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Abstract: The current situation in IP networks shows the need for new congestion control algorithms that can be flexible, 
scalable, and capable of avoiding additional queue delays caused by loading the bottleneck buffers. Most 
common internet flows use loss-based congestion controls, which can achieve high bottleneck bandwidth 
utilization and fair resource sharing but cause overload bottleneck buffers. In this paper we present an 
investigation of the performance of a PID-based congestion control solution for high-speed IP networks. It 
uses measurements of a round trip time and receiver delivery rate to reach and keep maximum available 
bottleneck performance and constant node buffer load caused by bottleneck queue on some low level. This 
algorithm can be effective in high-speed IP networks and delay-sensitive applications. It is designed to be 
flexible and scalable for different connectivity cases. This algorithm then is investigated on the example of 
RMDT. 

1 INTRODUCTION 

Network congestion occurs, when a receiving node is 
receiving more data than it can handle or forward to 
an output interface. It leads to a significant 
performance degradation: additional delays and 
massive packet losses. Congestion control algorithms 
are aimed to solve such problems. This is an 
automatic control of a sender’s parameters, which 
describe performance of data send process, 
adaptability for different connection cases and the 
ability to share link resources fairly with other 
connections. 

The aim of this paper is to present an investigation 
on PID-based congestion control in terms of 
CloudBDT and BitBooster projects. These projects 
use the Reliable Multi-Destination Transport 
protocol RMDT [1][2], where the results of the 
present work may be used. 

The idea behind the usage of PID (Proportional – 
Integral – Derivative) control in congestion control 
algorithm lies in the fact that this type of control can 
be very flexible, scalable and adaptive. It can be 
easily extended by additional modules like auto tune 
loop or artificial neural network. 

The main challenges for modern congestion 
control are: high bottleneck bandwidth utilization, 
low bottleneck queue delays, automatic scalability to 
different channel conditions (different bandwidth and 
different delays) [3], adaptation for sudden changes 
over connection like rerouting, applicability in 
wireless networks and resource sharing. 

The rest of this paper is organized as follows: In 
section 2 a short overview of modern congestion 
control solutions and their main disadvantages is 
presented. Section 3 describes main states of PID-
based congestion control solution and its principles. 
The experimental setup is presented in Section 4. Test 
results and evaluations are given in Section 5. Section 
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6 includes conclusions based on the evaluation 
results, further work and describes benefits of such 
solutions. 

2 RELATED WORK 

In [4] various approaches to TCP host-to-host 
congestion control algorithms and its evolution due to 
modern network sharing issues have been reviewed. 

Loss based congestion control algorithms (Reno, 
Cubic) interprets packet losses as an indicator of a 
congestion. TCP Cubic [5] (which is the default 
congestion control in Linux kernels 2.6.19 and 
above.) can be very effective - with high bottleneck 
capacity utilization and fair resource sharing. 
However, they cause significant bottleneck queue 
delays and performance degradation in cases with 
tiny bottleneck queue buffers. Moreover, packet 
losses can be caused not only by a congestion in a 
network, but also by a link itself as well (e.g. wireless 
connections). 

Another important solution is a delay-based 
congestion control, like TCP Vegas described in [6] 
and its future improvements. It is a proactive 
algorithm that uses bottleneck queue delay and packet 
losses as congestion indicator. Such strategy allows 
to predict a congestion before losses occur, caused by 
bottleneck buffer overload happen and also to keep 
queue delays on the levels, lower than the loss-based 
algorithms. Anyway, those algorithms have no aim to 
keep bottleneck buffer load at a low level, they keep 
it at some constant level. The most significant 
disadvantage of such algorithms is an unfair network 
resource sharing – especially with loss-based 
congestion control algorithms [7]. In addition, use of 
packet losses as a secondary congestion indicator can 
lead to the same problem of non-congestion caused 
losses as with pure loss-based algorithms. 

BBR [8] algorithm (Bottleneck Bandwidth and 
Round-trip propagation time) is a new solution in 
congestion control. It uses round trip time and 
bottleneck bandwidth probing cycle to keep 
bottleneck queue load on a low level along with 
queueing delays and tries to reach effective 
bottleneck capacity utilization. Such technique under 
some conditions leads to a higher performance in 
comparison to loss-based or “delay-loss-based” 
algorithms. However, the probing cycle leads to data 
rate decrease and in some cases to unfair resource 
sharing [9].  

3 PID-BASED CONGESTION 
CONTROL 

A PID controller is a widely used control loop 
feedback mechanism, it continuously calculates an 
error value as a difference between a desired level of 
a controlled value (Setpoint, SP) and a measured 
process value (PV). It applies a correction based on 
proportional, integral and derivative terms. In case of 
this congestion control solution, the process value is 
round trip time. The correction can be done by 
changing the send data rate. 

The first state of an algorithm is a “Gain” state 
(see figure 1), used to quickly estimate bottleneck 
bandwidth (BBW). PID congestion control requires 
presets of main parameters such as round trip time SP 
and factors for send data rate correction. To estimate 
that the algorithm has a second state named 
“Manage” state. The third, “Control” state is a PID-
controller itself.  Figure 1 illustrates main states of 
PID-based congestion control. 

Figure 1: Main states of a PID-based congestion control. 

3.1 Gain 

Algorithm enters the Gain state at the very beginning 
of the transmission. It tracks the delivered data rate 
(DDR) and rapidly increases the send data rate. When 
last three reports show that there is no significant 
growth of delivered data rate, then congestion control 
switches to Manage state. Gain state enables the 
algorithm to quickly reach a bottleneck bandwidth 
limit and to make delay measurements for future 
processing. 

3.2 Manage 

Manage state tries to get the minimal round trip time 
(RTT) of a transmission by omitting the bottleneck 
queue buffer. It is achieved by decreasing data rate by 
half for 50 ms. It allows to set an acceptable round 
trip time setpoint (SP). For the current 
implementation, the acceptable setpoint is: 

SP = max (minRTT +α; 1.25 minRTT), (1) 

where α is the minimal growth of SP. 
Minimal level value of SP (10 ms in this work) is 

caused by some instability of RTT measurements in 
the current solution. Otherwise, it can be even lower. 
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This state is also useful for resetting a setpoint if 
sudden rerouting is detected (RTT significantly 
dropped/raised). The third role of Manage state is 
fairndwidth sharing. For PID based congestion 
control, fair share is possible if chosen SPs of both 
links are almost equal. 

3.3 Control 

In the Control state, a modified PID digital controller 
tracks the delivery data rate and round trip time and 
tries to keep RTT near a setpoint by changing send 
data rate. If SP is not reachable for the last 10 packets 
or DDR has suddenly dropped down (more than 20% 
DDR drop), algorithm goes to Manage state to 
estimate a new RTT setpoint. 

4 EXPERIMENTAL SETUP 

Figure 2 shows testbed network topology. All tests 
have been performed in 40 GE Laboratory of Future 
Internet Lab Anhalt [10] (FILA). 

The core element here is the WAN emulator 
Netropy 40G [11] that can be used to create an 
emulation of WAN links up to 40 Gbps throughput 
and up to 106 ms delay. Sender and receiver both run 
in Ubuntu 16.04 (kernel: GNU/Linux 4.13.0-17-
generic x86_64) and are equipped with Intel(R) 
Xeon(R) CPU E5-2643 v4 3.40GHz, 64GB of RAM 
and 40000baseSR4/Full supported link modes on 
Emulex Corporation OneConnect NIC. 

Figure 2: Testbed network topology. 

5 EXPERIMENTAL RESULTS 

Tests have been performed in next scenarios: single 
flow test with BBW 10 Gbps and {10, 50, 100, 150, 
200}ms RTT; resource sharing test with two flows, 
bottleneck bandwidth 5 Gbps and 50 ms RTT. Queue 
management is set to drop-tail in all test. Figures from 
3 to 7 demonstrate experimental results of congestion 
control: high bottleneck bandwidth utilization and 
queue load level control in high speed IP network 
with different base RTT (one way delay is one half of 
RTT). The fair resource sharing of proposed 
congestion control method is shown in Figure 8. All 

statistics are collected by WAN Emulator. It can 
collect only per-second mean statistics, which leads 
to unclear view of bottleneck buffer load level in the 
different states on some plots. 

Results of first experiment with 10Gbps 
bottleneck bandwidth and 10 ms RTT are presented 
in figure 3. Such bottleneck buffer load level 
deviations (highlighted zones) are caused by the 
current RTT measurement solution in RMDT ver. 
0.97 alpha, however this issue has no significant 
effect on bottleneck bandwidth utilization or 
performance of the control itself. 10 Gbps data rate 
was achieved with 6 Mbytes bottleneck buffer load in 
the Control state. 

Second experiment with 10 Gbps bottleneck 
bandwidth and 50 ms RTT is shown in figure 4.  The 
highlighted zone shows here the bottleneck buffer 
load during the Gain state (rapid growth of send data 
rate and bottleneck bandwidth estimation). It allows 
to make measurements of maxRTT and congestion 
reporting.  10 Gbps data rate was achieved with 
13 Mbytes bottleneck buffer load in the Control state. 

As shown in figure 5, in terms of next experiment 
with 10 Gbps bottleneck bandwidth and 100 ms RTT. 

Figure 3: Test 1: BBW 10 Gbps, base RTT 10 ms, 
single flow. 

Figure 4: Test 2: BBW 10 Gbps, base RTT 50 ms, 
single flow. 
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10 Gbps data rate was achieved with 30 Mbytes 
bottleneck buffer load in the Control state. 

Figure 6 demonstrate single flow experiment with 
10 Gbps bottleneck bandwidth and 150 ms RTT. IP 

network is a system with high transport delays, 
however PID-based congestion control acts quite 
effective even

 in high speed networks with large RTT. 
However, various RTT/ BBW cases require  

different presets done by Manage state for PID-
controller. Higher RTT require more bottleneck 
buffer memory in a relatively current realization of an 
algorithm (figures 3-7). 10 Gbps data rate was 
achieved with 43 Mbytes bottleneck buffer load in the 
Control state. 

Last single flow experiment with 10 Gbps 
bottleneck bandwidth and 200 ms RTT is presented 
in figure 7. Highlighted zone shows the transition 
from Manage state (drop data rate and omitting 
bottleneck buffer) to Control state (growth of buffer 
load to SP). 10 Gbps data rate was achieved with 
59 Mbytes bottleneck buffer load in the Control state. 

Figure 8 shows fair network resource sharing test 
by two PID-based congestion control flows, with 

5 Gbps bottleneck bandwidth and 50 ms RTT. 
Highlighted zone shows overload of bottleneck 
buffers in the Gain state of flow 2. After Gain state 
cross-interference, both flows come to such SP‘s, that 
result in low bottleneck buffer load.  2.53 Gbps rate 
was achieved in sharing by flow 1 and 2.46 Gbps by 
flow 2 (5 Gbps in total). Bottleneck buffer load before 
interaction is near 14 Mbytes by only flow 1 and 
17 Mbytes in sharing by two flows. 

 
Figure 7: Test 5: BBW 10 Gbps, base RTT 200  
ms, single flow. 

 
Figure 8: Test 6: BBW 5 Gbps, base RTT 50 ms, two  
flows in one link. 

6 CONCLUSION & FURTHER 
WORK 

This article presents the results of the investigation of 
a PID-based congestion control solution. Basic tests 
with UDP-based transport protocol show that 
proposed so

lution has following features: it is scalable, keeps 
bottleneck buffer load on some low level and 
achieves high throughput with minimal losses. Fair 
resource sharing is achieved by dynamically 

changing the RTT setpoint within the Manage state of 
the proposed algorithm. For long fat networks a PID-
based congestion control is also can be used, but it 
requires additional RTT setpoint fitness algorithm, 

 
Figure 5: Test 3: BBW 10 Gbps, base RTT 100  
ms, single flow. 

 
Figure 6: Test 4: BBW 10 Gbps, base RTT 150  
ms, single flow. 
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for keeping bottleneck buffers on lower level. It is 
under active development; next steps include 
additional auto tune loop for more precise scalability 
to any bandwidth and any delays; more intelligent 
setpoint management; fairness with TCP congestion 
control algorithms; boost performance in wireless 
networks. 
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