
P + 

A+B+C+D 
F 

0.788 10.821 9.290 1.531 

The described results are able to confirm the 
hypothesis of existing dependency between JR value 
and the predictability of well flow rate. It was found 
that datasets including data of wells that demonstrate 
deviations between calculated and actual values of 
flow rate had greater JR values then datasets without 
deviations. However, the amount of data used in the 
study is not able to give stable classification. In 
addition, the study shows that the algorithm is very 
sensitive to the concrete values of deviations 
between desirable and actual flow rates in any cases. 
This sensitivity is a cause of small difference 
between JR values of classes A and B. In the 
example presented in the article the concrete values 
of deviation are not considered. 

It also should be noted that the preliminary 
classification of data was carried out by a single 
expert. So, the probability of misclassifying between 
classes A and B is relatively high. In practice it is 
suggested to use the algorithm presented in the next 
section for automatic classification based on the JR 
value. 

4 APPLYING ENTROPY 
CONCEPT FOR ESTIMATION 
THE WELL FLOW 
PREDICTABILITY  

The dependency between JR value and well flow 
rate predictability can be used for classification of 
wells by their flow rate predictability. 

The initial dataset for this classification must 
include the equal amount of desirable (calculated 
with the models) and actual (measured in real well) 
flow rate values from any number of wells. The 
amount of values for each well must also be equal. 
Since oil production companies measure and 
recalculate the well rate values every equal time 
period (e.g. a year, a month etc.) these conditions are 
easy to match. The required total amount of data 
depends on how many classes need to be obtained. 
A number of classes (that determined by an expert 
before classification procedure) corresponds to a 
number of datasets are being obtained when 
classifying. 

The classification procedure begins with 
dividing the initial dataset into parts of desirable and 
actual flow rate. After that, the distribution laws for 
each part are found and the parameters of 
distribution are calculated. Then the joint 
distribution law parameters are calculated. Finally, 
the entropies and the JR value for initial dataset are 
calculated. This value is used as a low constraint for 
JR value. 

In the next iteration the initial dataset is divided 
into two equal subsets and the previous steps are 
repeated obtaining two JR values. The next iteration 
starts with comparing JR values. The dataset that has 
the lowest value is divided into two equal datasets 
and the previous steps are repeated again. The 
classification stops when the number of classes 
matches the value given by an expert. 

As a result, the subsets sorted by the JR value 
are obtained. The subset with the largest JR value 
includes wells potentially the most unpredictable 
flow rates. 

It should be noted that the division of the 
dataset in each iteration is carried out by the way 
that the values corresponding to one well cannot be 
divided into several subsets. 
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5 CONCLUSIONS 

The concept of differential entropy presented in the 
article for estimating the predictability of oil well 
flow rates proves its usability. The dependency 
between JR value, calculated based on differential 
entropies of desirable and actual flow rates, and the 
flow rate predictability was obtained. The 
exponential distributed test dataset was used to 
illustrate work of the proposed method. 

The described method of JR value calculation is 
appropriate not only for exponential distribution but 
also for the most of distribution types with given 
PDFs. However, it requires finding the joint PDF of 
two random variables that is sometimes a 
complicated task. Solutions of this task for different 
distributions are considered in [13]-[16]. 

Obtained dependency can be used for 
classification of the oil wells by their flow rates 
predictability. A simple iterative classification 
algorithm is presented in the article. The algorithm 
gives a solution of the problem of estimating the 
predictability of concrete wells at the early stages of 
their lifecycles. It will help oil production engineers 
and energetics to find wells that require special 
operation methods. In general, when using large 
amount of data describing flow rates of different 
wells the algorithm will help to correct the flow rate 
prediction models that are used for pump selection 
and well operation control. 

The further study of the proposed algorithm will 
be carried out in field of estimation of the algorithm 
sensitivity and ways of its control. Additional study 
is also required for the procedures of finding the 
joint PDF for different distribution types. 

The results of the study will be implemented in 
the software for analysis of the electrical power 
supply systems of oil fields [17]. 

The project is aimed at supporting of a new 
Master’s program "Conceptual Design and 
Engineering to Improve Energy Efficiency" for 
preparing of engineers, scientific researchers and 
managers in energetics and related branches [18]. 

Research is also supported by educational and 
research grant 573879-EPP-1-2016-1-FR-EPPKA2-
CBHE-JP by European program Erasmus+ (Project 
INSPIRE). 
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