
51

Abstract— In this paper a utilization of the high data-rates 
channels by threading of sending and receiving is studied. As a 
communication technology evolves the higher speeds are used 
more and more in various applications. But generating traffic 
with Gbps data-rates also brings some complications. 
Especially if UDP protocol is used and it is necessary to avoid 
packet fragmentation, for example for high-speed reliable 
transport protocols based on UDP. For such situation the 
Ethernet network packet size has to correspond to standard 
1500 bytes MTU[1], which is widely used in the Internet. 
System may not has enough capacity to send messages with 
necessary rate in a single-threaded mode. A possible solution is 
to use more threads. It can be efficient on widespread multi-
core systems. Also the fact that in real network non-constant 
data flow can be expected brings another object of study –- an 
automatic adaptation to the traffic which is changing during 
runtime. Cases investigated in this paper include adjusting
number of threads to a given speed and keeping speed on a 
given rate when CPU gets heavily loaded by other processes 
while sending data.

Keywords: high-speed data transport, threading, automatic 
resource management.

I. INTRODUCTION

High-speed content delivery is a service that is more and 
more demanded by society over the time. And for some 
purposes, like a transmission of huge amount of data, TCP 
may be not appropriate and another reliable transport 
protocol is needed. UDP serves as a base for such protocols.

Protocols that are built on top of UDP (for example: 
RBUDP [2], UDTv4 [3], RWTP [4], RMDT [5]) rely on the 
message consistency. Thus, it is crucial that MTU of the 
generated message will not be bigger than maximum size of 
the data field of the frame used in channel layer. This 
requirement especially important for high-speed transport 
protocols and solutions [6][7]. For Ethernet standard MTU 
size is 1500 bytes. 

Unlike TCP sockets, UDP sockets preserve message 
boundaries [8]. This is why it is safe to queue multiple calls 
to the system as message consistency will not be violated. 
This fact allows creation of a multi-threaded UDP sender 
and receiver, which can be used in different kinds of UDP-
based protocols for reliable transmission. Flexible thread 
handling with automatic resource allocation and control 
over threads parameters can simplify development.

For threads management there are certain problems to be 
solved:

1. Data rate control.
2. Automatic resource allocating.

For send rate regulation certain means need to be 
implemented for the ability to generate messages with a 
constant data-rate and change it in a runtime. To 
automatically allocate resources – an algorithm of making 
decisions about allocation that are based on information 
which can be collected without significant overhead should 
be added . Because of the fact, that traffic parameters can 
vary or amount of system resources, that are available for 
the application, may be changed while the application is 
running – mentioned functionality is important for such a 
system.

II. RELATED WORK

Research [9] shows the basic problems of traffic 
generating for a 40 Gbps channel. It is comparing different 
traffic generators for network testing: DITG, packETH, 
Ostinato. For experiments held in [9] payload varies from 64 
to 8950 bytes. Both TCP and UDP traffics were measured. 
Results describe the exact problem that is studied further in 
this work: none of traffic generators is capable of achieving 
the full bandwidth utilization, unless packets with the high 
payload were used. In case of D-ITG even using 8950 bytes 
payload was not sufficient. Although, authors in [9] use 40 
Gbps link, the problems remains for a 10 Gbps link, as on 
packet size of 1500 bytes, traffic generators were unable to 
achieve 10 Gbps. 

Solution, suggested in [9], is to utilize system resources 
by using threading. It shows that, when D-ITG is using 16 
threads, the higher data-rate can be achieved with less 
payload per packet, in comparison with D-ITG running in a 
single-threaded mode. Same approach for achieving higher 
data-rates is used in this work and researched deeper. 

In paper [10] authors also suggest using multi-threading 
for sending and receiving. Among other subjects studied, 
research shows bottlenecks of achieving close to channel 
capacity performance. Using threading helps to get high 
bandwidth utilization for channels with high data-rates. The 
handling of such systems is studied in [10] by researching 
the effects of system parameters on a throughput. 

In this work handling of multiple threads and 
management of them is studied further from algorithmic and 
practical point of view. 

High-speed UDP Data Transmission with 
Multithreading and Automatic Resource Allocation

Dmytro Syzov, Dmitry Kachan, Eduard Siemens 
Anhalt University of Applied Sciences - Faculty of Electrical, Mechanical and Industrial Engineering, 

Bernburger Str. 57, 06366 Köthen, Germany
E-mail: {dmytro.syzov, d.kachan, e.siemens}@emw.hs-anhalt.de

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016



52

III. METHODS

Several algorithms for solving problems described in 
introduction are presented in this section. They are 
implemented using “High Precision Timer” library [11] to 
get accurate time as they heavily rely on time stamps and to 
implement precise thread sleeping mechanism.

Data rate can be controlled in different ways:
1. Basic principle is blocking(force the thread to sleep 

some time) each thread for a specific time to 
decrease data-rate. They may have the same delay 
time or different if necessary. After each sending, 
time of the next message sending is calculated. It 
can be done by adding to the previous expected 
time a given time delay. 

2. Other way is to add delay to the current time after 
sending. 

The first approach will have different effect than the 
second. If a sender process is constantly delayed for some 
time due to some external influence, for example the other 
process is using the same CPU resource, and after that 
resource has been freed – the thread will start sending 
packages frequently until the real sending time will meet 
ideal expected time. The second approach does not give rate 
more than requested and application will try to keep the data 
rate constant. 

To get the ability to change speed during runtime threads 
periodically update information about size of its inter-packet 
time interval. Threads do not necessarily have the same send 
rate, it can be assigned individually. 

Initial inter packet interval time for each thread is 
calculated by formula (1):

Tinterval=
MSS×8×Nth

R
, (1)

where
Tinterval – an inter-packet interval for a thread; MSS –

MSS of a packet to be sent by a thread in bytes; 8 –

constant amount of bits in one byte; Nth – given amount of 
threads; R – a data-rate of the whole multi-threaded system 
in bytes per second.

Other method is used to automatically handle threading. 
The information, used to make a decision about running or 
stopping sender thread is: 

• the time of a full send loop (that can include, apart 
from send() system call, message generation, 
additional calculations, etc.), 

• time of sending,
• time lag – the difference between actual sending 

time and expectation time (time when message 
should be sent to achieve given speed).

More precise, the time lag can be sufficient for a decision 
to spawn send processes, but additional time-related data 
give more information about sender behavior.

Approach is based on the assumption that if a total time 
lag of all threads is higher than zero, then capacity of 
existing threads is not enough. If it is less than zero, it is 
assumed that existing threads have more capacity than 

needed to achieve requested rate. 
Theory behind this assumption is that if a thread can not 

send within a given time interval it will accumulate within 
each iteration the difference between target time for sending 
and factual time – time lag. Another case, when thread can 
perform the send operation within shorter period than the 
given inter-packet interval, this will result in an 
accumulation of the time it has to wait by blocking itself 
manually. Resulting lag – positive or negative difference – is 
used to evaluate current performance. Flow chart that 
illustrates algorithm is presented in the Fig. 1.

in the Fig. 1:
Tinterval – the inter-packet interval for a thread; Stat – a

structure that contains the information about time 
parameters and collected at the end of the sending 

session; T positivelag – variable that accumulates the 
difference between expected and factual time of sending 

messages; Tnegativelag – variable that accumulates the time 
spent on waiting, caused by manual blocking; Process –

boolean variable that is used to stop thread; Tnext – time 

when next send call should be made; Now() – “High 
Precision Timer” function that provides current 

time; Send() – UDP send call; Texchange – time when next 
data exchange between sender and main threads should be 

Yes

Fig. 1. Flowchart of a sender thread 

Yes

Yes

No

No

No

No

Manager thread

Manager
thread

Manager thread

Manager thread

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016



53

made; Texchangeinterval –interval between such exchanges.
One specific thread manages all others to perform  the 

functionality described previously: collecting information 
from other threads, adjusting necessary parameters and 
initiating spawn of a thread. This manager thread is blocked 
most of the time, and it unblocks periodically for performing 
its functionality. 

An ideal case is when necessary rate is achieved without 
blocking and, thus, system resources are maximally utilized. 
If the requested data rate is not equal to a multiplication of a 
certain amount of threads' maximum generating rate – then, 
to achieve given rate, some thread blocking must be 
performed and at least one of the threads will have time lag 
less than zero.

IV. TESTBED TOPOLOGY DESCRIPTION

The core element of the tested topology is WAN emulator 
AppositeNetropy 10G [12] that can be used to create an 
emulation of WAN links with different impairments such as 
packet loss ratio  up to 100%, delays of up to 100000ms and 
delay jitter with an accuracy of about 20ns. The Emulator 
allows a transmission of Ethernet traffic with an overall 
throughput of up to 21 Gbps on both, copper and fiber optic 
links. Apart from Netropy, setup contains two PC servers. 
They are connected via an Extreme Networks Summit x650 
10 Gbps Ethernet switch and the WAN Emulator. Fiber 
optics with 10 Gbps bandwidth acts as a medium for 
transmission between compartments. There is no 
background traffic used for experiments, since in the focus 
of presented investigations is research of the pure traffic 
generation.

Each server is equipped as follows:
−CPU: Intel Xeon X5690 @3.47GHz;
−RAM: 42 GiBytes (speed 3466 MHz);
−OS: Linux CentOS 6.3;
−NIC: Chelsio Communications Inc T420-CR, 10Gbps
Also, for comparison of the performance on a different 

system, some tests were performed on servers with different 
CPU: Intel Xeon E2630 @2.30GHz.

V. EXPERIMENTAL RESULTS

Firstly, the performance of the sender is compared for a 
different amount of threads, MSS and speed. MSS is taking 
following values: 1024, 1472, 8972 bytes. Data-rate that 
were tested is 10 Gbps. 

First experiment is for MSS of 1472. Results of the 
experiment for 10 Gbps rate are presented in Fig 2. Since 
1472 bytes MSS corresponds to 1500 bytes MTU in 
Ethernet [1] this test is especially important to the 
experiment as its results are of interest for transport 
protocols, used in TCP/IP networks, which often use 
Ethernet technology on the channel level. As was mentioned 
in the introduction, the consistency of a message is a hard 
condition for the protocols built on top of the UDP protocol.

Fig. 2. Dependence of the datarate from the amount of threads, 
MSS 1472

As can be seen on the graphs, frames with size of 1500 
bytes does not meet speed requirements when only one 
sender is present. When the amount of threads is higher than 
number of cores (or Hyper-threads) the opposite effect can 
be observed. The overhead of context-switches decreases 
performance rapidly. Thus, the data-rate of traffic generating 
is limited by the amount of CPU threads. 

Additional test, run on the CPU with lower frequencies
but same amount of CPU threads, gave same behavior, but 
higher number of senders is needed to achieve 10 Gbps.

Fig. 3. Datarate dependence from the amount of threads       

Next, two traffics with significantly different MSS are 
tested to check if the same pattern can be observed for other 
packet sizes, and discover possible dependencies.
Results for 10 Gbps are presented on the Fig. 3 and Fig. 4.

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0

2

4

6

8

10

12
MSS 1472

Amount of trheads

Da
ta

ra
te

, G
bp

s

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0

2

4

6

8

10

12 MSS - 1024

Amount of threads

D
at

ar
at

e,
 G

bp
s

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016



54

Fig. 4. Datarate dependence from the amount of threads.

It is clearly visible that the bigger MSS makes achieving 
higher speed easier. Also, whereas at lower number of 
threads there is a clear difference in speed, when CPU's 
threads limit is reached the speed drop is approximately the 
same in both cases. Thus, conclusion is made that using 
maximal MTU for the channel is beneficial and has no 
negative influence.

Receivers were also tested and, as they handle traffic 
much faster than senders,  3 reception threads  are sufficient 
for any MSS or speed, used for experiments held in this 
work. Thus, this part of system is less critical than sender 
side as it requires less resources and for tested system does 
not have large difference in number of threads in the studied 
cases. It is clearly dependent from speed – higher rates need 
more threads. In this experiment no automatic receivers' 
allocation was implemented – testing is performed by 
manually stating the number of receivers. 

Test was made with an application that does not control 
data rate by manual blocking to compare how system 
handles multiple senders by itself. This resulted in a 
different form of traffic as it has more fluctuations than 
traffic generated by application that implemented manual 
blocking threads. Other result is higher number of errors 
caused by trying to access a resource which is taken by 
another process.

For comparison, simple send threading was also 
performed on a PC that has processor with lower frequency 
(number of CPU's threads is still 12). Rate generated by 
each thread is lower on CPU with lower frequency. A sender 
on a 2.3 GHz processor has 3.2 Gbps rate (MTU – 1500). A 
sender on a 2.47 GHz CPU creates 3.9 Gbps traffic.

Auto-spawning sender threads were tested with different 
speeds, initial amount of time, and time interval between 
evaluations. The fluctuations of the time lag are around one 
sender loop time, which corresponds to the mean value of 
3.5 µs with standard deviation of 1.4 µs on the tested setup. 
Thus, whereas the time lag that is considered to be sufficient 
for spawning new thread is dependent on a particular 
situation, it is unsafe to take the decision based on a sign of 
a time lag, as it may lead to changing amount of threads 
because of a random small deviation. Some limit must be 
given to prevent unjustified thread spawning. Although not 
all causes for the fluctuations are clear from this experiment 
it is clear that higher limit gives less probability to spawn 

redundant process, but higher probability of not getting 
requested speed. Higher thread-spawning limit of lag gives 
wider interval of allowed data rates. The requested speed is 
only one value from this range.

At last, behavior of the application under utility “stress”, 
which is an utility for imposing load on a system for Linux 
[13], is checked. Tests showed that new thread is started on 
the first information analysis (which is performed by main 
thread) after “stress” uses cores that are already used by 
senders. Interval between information gathering and 
analysis used it tests is 0.5 second. At this stage of 
development for each 0.5 seconds only one thread can be
initialized. Thus it takes 1 second to achieve 10 Gbps rate if 
only one sender was initialized at the start of the application.

VI. CONCLUSIONS

The behavior of a single-thread traffic generator is 
examined in a real network. With MTU of 1500, using 
single sender, 10 Gbps data rate is not achievable on a tested 
topology. Using multi-threaded send and receive methods 
proved to be a working solution as it allows to achieve 10 
Gbps speed which is full bandwidth of a tested topology. 
Theoretically it allows to get any rate, supported by network 
equipment, though it is limited by the amount of CPU 
threads. Increasing MSS results in higher speed per thread.

When the amount of threads is higher than number of CPU 
threads the opposite effect can be observed. The overhead of 
context-switches decreases performance rapidly. This is 
observed for all tests with different packet sizes and data 
rates. Thus, the data-rate of traffic generating is limited and 
if necessary data rate is not achieved with CPU, fully loaded 
by application, the conclusion about impossibility to provide 
requested rate can be made. 

[Dmitry Ka1]The automatic thread management basic 
algorithms proved to be working in a simple environment 
with constant traffic, although some deviations from 
theoretical behavior were experienced as, for example, time 
jitter or accidental rate decrease of a particular thread, while 
the others have the expected rate.

VII. FUTURE WORK

Possible continuation of this work is developing and 
testing more complex algorithm with advanced thread 
management and smart statistical data evaluation. 

First logical improvement of the existing application is the 
implementation of the automatic temporary stopping or 
permanently terminating thread. In this work only cases 
when rate is not achieved, but not the case of decreasing 
speed in time which brings necessity to free resources 
occupied by redundant threads. Also, algorithm of automatic 
receiver threads management has to be developed.

More tests should be run for different setups. Of special 
interest are tests with constantly changing traffic. Adaptation 
to such kinds of traffic is one of the main goals for 
algorithms described in this paper. Based on the results of 
such testings, they have to be improved to be able to handle 
variety of situation correctly.

Next step could be combining functions of pure send and 
receive with other, often used, operations – for example I/O.

Finally, if all functionality will be proved to work 
correctly, it can be tested as a part of an UDP-based 

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0

2

4

6

8

10

12 MSS - 8972

Amount of threads

Da
ta

ra
te

, G
bp

s

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016



55

transport protocol for high speed data transmission such as, 
for example, RMDT.

REFERENCES

[1] “RFC 894 - A Standard for the Transmission of IP Datagrams over 
Ethernet Networks.” [Online]. Available: 
https://tools.ietf.org/html/rfc894. [Accessed: 04-Mar-2016].

[2] E. He, J. Leigh, O. Yu, and T. A. DeFanti, “Reliable blast UDP: 
Predictable high performance bulk data transfer,” in Cluster 
Computing, 2002. Proceedings. 2002 IEEE International Conference 
on, 2002, pp. 317–324.

[3] Y. Gu and R. Grossman, “Udtv4: Improvements in performance and 
usability,” in Networks for Grid Applications, Springer, 2008, pp. 9–
23.

[4] S. Höhlig, “Optimierter Dateitransfer über 100 Gigabit/s,” in 100-
Gigabit/s-Workshop in Mannheim, Mannheim, Germany, Sep-2011.

[5] “Big Data Transmission | F I L A.” [Online]. Available: https://fila-
lab.de/index.php/our-work/big-data-transmission/. [Accessed: 09-
Mar-2016].

[6] D. Kachan, E. Siemens, Comparison of Contemporary Protocols for 
High-speed Data Transport via 10 Gbps WAN Connections.
Proceedings of 2nd International Conference on Applied Innovations 
in IT. Köthen, pp. 21-27, 2014 (DOI: 10.13142/kt10002.04);

[7] D. Kachan, E. Siemens, V. Shuvalov, Available bandwidth 
measurement for 10 Gbps networks. Proceedings in 2015 
International Siberian Conference on Control and Communications 
(SIBCON), 2015, pp. 1–10.

[8] Linux Programmer's Manual, Linux, p. “socket”.
[9] S. Srivastava, S. Anmulwar, A. M. Sapkal, T. Batra, A. Gupta, and V. 

Kumar, “Evaluation of traffic generators over a 40Gbps link,” in 
Computer Aided System Engineering (APCASE), 2014 Asia-Pacific 
Conference on, 2014, pp. 43–47.

[10] V. Vishwanath, T. Shimizu, M. Takizawa, K. Obana, and J. Leigh, 
“Towards terabit/s systems: Performance evaluation of multi-rail 
systems,” in High-Speed Networks Workshop, 2007, 2007, pp. 51–55.

[11] I. Fedotova, E. Siemens, and H. Hu, “A high-precision time handling 
library,” J. Commun. Comput., vol. 10, pp. 1076–1086, 2013.

[12] “Apposite Technologies :: Linktropy and Netropy Comparison.” 
[Online]. Available: http://www.apposite-
tech.com/products/index.html. [Accessed: 04-Mar-2016].

[13] Linux Programmer's Manual, Linux, p. “stress”.

Proc. of the 4th International Conference on Applied Innovations in IT, (ICAIIT), March 2016




