
57

Connection Establishment Algorithm for Multi-
destination Protocol

Sergii Maksymov, Dmitry Kachan, Eduard Siemens
Department of Electrical, Mechanical and Industrial Engineering

Anhalt University of Applied Sciences
Bernburger Str. 55, 06366 Köthen, Germany

E-mail: {s.maksymov, d.kachan, e.siemens}@emw.hs-anhalt.de

Abstract—connection establishment is a fundamental
function for any connection-oriented network protocol and the
efficiency of this function defines the flexibility and
responsiveness of the protocol. This process initializes data
transmission and performs transmission parameters
negotiation, what makes it mandatory process and integral
part of entire transmission. Thus, the duration of the
connection establishment will affect the transmission process
duration. This paper describes an implementation of a
handshake algorithm, designed for connection with multiple
peers, that is used in Reliable Multi-Destination Transport
(RMDT) protocol, its optimization and testing.

Keywords: multi-destination; handshake; connection
establishment; network protocol.

I. INTRODUCTION

[Sergii Ma1]Reliable Multi-Destination Transport
(RMDT) is a protocol designed to deliver data from one
source (sender) to multiple destinations simultaneously,
accurately regardless network impairments.

It is implemented as a C++ library and aimed to
effectively transmit the same data to multiple recipients.
During transmission the only one sending instance is created
which initializes a common buffer for all recipients, thus it
utilizes less system resources and performs minimum copy
operations during the transmission process. Big amount of
data can be transmitted to many recipients with less load on
a system. The protocol is aimed to send data within whole
available bandwidth, what is especially important for Long
Fat Pipes – links with high bandwidth and latency. Such
links are unsuitable for legacy protocols, primarily
Transmission Control Protocol (TCP), which is not able to
utilize the full bandwidth within high latency links [1].

To provide its benefits RMDT requires a performance
hardware that supports multi-threading and has enough
memory to allocate big buffers (up to 1000 MB). Sending
and receiving operations are split into 2 threads. One thread
is responsible only for reception and another one – only for
sending. Sender side application has additionally Event
thread, which is responsible for data preparation within
buffers and processing of acknowledgments from recipients.

II. BACKGROUND AND RELATED WORK

Multi-destination data delivery is closely related to
multicast, but implies a uni-direction transmission. The
RMDT protocol is based upon UDP and can be considered,
from the network point of view, as the set of multiple
unicast streams which transport data in one direction from
sender to recipients. Due to this fact, the experience of the
legacy transport protocols can be used to design the
connection establishment function of RMDT.

The well-know TCP utilizes three-way handshake
algorithm [2] to establish a connection, see Figure 1. The
server should be switched into LISTEN state, this action is
called Passive Open. In the LISTEN state server is able to
accept a connection request, Synchronization (SYN) packet.

The connection request must be acknowledged by the server
along with negotiation of transport parameters (SYN+ACK
packet), primary Initial Sequence Number (ISN)
negotiation. The Sequence Number is a number representing
a sequence number of the first byte of data in a segment. At
the moment of connection establishment, this number is
chosen from a special counter [2], that ticks every 4 μs, to
eliminate conflicts between different TCP connections. The
most basic reason for this is to detect duplicate SYNs and to
distinguish the SYN packet belongs to the same connection

Fig. 1. Three-way handshake process for TCP connection establishment
[2]

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

58

or it is a part of a new connection, in the case of lost
message during 3-way handshake, for example. The ISN is
also used against IP-spoofing technique, but with enhanced
degree of randomization [4]:

Where, C(t) – value of the counter, Laddr , Lport – local
address and port, Raddr ,Rport – remote address and port,
key – a random value chosen by the host on startup. Any

hash function can be used, but as written in [4], MD5 hash
function is recommended, as it is well supported by different
hardware and has a lot of implementations. Such ISN
generation complicates IP-spoofing attacks.

III. 2-WAY HANDSHAKE WITH MULTIPLE PEERS

In the case of point-to-multipoint data delivery protocol
all the destination points should be notified and connected.
This fact introduces some difficulties, because an error
triggered by one peer might fail or, at least hinder the
common connection establishment process. The increase of
amount of receivers leads to the probability of such a failure
increase. That is the major distinction from point-to-point
connection establishment. In RMDT the 2-way handshake is
performed with each peer. Sender initiate a connection by
sending Handshake Request (HS Request) packets to each
of the receivers and then waits for their responses. Receiver,
in turn, waits for this HS Request from the beginning.
Request contains transmission session parameters, such as
Initial Sequence Number, Receiver ID, Maximal Segment
Size and protocol Version Number, see Figure 2. This

parameters are checked and set at the receiving application.
Then it must send Handshake Response (HS Response)
which is expected by the sender for some amount of time.
The sender gathers HS Responses during specified time
interval from the recipients and then repeats the send
operation to those of them which did not responded.
Connection is established when all the recipients have
responded. It might happen, so the handshakes cannot be
exchanged with one or more recipients and the connection
would never be established, so the process of handshake will
freeze. For such a situation there is a timeout for connection
operation, which can be set by the application. In the case of
timeout, connection will be also established, if at least one
recipient have responded, but an application will be warned
about the fact of timeout. This mechanism relieves an
application from possible freezing of the connection
establishment process.

Because RMDT library runs in 3 threads, there is an
Inter-Thread Communication mechanism via queues and
notification method of conition_variable object provided by
the Standard C++ Library and which is used by the

handshake process implementation. The implementation is
based on two timeouts: timeout for overall process duration
and timeout for responses expectation. The first one
guarantees that the connection will last no longer then the
specified time interval regardless the result of the handshake
process, thus protecting against unnecessary hanging inside
this process. The second one lets the process to use system
resources more effectively and not to flood the network with
frequent HS Requests. This timeout has one feature: the
process can be waked up before this timeout, when the HS
Response comes. This feature allows to save the time on
connection establishment in the case, when all the expected
responses are come before the timeout. Presence of this
feature distinguish two versions of the handshake process
implementation – asynchronous and synchronous.

The synchronous handshake is performed in the same
way, but its duration is aligned to the specified time period
for HS Responses expectation. Owing to the fact that
operation status check is performed after timeout at each
iteration of this algorithm. The flowchart of the algorithm is
shown in the Figure 3.

The asynchronous handshake operation is more
responsive, but has a small overhead in form of inter-thread
communication and thread synchronization comparing to
synchronous one. But it is insignificant for performance
systems that the library is designed to.

IV. TEST-BED AND DESCRIPTION OF EXPERIMENTS

To test the protocol a 10 Gbps network, shown in Figure
4, is used. This network is located in the laboratory Future
Internet Lab Anhalt (FILA) [5] and is used for experiments
and protocol testing. With the help of this network the two
implementations of handshake process were tested, namely

ISN=C(t)+hash(Laddr ,Lport ,Raddr , Rport ,key)
(1)

Fig. 2. Packet headers - A) RMDT control packet header; B) Handshake
Request packet header.

Fig. 3. Flowchart of the asynchronous handshake process.

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

59

measuring the duration of the connection establishment in
different conditions of both synchronous and asynchronous
implementations. The network interconnects 4 multicore
servers with 10 Gbps interfaces, 2 Extreme Networks
Summit x650 10 Gbps capable switches and 2 network
emulators Apposite 10G. Detailed configuration of the
servers is shown in the Table I.

TABLE I
CONFIGURATION OF THE SERVERS

The Apposite 10G network emulator allows to introduce
in the network different impairments, such as packet delay
and packet loss with high accuracy up to nanoseconds [6].
Moreover, it displays and controls link capacity passing
through the emulator.

Extreme Network Summit X-650 10Gbps switches
perform layer 3 packet switching. All the connections are
implemented with optical fiber links and have capacity of
10Gbps.

Experiment scenario is to initialize data transmission
from source (Germany) to 3 destinations (Brazil, Argentina,
Kazakhstan) using the RMDT test application and measure
the duration of the handshake process in the network with
low impairments: 50 ms of Round-Trip-Time (RTT) and no
packet losses. The second scenario introduces more
impairments into the links: up to 250 ms of RTT and up to
0.7% of packet losses. These parameters are even more
worse than the real links between Germany and USA, for
example. In both scenarios the synchronous and
asynchronous implementations are compared.

V. EXPERIMENTAL RESULTS

The experiments are divided into 4 groups by allocated
send buffer size – 10 MB, 100 MB, 500 MB and 1000 MB,
because the buffer allocation time depends on its size. For
each of the buffer sizes, 10 measurement iterations were
done for both implementations, so 20 in total. Multiple
measurements are done to get more precise results, because
the system activity affects experiment results.

The results have very slight deviation, so it can be hardly
seen in the Figure 5.

The asynchronous handshake takes almost 20 times less
time then the synchronous one within good link (50 ms
RTT) and about 4 time faster within link with more
impairments (250 ms RTT and 0.7% of packet losses).
Impact of packet delay can be easily seen on the
asynchronous handshake plot (the black line), 200 ms
increase is clear, but it is invisible in synchronous
handshake plot. It is pretty clear, that the timeout in
synchronous handshake implementation is major factor that
defines the duration of the handshake.

TABLE II
EXPERIMENT RESULTS WITHIN GOOD LINK (AVERAGE)

Buffer
size,
MB

Asynchronous
implementation, s

Std.
deviation

Synchronous
implementation, s

Std.
deviation

10 0,050509 0,000031 1,000868 0,000181

100 0,050504 0,000025 1,000756 0,000087

500 0,050497 0,000031 1,000781 0,000059

1000 0,050512 0,000028 1,000806 0,000019

The numbers in the Table II and Table III contains the
mean handshake duration obtained from experiments. As it
was mentioned above, the duration of the synchronous
handshake is aligned to the timeout for HS Responses
expectation, which is 1 s in our experiments. There can be
smaller value specified for this expectation, in other words
sleep of the thread, but in this case the network link will be
overloaded by frequent HS Requests send, what is redundant
and dangerous especially for links with high latency.

Server name Linux kernel CPU RAM
Germany 4.2.0-23-generic

x86_64
2x Intel Xeon
X5690 (6-core) 3.5
GHz

40 GB DDR3
1066 MHz

Brazil 3.13.0-37-
lowlatency
x86_64

2x AMD Opteron
4238s (6-core) 3.3
GHz

32 GB DDR3
1333 MHz

Argentina 3.13.0-35-generic
x86_64

2x AMD Opteron
4238s (6-core) 3.3
GHz

32 GB DDR3
1333 MHz

Kazakhstan 3.13.0-45-generic
x86_64

2x Intel Xeon E5-
2630 (6-core) 2.3
GHz

64 GB DDR3
1333 MHz

Fig. 4. Network topology

Fig. 5. Experiment results (with std. deviation).

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

60

TABLE III
EXPERIMENT RESULTS WITHIN BAD LINK (AVERAGE)

Buffer
size, MB

Asynchronous
implementation, s

Std.
deviation

Synchronous
implementation, s

Std.
deviation

10 0,250000 0,000033 1,000000 0,000011

100 0,250406 0,000011 1,000512 0,000008

500 0,250415 0,000011 1,000513 0,000006

1000 0,330370 0,252299 1,000515 0,000009

VI. CONCLUSION

There is a need of reliable and fast point-to-multipoint
data delivery, especially on the side of huge content
distributors. And there is also a lack of new ideas regarding
such kind of data transmission. Thus, design of multi-
destination protocol, which is aimed to correspond
contemporary data delivery requirements and to be able to
effectively utilize the available hardware resources is in
demand. Connection establishment process of such protocol
requires attention as it is the fundamental function of the
data transmission.

Designing the handshake operation, two approaches were
developed and compared, synchronous and asynchronous
one. The asynchronous handshake implementation
demonstrated much effective work, especially within the
links with good parameters, which are widely used over the
world, for example link from [Sergii Ma2]Berlin to Moscow
or from Madrid to Tokyo . This approach has the only
drawback that it has some overhead on resources utilization
due to inter-thread communication, but it is insignificant for
contemporary systems which are required for RMDT.

VII. FURTHER WORK

The further work on the protocol will be focused on
implementation of the rest necessary features, namely
congestion control based on the Available Bandwidth
Control (ABC) [7] and finalize the session management to
isolate the recipients with different throughput. And much
further work will be aimed on inspection of the security
issues, because for now the security of the protocol
completely relies on the security aspects of underlying UDP.
Besides, there is a research can be performed on the security
issues of the connection establishment, for which the
experience of the TCP with IP-spoofing can be used to
prevent similar attacks.

REFERENCES
[1] D. Kachan, E. Siemens, and V. Shuvalov, “Comparison of

Contemporary Solutions for High Speed Data Transport on WAN 10
Gbit/s Connections,” J. Commun. Comput., vol. 10, no. 6, pp. 783–
795, 2013.

[2] “The TCP/IP Guide - TCP Connection Establishment Process: The
‘Three-Way Handshake.’” [Online]. Available:
http://www.tcpipguide.com/free/t_TCPConnectionEstablishmentPro
cessTheThreeWayHandsh-3.htm. [Accessed: 01-Mar-2016].

[3] R. Braden, “Requirements for Internet Hosts - Communication
Layers.” [Online]. Available:
http://tools.ietf.org/html/rfc1122.html#page-87. [Accessed: 07-Mar-
2016].

[4] S. Bellovin, “Defending Against Sequence Number Attacks.”
[Online]. Available: http://tools.ietf.org/html/rfc1948.html.
[Accessed: 07-Mar-2016].

[5] “F I L A.”, [Online]. Available: http://fila-lab.de [Accessed: 07-Mar-
2016].

[6] “Apposite Technologies :: Netropy 10G2 Network Emulator.”
[Online]. Available: http://www.apposite-
tech.com/products/netropy-10G2.html. [Accessed: 07-Mar-2016].

[7] D. Kachan, E. Siemens, and V. Shuvalov, “Available bandwidth
measurement for 10 Gbps networks,” in 2015 International Siberian
Conference on Control and Communications (SIBCON), 2015, pp.
1–10.

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016

