
47

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

Abstract—The modern computer systems that are in use
nowadays are mostly processor-dominant, which means that
their memory is treated as a slave element that has one major
task – to serve execution units data requirements. This
organization is based on the classical Von Neumann's
computer model, proposed seven decades ago in the 1950ties.
This model suffers from a substantial processor-memory
bottleneck, because of the huge disparity between the processor
and memory working speeds. In order to solve this problem, in
this paper we propose a novel architecture and organization of
processors and computers that attempts to provide stronger
match between the processing and memory elements in the
system. The proposed model utilizes a memory-centric
architecture, wherein the execution hardware is added to the
memory code blocks, allowing them to perform instructions
scheduling and execution, management of data requests and
responses, and direct communication with the data memory
blocks without using registers. This organization allows
concurrent execution of all threads, processes or program
segments that fit in the memory at a given time. Therefore, in
this paper we describe several possibilities for organizing the
proposed memory-centric system with multiple data and logic-
memory merged blocks, by utilizing a high-speed
interconnection switching network.

Keywords: Explicit parallelism, Field Programmable Gate
Array (FPGA), high-performance computing, processor
architecture and organization, processing in memory.

I. INTRODUCTION

Computers are an important part of the modern human
life, which cannot be imagined without the use of these
electronic devices. The purpose of these complex systems is
to perform data processing, data storage, data movement to
and from the computer, and control of the whole system
operation, [1]-[3]. These functionalities are provided by
several basic computer components, including: central
processing unit (CPU), memory (which is generally
hierarchically organized), input/output devices and
interconnection busses responsible for movement of data,
address and control signals.

The central processing unit is one of the most
complicated parts of the computer system that has ever been
created by the human beings. The processor has the main
role in the computer system, since it handles the instruction
and data flow, controls the communication with the memory
and input/output devices and thus coordinates the whole
system operation, [4]-[6]. As a result, computer architects

constantly face with the challenge to develop novel
architectural solutions that can maximize the computer
performance, while retaining the cost, power and functional
requirements. Regarding this, they should consider three
aspects of computer architecture design, such as: instruction
set architecture, organization (memory system, memory-
processor interconnect, internal processor), and hardware
logic design.

The constant race of the various computer technologies
resulted in a wide range of processor architectures, including
CISC, RISC, Superscalar, VLIW, EPIC, Vector, [6]-[13],
and Data Flow, [14]-[20]. These architectures provide
various benefits and drawbacks, and are characterized with
different ways of parallel programs execution, organization
and instruction set architecture. Each of them is developed
with the intention to overcome some of the problems of its
predecessors and thus to provide better computing
performances. However, besides the great advances in
computer systems technology, their architecture and
organization, the evolvement of multi-cores and various
parallelization techniques for program execution, current
computer architectures are still dominantly based on the
classic Von Neumann's model, [21]-[23]. Main focus and
prime role in this type of computer architectures and
organizations is dedicated to the execution units of different
type, and the memory is treated as slave element which main
function is to serve the execution units data requirements.

The existing model of processor-centric computer
architecture allows performance scale only if these two
conditions hold: the processing core has sufficient work to
do, so it can mitigate the cache miss latencies, and the
processor has enough bandwidth to load the changes into the
cache memory without excessive delay. However, the
contemporary technologies for memory production can’t
cope with processor’s requirements for data speed and
bandwidth. As a consequence, there exists definitely a
substantial gap of more than a couple of times between the
processor working frequency, and the available memory
data transfer speed, [24]-[27]. As a result, superscalar
processors, [28], which are capable to execute several
instructions per clock cycle, always lack of data, due to
lower memory working frequency and reduced number of
internal processor registers. Moreover, the Itanium EPIC
processor, [29], did not manage to achieve the expected
success, because of the problems with the memory speed.

A Novel Memory-centric Architecture and
Organization of Processors and Computers

Danijela Efnusheva, Goce Dokoski, Aristotel Tentov, Marija Kalendar
SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies

Karpos II bb, PO Box 574, 1000 Skopje, Macedonia
E-mail: {danijela, gocedoko, toto, marijaka}@feit.ukim.edu.mk

48

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

A few decades ago, in the 1990ties, some researchers
predicted that the memory behavior would be preponderant
over the global performance of the computer system. Their
proposals suggested integration of the memory and
processing elements into a single chip, creating memories
with processing capacity. This merged chip is known as:
smart memory, computational memory (C-RAM), [30]-[34],
processor in memory (PIM), [35]-[41], intelligent RAM
(IRAM), [42]-[49], etc. Recent work in this area lead to
several architectural approaches, which can be classified
based on the role of the merged chip: main processor(s) in
the system, special-purpose processor, co-processor or
intelligent memory system, [24]. For example, IRAM, [48]
is implemented as a vector co-processor to a general purpose
MIPS processor into the VIRAM single-chip computer.

The aim of this paper is to propose a novel memory-
centric processor architecture that provides a stronger merge
between memory and processing elements. This is achieved
by adding a processing hardware directly to the memory
blocks used for storing programs, thus allowing simpler
instruction decode and execution, easier management of
data requests, and direct communication between the
program (code) and data memory blocks, without the use of
registers. These logic-memory merged chips are named as
self-executing units. The memory-centric architecture
should be organized to work with multiple self-executing
units, in order to provide concurrent execution of all threads,
processes or program segments that fit in the memory, at a
given time. Therefore, in this paper we propose and evaluate
several models of computer system design with multiple
data memory blocks and self-executing units, connected via
high-speed interconnection switching network.

The paper is organized in five sections. Section two
presents the current state, discussing a variety of modern
processor architectures and organizations that are in use
today. Section three describes the novel memory-centric
architecture and its basic building blocks, providing details
about the hardware design and its verification. The next
section proposes several ways of organizing the proposed
memory-centric architecture with multiple self-executing
units. The paper ends up with conclusion, stated in the last
section.

II. STATE OF THE ART

The complexity of modern processor architectures and the
constant race of various computer technologies resulted in a
wide range of computer architectures, each with its own
advantages and disadvantages, but with the ultimate goal to
increase the overall computer system performances.
Therefore, the research of computer architects was aimed at
developing various mechanisms for parallel computing that
will provide efficient utilization of the system hardware
resources. Generally, there are three different forms of
parallel computing that have been created, including:
instruction- (execution of more than one instructions in a
single processor cycle), data- (execution of single
instruction stream on multiple data streams) and thread-level
parallelism, (concurrent execution of unrelated and distinct
tasks), [1]. Most modern computer systems support several
types of parallel processing in order to achieve better
computing performances.

One of the first computer architectures, such as the Intel
IA-32, belongs to the Complex Instruction Set Computer
(CISC) design which takes advantage of microcode and
supports a wider range of variable-length instructions, [6].
In order to reduce the complexity of these instructions and
to provide hardware-based control of their execution,
Reduced Instructions Set Computing (RISC) was
introduced, [7]. Further research led to the idea that dividing
the work of a single processor to multiple execution units
would speed up the instructions execution. This resulted
with superscalar and Very Long Instruction Word (VLIW)
architectures that were designed to take advantage of
Instruction Level Parallelism (ILP). A superscalar
architecture consists of a number of pipelines that are
working in parallel, and relies on hardware to detect and
overcome data dependencies. On the other hand, Very Long
Instruction Word (VLIW) architecture, [11], uses software
solution (compiler) to mark independent operations that can
be executed simultaneously. The limits of the parallelism,
defined by the length of the VLIW instruction is an issue
that has caused development of explicitly parallel instruction
computing (EPIC) architecture, [9]. Despite the advantages
of EPIC over VLIW, the IA-64 Itanium architecture could
not manage to solve all of VLIW’s problems. Other
alternative to the conventional control flow architecture in
providing concurrency in execution of programs is the
dataflow architecture, [20]. This architecture is only a
concept that has never been implemented in a real hardware.

Each of the discussed processor architectures is described
in table 1. The given table shows that pipelining is one of
the most used parallelization techniques. This ILP method
allows parallel execution of N different instructions in N
diverse pipeline stages, so the pipeline length is proportional
to the theoretical increase in speed, [2]. Further performance
improvements are achieved when multiple pipelines are
simultaneously executed on multiple execution units, like in
superscalar processors, [20]. Pipelining as an ILP method
can be also combined with vector processing, thus allowing
data-parallel vector operations to be executed on multiple
pipeline execution units, [5]. The achievable parallelism in
such processor is dictated by the number of execution units,
which also applies to other processor architectures that can
be organized to work with multiple execution units, like:
Superscalar, VLIW, EPIC and Data Flow.

The performance of computer systems primary depends
on the CPU execution time, which is secondary related to
the average memory access time, [25]. As a result, computer
architects are faced up to the problem of decreasing the CPU
execution time, while improving the memory bandwidth and
keeping the processor busy all the time. There are several
mechanisms that have been developed to target this
problem, including: multi-level cache memories, separation
of memories for storing programs and data (Harvard
architecture), speculative and re-order execution, branch
prediction algorithms, etc, [6]. Further improvements are
achieved by hardware parallelization i.e. use of multi-core
or multi-processor systems that support multithreading, [3].
This approach introduces more intensive work with the
memory resources, causing a bottleneck in the system. A
possible solution to this problem is integration of processing
modules into memory, such as the IRAM-based approach.

49

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

TABLE I
COMPARISON OF DIFFERENT PROCESSOR ARCHITECTURES

 Features

Program
execution

Parallel
Processing Parallelization Techniques Number of operations

in cycle
Instruction

Format
CISC
Architecture Control flow Yes,

instruction level
Each instruction executes

more operations
Depends on the instruction

complexity
Variable length

complex operations
RISC
Architecture Control flow Yes,

instruction level
Pipeline that implements

several stages
Depends on the pipeline depth

(4 or 5 stages)
Fixed length,

(usually: 16,32,64)

Superscalar
Architecture Control flow Yes,

instruction level Several parallel pipelines
Depends on the pipeline depth
(8 - 10 stages) and the number

of execution units

Fixed length,
(usually: 16,32,64)

VLIW
Architecture Control flow Yes,

instruction level

Fixed number of mini-operations
in instruction word

(implicit parallelism)

Depends on the number
of execution units

and mini-operations

Fixed length:
more mini-operations

in one word

EPIC
Architecture Control flow Yes,

instruction level

Variable, but limited number of
mini-operations in instruction

word (explicit parallelism)

Depends on the number
of execution units

and mini-operations

Variable length:
more mini-operations

in one word

Vector
Architecture Control flow Yes,

data level
Same operation is executed on
different fixed length vectors

Depends on the number
of execution units
and vector length

Fixed length,
(usually: 16,32,64)

Data-flow
Architecture Data flow Yes,

instruction level

Variable, but limited number of
instructions (depends on the

availability of input operands)

Depends on the number
of execution units

and active instructions
Packet instruction format

III. DESIGN AND VERIFICATION OF THE NOVEL
MEMORY-CENTRIC ARCHITECTURE

The standard Von Neumann based architecture
specifies a model of computer system, which consists of
memory and processing parts that are strictly separated. In
such a system, the memory is used to store both data and
instructions, and the central processing unit is purposed to
read and decode program code, load/store data to/from
cache or/and registers and execute arithmetical-logical
operations over the loaded operands. This organization
suffers from limited throughput (bottleneck) on the
processor-memory interface, caused by the memory and
processor speeds discrepancy. Actually, it is well known
that the memory system operates at an average access time
that is much greater than the processor execution time, [49].
This dissimilarity leads to many wasted processing cycles,
since the memory system is not capable to constantly feed
the CPU and keep it busy.

Assuming that the processor technology slowly reaches
its upper bounds on chip complexity and speed, we suggest
that the bottleneck problem should be targeted by
introducing novel concepts in computer architectures that
will provide closer tie between computing and memory
resources, and as well will allow higher utilization of
parallel computing. Therefore, our research is directed
towards the development of a novel memory-centric
computer architecture that organizes the memory system in
a completely different way from the long enduring Von
Neumann-based systems. In our approach, the memory
system is observed as a set of blocks, quite similar to the
virtual memory concept. Actually, in the first steps, the
memory is separated into many data blocks and a code block
that is enhanced with some processing and control
capabilities (see Figure 1b). We have named the logic-
memory merged block a self-executing unit, since it adds
some execution hardware into the code memory, used for
storing programs. Having this organization, the memory
system has complete control over the program execution
(instruction decode, data transfers and ALU operations).

Figure 1 presents the novel memory-centric architecture;
consisting of data memory blocks and a self executing unit,
connected through a bus interconnect. The data memory
blocks are responsible for storing the data used by the
programs. The self-executing unit is purposed to
immediately fetch and decode the instructions located into
the code memory block, and then issue data movement and
arithmetic commands over the bus. The operations are
performed over the selected data operands from a certain
data memory block, which is specified by a specialized
register, named memory block selector. Given that the
commands are directly executed, the system doesn't need to
include intermediate memory resources, such as processor
registers or cache memory, so they are not part of the initial
memory organization proposal.

Memory
(Program
and Data)

Cont rol unit

ALU

Cent ral processing unit

Registers
(PC, IR,

MAR, MDR,
Many GPRs)

a) Von Neumann computer architecture

Data
Memory
blocks

Data and
Inst ruct ion

Management
Unit

Execut ion unit

Self execut ing unit

.

.

.

.

.

.

PC
Memory block

selector

Code
block

1
2

N

b) Memory-centric computer architecture

Fig. 1. Comparison between the classical processor-centric and the novel
memory-centric computer architecture

50

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

The data are stored in the data memory blocks as 32-bit
signed integers, represented in second complement notation.
This abstraction can be further extended to allow use of 32-
bit floating-point numbers with single-precision, according
to IEEE-754 format, [50]. The data operands are directly
accessed via the interconnection bus, and then served to the
execution unit. The operations and the functionalities that
the system provides are defined in its instruction set.
Basically, the instruction set architecture of the proposed
system is RISC-like, and includes arithmetical-logical, shift,
branching and auxiliary operations. Each instruction is
fixed-length, typically specifying the operation code and the
operands, given as direct addresses or immediate values.
This is presented in Figure 2.

In order to decrease the instruction length, the system
utilizes the memory segmentation concept, allowing each
data memory block to be represented as a separate memory
segment. Accordingly, the self-executing unit is associated
with only one memory segment at a given moment. This
results with some simplifications in instructions formatting,
since the memory operands are specified as address offsets,
instead of complete addresses to the data memory block
(segment). The identification number of the active memory
segment is set by a special instruction that affects the
content of the memory block selector hardware. Therefore,
it is compiler's responsibility to provide efficient mapping of
memory segments, and thus to allow handling of data-
intensive operations without difficulties.

The memory-centric system allows several
functionalities, which are specified into its instruction set
architecture. Generally, the instruction set is divided into
four basic groups, each having several simple instructions,
with similar structure and function. The arithmetical-logical
group includes arithmetical instructions for: addition with
overflow detection, subtraction, multiplication, integer
division (div) and modulo division (mod), and as well
instructions for performing logical operations: logical bit-
wise AND, logical bit-wise OR, logical bit-wise XOR and
logical bit-wise NOT. The shifting group comprises several
instructions for left and right logical shift and rotations. The
branching group includes instructions for conditional and
unconditional change of the program flow. There are several
options for conditional branching, including: equal (=), not
equal (!=), less (<), greater (>), less or equal (<=), and
greater or equal (>=). The last group is the auxiliary group,
consisting of control instructions for program termination
and system halt, as well as memory instructions for:
constants loading, data transfers between memory blocks,
and updating of the memory block selector value.

Figure 3 presents a simple program segment that performs
addition of two integer numbers. According to that, it is
obvious that the memory-centric system reduces the number
of program instructions in comparison with the RISC-based
processor. This essentially comes from directly addressing
the memory data, without using processor registers. Besides
that, its instructions length is not longer than 40 bits,
meaning that the program size is significantly reduced. This
has a very positive impact on lowering the power dissipation
of the memory-centric system. Other benefit, which has to
be mentioned, is that the self-executing unit immediately
fetches and decodes the instruction, thus speeding up the
instruction execution. The only drawback of the novel
proposed system is that it has to operate on memory
working frequency. However, the approach of removing the
processor registers brings significant improvement and
simplification in the way programs are written, compiled
and executed. This is very suitable for applications that
perform data-intensive computations, such as: digital signal
processing, multimedia, network processing etc.

The proposed memory-centric architecture is
implemented in VHDL, by means of Xilinx ISE Design
Suite tool. This software environment includes ISim
simulator, used for functional analysis of VHDL models. In
addition to that, there are several other tools for hardware
synthesis and FPGA implementation. The FPGA technology
is utterly suitable for research purposes, due to its advantage
in terms of speed, cost, flexibility and ease of re-
programmability, [51]. Therefore, in this research we make
use of the XUPV505-LX110T Virtex5 FPGA board.

Figure 4 presents simulation results for the execution unit,
while performing five arithmetic operations over two integer
numbers: addition, subtraction, division, modulo division
and multiplication. The execution unit, which is part of the
self-executing unit, is described in VHDL as a module that
receives two 32-bit operands, operation code and chip
enable signal as an input and produces 32-bit result value
and additional bit for overflow detection as an output. The
simulation results shown in Figure 5 verify that the VHDL
model is completely functional. In addition to that, the
module has been synthesized and implemented in Virtex 5
logic, utilizing 1% of the slice registers, 4% of the slice LUT
resources, which is 5% of the occupied FPGA slice
resources. The synthesis results demonstrate that the module
can achieve maximal working frequency of 952.381MHz.

87

Fig. 4. Simulation results of the arithmetical operations performed by the execution unit: addition, subtraction, integer division, modulo division
and multiplication

Operation
code

Op1 Addr. offset/
Immediate value

Op2 Addr. offset/
Immediate value

Addr. offset
of the Result

6 bit 10 bit 10 bit 10 bit

Fig. 2. Instruction format of the memory-centric ISA

LOAD R1, Mem-addr1
LOAD R2, Mem-addr2
ADD R1,R2,R3
STORE R3, Mem-addr3

ADD Mem-addr1, Mem-addr2, Mem-addr3

Data transfer between
memory and registers Direct transfer of memory data

RISC-based processor Memory-centric system

Fig. 3. Program segment written in ISA of the RISC-based load-store
processor and the novel memory-centric system

51

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

The self-executing unit is responsible to directly fetch,
and decode instructions from the code memory block, and
then issue commands that are executed over data operands,
selected from a certain data memory block. Each data
memory block is described in VHDL as an array of 1Kx4B
data words, represented in second complement notation. The
32-bit data words can be also defined in IEEE-754 single-
precision format as floating-point numbers, but this would
require some additional modifications into the execution
unit hardware. The code memory block is also designed in
VHDL, as an array of 1K instruction words, wherein the
first location is used to preserve the address pointer value of
the current instruction, which is actually the program
counter value. The code memory block is associated with
only one data memory segment at a given moment, which is
configured through special block selector hardware. The
instruction execution and the data transfers are controlled by
the instruction and data management unit, which has
complete control over the execution unit, providing direct
communication with the associated data memory block.

The functionality of the complete system is analyzed
through the Xilinx ISE Design Suite environment, which
allows monitoring of the memory blocks state in each clock
cycle. Therefore, for simulation purposes, we have created a
test scenario with a simple program, presented in Figure 5
and an arbitrary data set. The program instructions are first
filled into the code memory block, and then executed over
the associated data memory block. The simulation results
presented in Figure 5 show that each instruction affects the
data memory block with some changes, every clock cycle.
Therefore, it is verified that the memory-centric system
operates properly.

IV. SEVERAL PROPOSAL FOR ORGANIZING THE NOVEL
MEMORY-CENTRIC ARCHITECTURE WITH MULTIPLE

SELF-EXECUTING UNITS

The proposed memory-centric architecture that utilizes
one self-executing unit and a set of data memory segments
can be organized to work with multiple self-executing units.
For this purpose, the system is expanded with multiple code
memory segments that have execution capabilities (see Fig.
6). The integration of processing hardware into memory is
very suitable for FPGA implementation, because the FPGA
technology is already designed as a reconfigurable network,
[52], of small memory and processing blocks.

The operating system is responsible to load the
parallelizable programs and their data into various code and
data memory blocks of the system. This means that each
code memory block holds and executes a separate thread,
process or program segment at any given moment. As a
result, the system achieves concurrent execution of all the
programs that fit into the code blocks memory.

Figure 6 presents the proposed organization of the
memory-centric system with multiple self-executing units
and many more data memory blocks (M>>N), connected
through a communication switching network. The switching
network provides direct communication of N self-executing
units with N data memory blocks, thus allowing parallel
execution of N independent programs.

There are several interconnection mechanisms, such as
AMBA, CoreConnect and Wishbone system-on-chip buses
that can be used when implementing communication
between multiple master and slave elements. According to
the analyzes given in [53] the Wishbone bus is most suitable
for the purposes of this research, basically because it is an
open-source interconnect that can operate in several
different modes, including: shared bus, pipeline and crossbar
switch. However, each of the proposed solutions provides
N-to-N mappings, which means that each code memory
block is associated with only one data memory block. This
can be very tricky if a program needs to operate on a larger
data set, spread out over several memory segments. In older
to resolve this problem, we propose a system that allows
reconfigurable use of data memory blocks (see Figure 7).

The proposed model, presented in Figure 7 introduces
several changes to the way data memory blocks are
organized and used by the programs. This system is capable
to assign a configurable number of data memory blocks to
each program segment. The basic idea behind this approach
is the use of prefixes that select a group of multiple data
memory blocks. These prefixes are very similar to the IP
prefixes used in computer networks for routing or IP
assignment purposes. The management of the prefixes is
performed by a special hardware (MMU), whose operation
is controlled by the operating system. Once the prefixes are
set, the communication switching network performs
matching of each self-executing unit with a group of data
memory blocks, selected by a given prefix. This approach
and its applicability are still subject of research, and there
are still some issues that need to be resolved.

Fig. 5. Simulation results of a simple program execution on the novel
memory-centric system

Self-execut ing
Unit 1

Self-execut ing
Unit 2

Self-execut ing
Unit N

.

.

.

Data memory
block 1

Data memory
block 2

Data memory
block M

Data memory
block 3

.

.

.

Communicat ion
Swit ching
Network

Fig. 6. Organization of the memory-centric system with multiple
self-executing units

Self-execut ing
Unit 1

Self-execut ing
Unit 2

Self-execut ing
Unit N

.

.

.

Communicat ion
Swit ching
Network

Memory
Management

Unit

Prefix1

Prefix2

PrefixN

Data mem.
block 1

Data mem.
block L+1

Data mem.
block K

. . .

Data mem.
block 2

Data mem.
block L+2

Data mem.
block K+1

Data mem.
block L

Data mem.
block L+4

Data mem.
block M

. . .

Data mem.
block L+3

. . .

Set of data memory blocks
organized in groups by prefix

Fig. 7. Proposed model of a memory-centric system, that allows
reconfigurable use of data memory blocks

52

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

V. CONCLUSION

The architecture and the organization of the computer
systems haven't evolved much in comparison with its
beginnings. Therefore, recent computer architectures are
still dominantly based on the classical Von Neumann's
computer model, which suffers from limited throughput on
the processor-memory interface. In order to solve this
problem, in this paper we propose a novel memory-centric
architecture that adds processing hardware directly to the
code memory blocks used for storing programs, thus
allowing immediate instruction fetch, decode and execution,
easier management of data requests, and direct
communication between the data and code memory blocks,
without the use of registers. The paper shows that the
memory-centric system reduces the number of program's
instructions and speeds up the instructions execution, thus
providing much better performance characteristics and
lower power consumption than traditional computer
architectures. The proposed memory-centric system is
designed in VHDL, and its correct operation is verified
through simulations.

In order to provide explicitly parallel execution, the
proposed memory-centric system can be organized to work
with multiple logic-memory merged modules (i.e self-
executing units) that will operate on separate threads,
processes or program segments in parallel. A critical part of
such multi-block (unit) organization is the communication
switching network, which should provide connectivity of N
self-executing units with N data memory blocks. In this
paper we observe several solutions, and furthermore propose
an approach that allows reconfigurable use of data memory
blocks, based on prefixes. The applicability and the
performance characteristics of these proposals depend on the
system structure and implementation, which is a crucial part
of our future research. However, we believe that the
proposed memory-centric architecture has the potential to
create a new generation of computers with increased
portability, reduced size and power consumption, without
compromising the performance and efficiency.

REFERENCES

[1] David A. Patterson, John L. Hennessy, "Computer Organization and
Design: The hardware/software interface," 5th ed. Elsevier, 2014.

[2] W. Stallings, "Computer organization and architecture: Designing for
performance," 8th edition, Prentice Hall, 2009.

[3] John L. Hennessy, David A. Patterson, "Computer Architecture: A
Quantitative Approach," 4th ed., Morgan Kaufmann Publishers, 2007.

[4] G. McFarland, "Microprocessor design: a practical guide from design
planning to manufacturing," The McGraw-Hill Companies, 2006.

[5] Sivarama P. Dandamudi, "Fundamentals of Computer Organization
and Design," New York: Springer, 2002.

[6] D. Jakimovska, et al., "Modern Processor Architectures Overview,"
Proc. ICEST, Bulgaria, June 2012, pp. 239-242.

[7] Sivarama P. Dandamudi, "Guide to RISC processors: for
programmers and engineers," Springer, 2005.

[8] Vojin G. Oklobdzija, "Reduced instruction set computers," Technical
Paper, University of California, 1999.

[9] J. Huck, D. Morris, et al., "Introducing the IA-64 Architecture," Proc.
IEEE Micro, vol. 20, no. 5. pp. 12-23., Sept/Oct 2000.

[10] C. Kozyrakis, "Scalable vector media-processors for embedded
systems," PhD Thesis, University of California, Berkeley, 2002.

[11] T. M. Conte, "Superscalar and VLIW Processors," Handbook, 1996.
[12] N. FitzRoy-Dale, "The VLIW and EPIC processor architectures,"

Master Thesis, New South Wales University, 2005.
[13] Michael J. Mahon, et al. "Hewlett - Packard Precision Architecture:

The Processor," Hewlett-Packard journal, 1986.
[14] A. L. Davis, R. M. Keller, "Data flow program graphs," Proc. IEEE

Trans. On Computers, February 1982.

[15] J. Silc, B. Robic and T. Ungerer, "Asynchrony in parallel computing:
From dataflow to multithreading," Journal of Parallel and Distributed
Computing Practices, 1998.

[16] Ben Lee and A. R. Hurson, "Issues in dataflow computing," Journal
of Advances in Computers, 1993.

[17] G. M. Papadopoulos, "Implementation of a general-purpose dataflow
multiprocessor," Tech. Report TR-432, MIT Laboratory of Computer
Science, Cambridge, August 1988.

[18] R. Buehrer, K. Ekanadham, "Incorporating dataflow ideas into von
Neumann processors for parallel execution," Proc. IEEE Trans. On
Computers, December 1987.

[19] R. A. Iannucci, "Toward a dataflow/von Neumann hybrid
architecture," Proc. 15th ISCA, May 1988.

[20] J. Silc, B. Robic, T. Ungerer, "Processor architecture: From Dataflow
to Superscalar and Beyond," Springer, 1999.

[21] Zomaya, A.Y.H, "Parallel and Distributed Computing Handbook,"
McGraw-Hill, 1996.

[22] M. Smotherman, "Understanding EPIC Architectures and
Implementations," Proc. ACM Southeast Conference, 2002.

[23] Ravikanth Ganesan, Kannan Govindarajan, Min-You Wu,
"Comparing SIMD and MIMD programming modes," Journal of
Parallel Distributed Computing, 1996.

[24] Carlos Carvalho, "The gap between processor and memory speeds,"
Proc. ICCA 2002, Braga Portugal, 2002.

[25] N. R. Mahapatra, B. Venkatrao, "The processor-memory bottleneck:
problems and solutions," ACM Crossroads, 1999.

[26] Christianto C. Liu, Ilya Ganusov, et al., "Bridging the processor-
memory performance gap with 3D IC technology," IEEE Design &
Test of Computers, vol. 22, no. 6., 2005, pp. 556-564.

[27] Damian Miller, "Reconfigurable systems: a potential solution to the
Von Neumann bottleneck," Senior Thesis, Liberty University, 2011.

[28] Christoforos Kozyrakis, David Patterson, "Vector vs. superscalar and
VLIW architectures for embedded multimedia benchmarks," Proc.
35th International Symposium on Microarchitecture, November 2002.

[29] Harsh Sharangpani, Ken Arora, "Itanium processor
microarchitecture," Proc. IEEE Micro, 2000.

[30] C. Cojocaru, "Computational RAM: implementation and bit-parallel
architecture," Master Thesis, Carletorn University, Ottawa, 1995.

[31] Peter M. Nyasulu, "System design for a computational-RAM logic-in-
memory parallel-processing machine," PhD Thesis, Carletorn
University, Ottawa, 1999.

[32] D. Elliott, et al., "Computational RAM: the case for SIMD computing
in memory," Proc. ISCA '97, June 1997.

[33] Duncan G. Elliott, Michael Stumm, et al., "Computational RAM:
implementing processors in memory," Journal IEEE Design & Test.
vol. 16, issue 1, January 1999.

[34] Duncan G. Elliott, W. Martin Snelgrove, Michael Stumm,
"Computational RAM: A memory-SIMD hybrid and its application to
DSP," Proc. Integrated Circuits conference, 1992.

[35] Peter M. Kogge, Jay B. Brockman, et al., "Processing in memory:
chips to petaflops," Technical report, Proc. International Symposium
on Computer Architecture, June 1997.

[36] Daescu, Ovidiu, Peter M. Kogge, Danny Chen, "Parallel content-
based image analysis on PIM processors," Proc. IEEE Workshop on
Content-Based Access to Image and Video Databases, June 1998.

[37] Jeffrey Draper et al., "Implementation of a 256-bit WideWord
processor for the data-intensive architecture (DIVA) processing-in-
memory (PIM) chip," Proc. 28th European Solid-State Circuit
Conference. September 2002.

[38] Maya Gokhale еt al., "Processing in memory: the Terasys massively
parallel PIM array," IEEE Computer, 1995.

[39] Jeff Draper, Jacqueline Chame, et al., "The architecture of the DIVA
processing in memory chip," Proc. 16th international conference on
Supercomputing ICS'02, USA, 2002.

[40] Thomas L. Sterling, Huns P. Zimu, "Gilgamesh: a multithreaded
processor-in-memory architecture for petaflops computing," Proc.
ACM Supercomputing, 2002.

[41] T. Sterling, M. Brodowicz, "The “MIND” scalable PIM architecture,"
Proc. High Performance Computing Workshop, 2004.

[42] D. Patterson et al., "Intelligent RAM: chips that remember and
compute," Proc. Solid-State Circuits Conference, 1997.

[43] David Patterson, Thomas Anderson, et al., "A case for intelligent
RAM: IRAM," Proc. IEEE Micro, April 1997.

[44] D. Patterson, et al., "Intelligent RAM (IRAM): the industrial setting,
applications, and architectures," Proc. International Conference on
Computer Design: VLSI in Computers & Processors, University of
California. Berkeley, USA, 1997.

[45] João Paulo Portela Araújo, "Intelligent RAM: a radical solution?,"
Proc. 3rd Internal Conference on Computer Architecture, 2002.

53

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

[46] Brian R. Gaeke, Parry Husbands, et al., "Memory-intensive
benchmarks: IRAM vs. cache-based machines," Proc. International
Parallel and Distributed Processing Symposium (IPDPS), April. 2002.

[47] Joseph Gebis, Sam Williams, et al., "VIRAM1: a media-oriented
vector processor with embedded DRAM," 41st Design Automation
Student Design Contenst, San Diego CA, June 2004.

[48] David Martin, "Vector extensions to the MIPS-IV instruction set
architecture, the V-IRAM architecture manual," Technical paper,
March 2000.

[49] Danijela Efnusheva and Aristotel Tentov, "Integrating processing in
RAM memory and its application to high speed FFT computation,"
Proc. International Conference on Information Society and
Technology, Serbia, March 2014.

[50] IEEE, "754-2008 - IEEE Standard for Floating-Point Arithmetic,"
Technical paper, 2008.

[51] D. Efnusheva, et al., "Efficiency comparison of DFT/IDFT algorithms
by evaluating diverse hardware implementations, parallelization
prospects and possible improvements," Proc. Second International
Conference on Applied Innovations in IT, Germany, March 2014.

[52] Andre De Hon, "Reconfigurable Architectures for General-Purpose
Computing," Technical Report, 1996.

[53] Milica Mitić and Mile Stojčev, "A Survey of Three System-on-Chip
Buses:AMBA, CoreConnect and Wishbone," Proc. of ICEST, 2006.

