
47

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT),  March 2015

Abstract—The modern computer systems that are in use
nowadays are mostly processor-dominant, which means that 
their memory is treated as a slave element that has one major 
task – to serve execution units data requirements. This 
organization is based on the classical Von Neumann's 
computer model, proposed seven decades ago in the 1950ties.
This model suffers from a substantial processor-memory 
bottleneck, because of the huge disparity between the processor 
and memory working speeds. In order to solve this problem, in 
this paper we propose a novel architecture and organization of 
processors and computers that attempts to provide stronger 
match between the processing and memory elements in the 
system. The proposed model utilizes a memory-centric 
architecture, wherein the execution hardware is added to the
memory code blocks, allowing them to perform instructions
scheduling and execution, management of data requests and
responses, and direct communication with the data memory 
blocks without using registers. This organization allows
concurrent execution of all threads, processes or program 
segments that fit in the memory at a given time. Therefore, in 
this paper we describe several possibilities for organizing the 
proposed memory-centric system with multiple data and logic-
memory merged blocks, by utilizing a high-speed 
interconnection switching network.

Keywords: Explicit parallelism, Field Programmable Gate 
Array (FPGA), high-performance computing, processor 
architecture and organization, processing in memory.

I. INTRODUCTION 

Computers are an important part of the modern human 
life, which cannot be imagined without the use of these 
electronic devices. The purpose of these complex systems is 
to perform data processing, data storage, data movement to 
and from the computer, and control of the whole system 
operation, [1]-[3]. These functionalities are provided by 
several basic computer components, including: central 
processing unit (CPU), memory (which is generally 
hierarchically organized), input/output devices and 
interconnection busses responsible for movement of data,
address and control signals.

The central processing unit is one of the most 
complicated parts of the computer system that has ever been 
created by the human beings. The processor has the main 
role in the computer system, since it handles the instruction 
and data flow, controls the communication with the memory 
and input/output devices and thus coordinates the whole 
system operation, [4]-[6]. As a result, computer architects 

constantly face with the challenge to develop novel 
architectural solutions that can maximize the computer 
performance, while retaining the cost, power and functional 
requirements. Regarding this, they should consider three 
aspects of computer architecture design, such as: instruction 
set architecture, organization (memory system, memory-
processor interconnect, internal processor), and hardware 
logic design.

The constant race of the various computer technologies 
resulted in a wide range of processor architectures, including 
CISC, RISC, Superscalar, VLIW, EPIC, Vector, [6]-[13],
and Data Flow, [14]-[20]. These architectures provide 
various benefits and drawbacks, and are characterized with 
different ways of parallel programs execution, organization 
and instruction set architecture. Each of them is developed 
with the intention to overcome some of the problems of its
predecessors and thus to provide better computing 
performances. However, besides the great advances in 
computer systems technology, their architecture and 
organization, the evolvement of multi-cores and various 
parallelization techniques for program execution, current
computer architectures are still dominantly based on the 
classic Von Neumann's model, [21]-[23]. Main focus and 
prime role in this type of computer architectures and 
organizations is dedicated to the execution units of different 
type, and the memory is treated as slave element which main 
function is to serve the execution units data requirements.

The existing model of processor-centric computer 
architecture allows performance scale only if these two 
conditions hold:  the processing core has sufficient work to 
do, so it can mitigate the cache miss latencies, and the 
processor has enough bandwidth to load the changes into the 
cache memory without excessive delay. However, the 
contemporary technologies for memory production can’t 
cope with processor’s requirements for data speed and 
bandwidth. As a consequence, there exists definitely a 
substantial gap of more than a couple of times between the
processor working frequency, and the available memory 
data transfer speed, [24]-[27]. As a result, superscalar 
processors, [28], which are capable to execute several 
instructions per clock cycle, always lack of data, due to 
lower memory working frequency and reduced number of 
internal processor registers. Moreover, the Itanium EPIC
processor, [29], did not manage to achieve the expected 
success, because of the problems with the memory speed.
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A few decades ago, in the 1990ties, some researchers 
predicted that the memory behavior would be preponderant 
over the global performance of the computer system. Their 
proposals suggested integration of the memory and 
processing elements into a single chip, creating memories 
with processing capacity. This merged chip is known as: 
smart memory, computational memory (C-RAM), [30]-[34],
processor in memory (PIM), [35]-[41], intelligent RAM 
(IRAM), [42]-[49], etc. Recent work in this area lead to 
several architectural approaches, which can be classified 
based on the role of the merged chip: main processor(s) in 
the system, special-purpose processor, co-processor or
intelligent memory system, [24]. For example, IRAM, [48]
is implemented as a vector co-processor to a general purpose 
MIPS processor into the VIRAM single-chip computer.

The aim of this paper is to propose a novel memory-
centric processor architecture that provides a stronger merge 
between memory and processing elements. This is achieved 
by adding a processing hardware directly to the memory 
blocks used for storing programs, thus allowing simpler 
instruction decode and execution, easier management of 
data requests, and direct communication between the 
program (code) and data memory blocks, without the use of 
registers. These logic-memory merged chips are named as 
self-executing units. The memory-centric architecture 
should be organized to work with multiple self-executing 
units, in order to provide concurrent execution of all threads, 
processes or program segments that fit in the memory, at a 
given time. Therefore, in this paper we propose and evaluate 
several models of computer system design with multiple 
data memory blocks and self-executing units, connected via 
high-speed interconnection switching network.

The paper is organized in five sections. Section two 
presents the current state, discussing a variety of modern 
processor architectures and organizations that are in use
today. Section three describes the novel memory-centric 
architecture and its basic building blocks, providing details 
about the hardware design and its verification. The next 
section proposes several ways of organizing the proposed
memory-centric architecture with multiple self-executing
units. The paper ends up with conclusion, stated in the last 
section.

II. STATE OF THE ART

The complexity of modern processor architectures and the 
constant race of various computer technologies resulted in a 
wide range of computer architectures, each with its own 
advantages and disadvantages, but with the ultimate goal to 
increase the overall computer system performances. 
Therefore, the research of computer architects was aimed at 
developing various mechanisms for parallel computing that
will provide efficient utilization of the system hardware 
resources. Generally, there are three different forms of 
parallel computing that have been created, including:
instruction- (execution of more than one instructions in a
single processor cycle), data- (execution of single 
instruction stream on multiple data streams) and thread-level
parallelism, (concurrent execution of unrelated and distinct 
tasks), [1]. Most modern computer systems support several
types of parallel processing in order to achieve better 
computing performances.

One of the first computer architectures, such as the Intel 
IA-32, belongs to the Complex Instruction Set Computer 
(CISC) design which takes advantage of microcode and 
supports a wider range of variable-length instructions, [6].
In order to reduce the complexity of these instructions and 
to provide hardware-based control of their execution,
Reduced Instructions Set Computing (RISC) was 
introduced, [7]. Further research led to the idea that dividing 
the work of a single processor to multiple execution units
would speed up the instructions execution. This resulted 
with superscalar and Very Long Instruction Word (VLIW) 
architectures that were designed to take advantage of
Instruction Level Parallelism (ILP). A superscalar 
architecture consists of a number of pipelines that are 
working in parallel, and relies on hardware to detect and 
overcome data dependencies. On the other hand, Very Long 
Instruction Word (VLIW) architecture, [11], uses software 
solution (compiler) to mark independent operations that can 
be executed simultaneously. The limits of the parallelism, 
defined by the length of the VLIW instruction is an issue 
that has caused development of explicitly parallel instruction 
computing (EPIC) architecture, [9]. Despite the advantages 
of EPIC over VLIW, the IA-64 Itanium architecture could 
not manage to solve all of VLIW’s problems. Other 
alternative to the conventional control flow architecture in 
providing concurrency in execution of programs is the 
dataflow architecture, [20]. This architecture is only a 
concept that has never been implemented in a real hardware.

Each of the discussed processor architectures is described
in table 1. The given table shows that pipelining is one of 
the most used parallelization techniques. This ILP method 
allows parallel execution of N different instructions in N
diverse pipeline stages, so the pipeline length is proportional 
to the theoretical increase in speed, [2]. Further performance 
improvements are achieved when multiple pipelines are 
simultaneously executed on multiple execution units, like in 
superscalar processors, [20]. Pipelining as an ILP method 
can be also combined with vector processing, thus allowing 
data-parallel vector operations to be executed on multiple
pipeline execution units, [5]. The achievable parallelism in
such processor is dictated by the number of execution units, 
which also applies to other processor architectures that can 
be organized to work with multiple execution units, like:
Superscalar, VLIW, EPIC and Data Flow.

The performance of computer systems primary depends 
on the CPU execution time, which is secondary related to
the average memory access time, [25]. As a result, computer 
architects are faced up to the problem of decreasing the CPU 
execution time, while improving the memory bandwidth and 
keeping the processor busy all the time. There are several 
mechanisms that have been developed to target this 
problem, including: multi-level cache memories, separation 
of memories for storing programs and data (Harvard 
architecture), speculative and re-order execution, branch 
prediction algorithms, etc, [6]. Further improvements are
achieved by hardware parallelization i.e. use of multi-core 
or multi-processor systems that support multithreading, [3].
This approach introduces more intensive work with the 
memory resources, causing a bottleneck in the system. A
possible solution to this problem is integration of processing 
modules into memory, such as the IRAM-based approach.
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TABLE I
COMPARISON OF DIFFERENT PROCESSOR ARCHITECTURES

 Features

Program 
execution

Parallel 
Processing Parallelization Techniques Number of operations 

in cycle
Instruction 

Format
CISC
Architecture Control flow Yes, 

instruction level
Each instruction executes 

more operations
Depends on the instruction 

complexity
Variable length 

complex operations
RISC
Architecture Control flow Yes, 

instruction level
Pipeline that implements 

several stages
Depends on the pipeline depth 

(4 or 5 stages)
Fixed length,

(usually: 16,32,64)

Superscalar
Architecture Control flow Yes, 

instruction level Several parallel pipelines
Depends on the pipeline depth 
(8 - 10 stages) and the number 

of execution units

Fixed length,
(usually: 16,32,64)

VLIW
Architecture Control flow Yes, 

instruction level

Fixed number of mini-operations 
in instruction word 

(implicit parallelism)

Depends on the number 
of execution units 

and mini-operations

Fixed length:
more mini-operations 

in one word 

EPIC 
Architecture Control flow Yes, 

instruction level

Variable, but limited number   of 
mini-operations in instruction 

word (explicit parallelism)

Depends on the number 
of execution units 

and mini-operations

Variable length:
more mini-operations 

in one word

Vector
Architecture Control flow Yes, 

data level
Same operation is executed on 
different fixed length vectors

Depends on the number 
of execution units 
and vector length

Fixed length,
(usually: 16,32,64)

Data-flow
Architecture Data flow Yes, 

instruction level

Variable, but limited number of 
instructions (depends on the 

availability of input operands)

Depends on the number 
of execution units 

and active instructions
Packet instruction format

III. DESIGN AND VERIFICATION OF THE NOVEL  
MEMORY-CENTRIC ARCHITECTURE

The standard Von Neumann based architecture
specifies a model of computer system, which consists of 
memory and processing parts that are strictly separated. In 
such a system, the memory is used to store both data and 
instructions, and the central processing unit is purposed to 
read and decode program code, load/store data to/from 
cache or/and registers and execute arithmetical-logical 
operations over the loaded operands. This organization 
suffers from limited throughput (bottleneck) on the 
processor-memory interface, caused by the memory and 
processor speeds discrepancy. Actually, it is well known 
that the memory system operates at an average access time
that is much greater than the processor execution time, [49].
This dissimilarity leads to many wasted processing cycles, 
since the memory system is not capable to constantly feed 
the CPU and keep it busy. 

Assuming that the processor technology slowly reaches 
its upper bounds on chip complexity and speed, we suggest 
that the bottleneck problem should be targeted by 
introducing novel concepts in computer architectures that 
will provide closer tie between computing and memory 
resources, and as well will allow higher utilization of
parallel computing. Therefore, our research is directed 
towards the development of a novel memory-centric 
computer architecture that organizes the memory system in 
a completely different way from the long enduring Von 
Neumann-based systems. In our approach, the memory
system is observed as a set of blocks, quite similar to the
virtual memory concept. Actually, in the first steps, the 
memory is separated into many data blocks and a code block
that is enhanced with some processing and control 
capabilities (see Figure 1b). We have named the logic-
memory merged block a self-executing unit, since it adds 
some execution hardware into the code memory, used for 
storing programs. Having this organization, the memory 
system has complete control over the program execution
(instruction decode, data transfers and ALU operations).

Figure 1 presents the novel memory-centric architecture;
consisting of data memory blocks and a self executing unit, 
connected through a bus interconnect. The data memory 
blocks are responsible for storing the data used by the 
programs. The self-executing unit is purposed to 
immediately fetch and decode the instructions located into 
the code memory block, and then issue data movement and 
arithmetic commands over the bus. The operations are 
performed over the selected data operands from a certain
data memory block, which is specified by a specialized 
register, named memory block selector. Given that the 
commands are directly executed, the system doesn't need to 
include intermediate memory resources, such as processor 
registers or cache memory, so they are not part of the initial 
memory organization proposal.  

Memory
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and Data)
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Cent ral processing unit
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a) Von Neumann computer architecture
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Fig. 1. Comparison between the classical processor-centric and the novel 
memory-centric computer architecture
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The data are stored in the data memory blocks as 32-bit 
signed integers, represented in second complement notation. 
This abstraction can be further extended to allow use of 32-
bit floating-point numbers with single-precision, according 
to IEEE-754 format, [50]. The data operands are directly 
accessed via the interconnection bus, and then served to the 
execution unit. The operations and the functionalities that 
the system provides are defined in its instruction set.
Basically, the instruction set architecture of the proposed 
system is RISC-like, and includes arithmetical-logical, shift, 
branching and auxiliary operations. Each instruction is
fixed-length, typically specifying the operation code and the 
operands, given as direct addresses or immediate values.
This is presented in Figure 2.

In order to decrease the instruction length, the system 
utilizes the memory segmentation concept, allowing each 
data memory block to be represented as a separate memory 
segment. Accordingly, the self-executing unit is associated 
with only one memory segment at a given moment. This 
results with some simplifications in instructions formatting, 
since the memory operands are specified as address offsets, 
instead of complete addresses to the data memory block
(segment). The identification number of the active memory 
segment is set by a special instruction that affects the 
content of the memory block selector hardware. Therefore, 
it is compiler's responsibility to provide efficient mapping of 
memory segments, and thus to allow handling of data-
intensive operations without difficulties.

The memory-centric system allows several 
functionalities, which are specified into its instruction set 
architecture. Generally, the instruction set is divided into
four basic groups, each having several simple instructions,
with similar structure and function. The arithmetical-logical 
group includes arithmetical instructions for: addition with 
overflow detection, subtraction, multiplication, integer 
division (div) and modulo division (mod), and as well
instructions for performing logical operations: logical bit-
wise AND, logical bit-wise OR, logical bit-wise XOR and 
logical bit-wise NOT. The shifting group comprises several 
instructions for left and right logical shift and rotations. The 
branching group includes instructions for conditional and 
unconditional change of the program flow. There are several 
options for conditional branching, including: equal (=), not 
equal (!=), less (<), greater (>), less or equal (<=), and 
greater or equal (>=). The last group is the auxiliary group,
consisting of control instructions for program termination 
and system halt, as well as memory instructions for:
constants loading, data transfers between memory blocks, 
and updating of the memory block selector value.

Figure 3 presents a simple program segment that performs 
addition of two integer numbers. According to that, it is 
obvious that the memory-centric system reduces the number 
of program instructions in comparison with the RISC-based 
processor. This essentially comes from directly addressing 
the memory data, without using processor registers. Besides 
that, its instructions length is not longer than 40 bits, 
meaning that the program size is significantly reduced. This 
has a very positive impact on lowering the power dissipation 
of the memory-centric system. Other benefit, which has to 
be mentioned, is that the self-executing unit immediately 
fetches and decodes the instruction, thus speeding up the
instruction execution. The only drawback of the novel 
proposed system is that it has to operate on memory 
working frequency. However, the approach of removing the 
processor registers brings significant improvement and 
simplification in the way programs are written, compiled 
and executed. This is very suitable for applications that 
perform data-intensive computations, such as: digital signal 
processing, multimedia, network processing etc.

The proposed memory-centric architecture is 
implemented in VHDL, by means of Xilinx ISE Design 
Suite tool. This software environment includes ISim 
simulator, used for functional analysis of VHDL models. In 
addition to that, there are several other tools for hardware 
synthesis and FPGA implementation. The FPGA technology 
is utterly suitable for research purposes, due to its advantage 
in terms of speed, cost, flexibility and ease of re-
programmability, [51]. Therefore, in this research we make
use of the XUPV505-LX110T Virtex5 FPGA board.

Figure 4 presents simulation results for the execution unit,
while performing five arithmetic operations over two integer 
numbers: addition, subtraction, division, modulo division 
and multiplication. The execution unit, which is part of the 
self-executing unit, is described in VHDL as a module that 
receives two 32-bit operands, operation code and chip 
enable signal as an input and produces 32-bit result value 
and additional bit for overflow detection as an output. The 
simulation results shown in Figure 5 verify that the VHDL 
model is completely functional. In addition to that, the 
module has been synthesized and implemented in Virtex 5 
logic, utilizing 1% of the slice registers, 4% of the slice LUT 
resources, which is 5% of the occupied FPGA slice 
resources. The synthesis results demonstrate that the module
can achieve maximal working frequency of 952.381MHz. 
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Fig. 4. Simulation results of the arithmetical operations performed by the execution unit: addition, subtraction, integer division, modulo division 
and multiplication

Operation 
code

Op1 Addr. offset/
Immediate value

Op2 Addr. offset/
Immediate value

Addr. offset
of the Result

6 bit 10 bit 10 bit 10 bit

Fig. 2. Instruction format of the memory-centric ISA

LOAD R1, Mem-addr1
LOAD R2, Mem-addr2
ADD R1,R2,R3
STORE R3, Mem-addr3

ADD Mem-addr1, Mem-addr2, Mem-addr3

Data transfer between
memory and registers Direct transfer of memory data

RISC-based processor Memory-centric system

Fig. 3. Program segment written in ISA of the RISC-based load-store 
processor and the novel memory-centric system
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The self-executing unit is responsible to directly fetch,
and decode instructions from the code memory block, and 
then issue commands that are executed over data operands, 
selected from a certain data memory block. Each data 
memory block is described in VHDL as an array of 1Kx4B 
data words, represented in second complement notation. The 
32-bit data words can be also defined in IEEE-754 single-
precision format as floating-point numbers, but this would
require some additional modifications into the execution 
unit hardware. The code memory block is also designed in 
VHDL, as an array of 1K instruction words, wherein the 
first location is used to preserve the address pointer value of 
the current instruction, which is actually the program 
counter value. The code memory block is associated with 
only one data memory segment at a given moment, which is 
configured through special block selector hardware. The 
instruction execution and the data transfers are controlled by 
the instruction and data management unit, which has 
complete control over the execution unit, providing direct 
communication with the associated data memory block.

The functionality of the complete system is analyzed 
through the Xilinx ISE Design Suite environment, which 
allows monitoring of the memory blocks state in each clock 
cycle. Therefore, for simulation purposes, we have created a 
test scenario with a simple program, presented in Figure 5 
and an arbitrary data set. The program instructions are first 
filled into the code memory block, and then executed over 
the associated data memory block. The simulation results 
presented in Figure 5 show that each instruction affects the 
data memory block with some changes, every clock cycle. 
Therefore, it is verified that the memory-centric system 
operates properly.

IV. SEVERAL PROPOSAL FOR ORGANIZING THE NOVEL 
MEMORY-CENTRIC ARCHITECTURE WITH MULTIPLE 

SELF-EXECUTING UNITS

The proposed memory-centric architecture that utilizes 
one self-executing unit and a set of data memory segments 
can be organized to work with multiple self-executing units. 
For this purpose, the system is expanded with multiple code 
memory segments that have execution capabilities (see Fig.
6). The integration of processing hardware into memory is 
very suitable for FPGA implementation, because the FPGA 
technology is already designed as a reconfigurable network,
[52], of small memory and processing blocks.

The operating system is responsible to load the 
parallelizable programs and their data into various code and 
data memory blocks of the system. This means that each 
code memory block holds and executes a separate thread, 
process or program segment at any given moment. As a 
result, the system achieves concurrent execution of all the 
programs that fit into the code blocks memory.

Figure 6 presents the proposed organization of the 
memory-centric system with multiple self-executing units 
and many more data memory blocks (M>>N), connected 
through a communication switching network. The switching
network provides direct communication of N self-executing 
units with N data memory blocks, thus allowing parallel 
execution of N independent programs.

There are several interconnection mechanisms, such as 
AMBA, CoreConnect and Wishbone system-on-chip buses
that can be used when implementing communication 
between multiple master and slave elements. According to
the analyzes given in [53] the Wishbone bus is most suitable 
for the purposes of this research, basically because it is an 
open-source interconnect that can operate in several 
different modes, including: shared bus, pipeline and crossbar 
switch. However, each of the proposed solutions provides 
N-to-N mappings, which means that each code memory 
block is associated with only one data memory block. This 
can be very tricky if a program needs to operate on a larger 
data set, spread out over several memory segments. In older 
to resolve this problem, we propose a system that allows 
reconfigurable use of data memory blocks (see Figure 7).

The proposed model, presented in Figure 7 introduces 
several changes to the way data memory blocks are 
organized and used by the programs. This system is capable 
to assign a configurable number of data memory blocks to 
each program segment. The basic idea behind this approach
is the use of prefixes that select a group of multiple data 
memory blocks. These prefixes are very similar to the IP 
prefixes used in computer networks for routing or IP 
assignment purposes. The management of the prefixes is 
performed by a special hardware (MMU), whose operation 
is controlled by the operating system. Once the prefixes are 
set, the communication switching network performs 
matching of each self-executing unit with a group of data 
memory blocks, selected by a given prefix. This approach 
and its applicability are still subject of research, and there 
are still some issues that need to be resolved. 

Fig. 5. Simulation results of a simple program execution on the novel 
memory-centric system

Self-execut ing
Unit  1

Self-execut ing
Unit  2

Self-execut ing
Unit  N

.

.

.

Data memory 
block 1

Data memory 
block 2

Data memory 
block M

Data memory 
block 3

.

.

.

Communicat ion 
Swit ching 
Network

Fig. 6. Organization of the memory-centric system with multiple            
self-executing units

Self-execut ing
Unit  1

Self-execut ing
Unit  2

Self-execut ing
Unit  N

.

.

.

Communicat ion 
Swit ching 
Network

Memory 
Management  

Unit

Prefix1

Prefix2

PrefixN

Data mem.
block 1

Data mem.
block L+1

Data mem.
block K

.  .  .

Data mem.
block 2

Data mem.
block L+2

Data mem.
block K+1

Data mem.
block L

Data mem.
block L+4

Data mem.
block M

. . .

Data mem.
block L+3

. . .

Set  of data memory blocks 
organized in groups by prefix

Fig. 7. Proposed model of a memory-centric system, that allows 
reconfigurable use of data memory blocks



52

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT),  March 2015

V. CONCLUSION

The architecture and the organization of the computer 
systems haven't evolved much in comparison with its
beginnings. Therefore, recent computer architectures are
still dominantly based on the classical Von Neumann's 
computer model, which suffers from limited throughput on 
the processor-memory interface. In order to solve this 
problem, in this paper we propose a novel memory-centric 
architecture that adds processing hardware directly to the 
code memory blocks used for storing programs, thus 
allowing immediate instruction fetch, decode and execution,
easier management of data requests, and direct
communication between the data and code memory blocks, 
without the use of registers. The paper shows that the 
memory-centric system reduces the number of program's
instructions and speeds up the instructions execution, thus 
providing much better performance characteristics and 
lower power consumption than traditional computer 
architectures. The proposed memory-centric system is 
designed in VHDL, and its correct operation is verified 
through simulations.

In order to provide explicitly parallel execution, the 
proposed memory-centric system can be organized to work 
with multiple logic-memory merged modules (i.e self-
executing units) that will operate on separate threads, 
processes or program segments in parallel. A critical part of 
such multi-block (unit) organization is the communication 
switching network, which should provide connectivity of N 
self-executing units with N data memory blocks. In this 
paper we observe several solutions, and furthermore propose 
an approach that allows reconfigurable use of data memory 
blocks, based on prefixes. The applicability and the 
performance characteristics of these proposals depend on the 
system structure and implementation, which is a crucial part 
of our future research. However, we believe that the 
proposed memory-centric architecture has the potential to
create a new generation of computers with increased 
portability, reduced size and power consumption, without 
compromising the performance and efficiency.
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