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Abstract—The use of system-on-chip (SoC) platforms has 
emerged as an important integrated circuit design trend for 
communication and industrial control applications. At the 
same time, requirements of stable, efficient and precise 
processing time values are growing rapidly. Since the ARM 
processor doesn't possess known timers of PC-platforms such 
as TSC counter or HPET timer, the common way to obtain 
time values on ARM-architecture is still only through Linux 
system calls which are mapped to ARM specific time counters.
Indeed, direct access to hardware can help to reduce costs 
down to 200 nanoseconds against 2-1 microseconds of the time 
acquisition via Unix system call interface. However, designing 
this approach is a challenging task. This paper describes 
specific issues and features of tracking system time on the 
ARM Cortex A8 processor under Linux OS.

Keywords: timestamp precision; time-keeping; embedded 
Linux; ARM architecture.

I. INTRODUCTION 

Over the last few years, the ARM architecture has 
become the most pervasive 32-bit architecture in the world, 
with wide range of integrated circuits available from various 
manufacturers. ARM processors are embedded in products 
ranging from cell/mobile phones to control systems of wind-
turbines. Depending on the specific products [1][2][3], 
requirements of meeting timing constrains vary from 
reaction in a predefined time frame (as in the hard-real time 
system) and not critical timely responsiveness (as in the
soft-real time system). However, any real-time requirements 
on ARM embedded projects can’t be met without reliable 
development platform.

The Linux kernel offers interrupt latency less than 100 
nanoseconds in most cases on today's fast processors. 
Although, the non-deterministic nature of task scheduling 
may make it unsuitable for some hard real-time systems, the 
wealth of utility programs included with Linux makes it 
ideal for such tasks as report generation as well as 
networking and addressing interoperability issues [4][5]. 
Though the Linux OS, running on diverse ARM 
architectures becomes increasingly popular in embedded 
systems, often exactly the lack of high-precision time 
control pushes system designers to decisions against Linux-
based, towards more costly FPGA- or ASIC-based solutions

Modern PC-platforms come with different hardware 
timers having different attributes. The most popular in the 
PC domain is a 64-bit TSC counter which represents relative 
time values and counts CPU cycles from the power on or 

reset of the computer. The HPET device provides multiple
timers, each consisting of a timeout register that is compared 
with its central counter. Meanwhile, the timing mechanism 
of ARM-architecture appears more complex. The time 
performance on ARM is limited by a 32-bit register with a 
relatively low frequency of 41 ns and hence, the overflow 
occurs in less than every 3 minutes. Additionally, ARM 
specific restrictions of memory management allow 
accessing to registers only from kernel space.

The remainder of the paper is organized as follows. In 
Section II, related work is described. Section III shows the 
specific details of each initial time source within the ARM 
Cortex A8 processor. Some experimental results of 
appropriate timer sources along with their performance 
characteristics are shown in Section IV. Finally, Section V 
describes next steps and future work in our effort to develop 
a tool for efficient high-performance measurements.

II. RELATED WORK

Since the essence and importance of time acquisition in 
embedded systems has become apparent, several research 
projects have suggested to design timing mechanism for 
real-time application [6][7]. However, these researches 
consider handling of timer on the outdated platforms, such 
as, for example, AVR microcontrollers. In other proposals, 
the entire time capturing process is integrated into dedicated 
hardware devices [8]. For PC-platforms based on x86 and 
x86-64 processors, the idea of the invention single structure 
providing access to different hardware timers has already 
been suggested [9][10]. Nevertheless, our investigations 
directed to specific timers of ARM-architecture with the 
potential purpose of designing the new accurate real-time 
system 

III. ARM CORTEX A8 SPECIFIC CLOCKS AND TIMERS 

All current investigations are being performed on the 
BeagleBone credit-card-sized Linux computer with single-
core AM335x Cortex A8 ARM processor under the Debian 
GNU/Linux 7.0 with the stable kernel version 3.8.10. 

On the given platform, maximum performance and 
operation timer for user satisfaction is ensured by the special 
power, reset, and clock management (PRCM) module. This 
module provides a centralized control for the generation, 
distribution and gating of most clocks in the device. PRCM 
gathers external clocks and internally generated clocks for 
distribution to the model in the device. Moreover, PRCM
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manages the system clock generation.
Following to the processor's technical manual [11, 

Chapter 8], the device has two reference clocks which are 
generated by on-chip oscillators or externally. These are for 
the main clock tree and RTC block, respectively. In the case 
of an external oscillator, the 32-KHz crystal oscillator is 
controlled and is configurable by RTC. This device also 
contains an on-chip oscillator. This oscillator is not 
configurable and is always on. The main oscillator on the 
device produces the master high frequency clock.

Therefore, we assume that there are oscillators with at 
least two different frequencies. The first one is widespread 
32,768 kHz frequency, which is exactly 215 cycles per 
second, a convenient rate to use with simple binary counter 
circuits. In this case, the time resolution is 31,25 µsec The 
second value, so called master frequency, is equaled to 25 
MHz with 40 nsec resolution, which allows performing 
comparatively fast measurements. Table 1 gives more 
detailed description of available clocks. 

TABLE I
CLOCKS RESOLUTION AND MAXIMUM RANGE

Clock Prescaler Resolution Interrupt 
Period Range

Wraps 
every

32.768 
KHz

1 (min) 31.25 us 31.25 us to 
~36h 35m 37 h

256 (max) 8 ms 8 ms to 
~391d 22h 48m

25
MHz 

1 (min) 40 ns 40 ns to
~171.8s 2, 983 m

256 (max) 10.24 us ~20.5 us to 
~24h 32m

A prescaler is an electronic counting circuit, which allows 
the timer to be clocked at the rate user desires. The prescaler
takes the basic timer clock frequency and divides it by some 
value before feeding it to the timer. For the given clocks, 
prescaler's divisor varies from 1 to 256 and accordingly 
provides 8 different values (divisible by two) of clock 
resolution. So, with every increase of clock range, the 
resolution is decreased.

According to the processor specification [11, Chapter 20], 
four possible timers exist on this processor:
− Dual Mode Timer (DMTimer);
− Dual Mode Timer 1 ms (DMTimer 1 ms);
− Real Time Clock Subsystem (RTS_SS);
− WATCHDOG.

The peripheral DMTimer is 32-bit timer and the module 
contains a free running upward counter with auto reload 
capability on overflow. The timer counter can be read and 
written in real-time (while counting) and configured for 32-
bit or 16-bit operation. DMTimer can be configured in three 
modes of operation: timer mode, capture and compare 
mode. The compare logic allows an interrupt event on a 
programmable counter matching value. The capture mode 
allows capturing of the timer value in a separate register 
based on an input signal. By default, after core reset, the 
capture and compare modes are disabled. 

In fact, DMTimer provides eight multiple timers: 
− The DMTimer0 can only be clocked from the internal 

RC oscillator of 32.768 KHz.

− The DMTimer1 is implemented using the 
DMTimer_1ms module, which is capable of generating 
an accurate 1 ms tick using a 32.768 KHz clock. During 
low power modes, the master oscillator is disabled. 
Hence, in this scenario for generating the OS 1ms tick 
and timer based wakeup, it is sourced from the 32K RC 
oscillator. 

− Each functional clock of DMTimer[2-7] is selected 
using the associated register from 3 possible sources: 
the 24-MHz system clock, the 32.768 KHz clock (see 
Table 1) or the external timer input clock. The 
availability of particular DMTimer[2-7] depends on the 
platform implementation. The Linux kernel already 
contains dmtimer driver, which allows using system 
time through accessing to the DMTimer2. Therefore, 
this timer is considered as preferable.

Additionally, as any other electronic device, the given 
processor possesses RTC clock, which keeps time of day, 
and have an alternate source of power, so that it works even 
with system power off. The RTC supports external 32.768-
kHz crystal or external clock source of the same frequency. 

The processor also contains a WATCHDOG timer based 
on an upward 32-bit counter coupled with a prescaler. It 
causes the system to be reset if it is not poked periodically. 
After reset generation, the counter is automatically reloaded 
with the value stored in the watchdog load register, the 
prescaler is reset and the timer counter begins incrementing 
again. 

IV. TIME FETCHING PERFORMANCE RESULTS

On ARM platforms, all I/O access is memory-mapped. 
That means that timers’ registers have their specific address 
stored in a known private memory region and access to them 
potentially possible only from kernel space. The dmtimer
driver available in Linux also does not provide high-level 
abstractions. It is merely a small library supplying some 
functions for the clients of DMTimers to reserve and 
program the timers. So, the clients have to manage all the 
low-level programming and interrupt handling themselves.
Accordingly, this driver is considered not used by many.

So, the suggested way of avoiding this obstacle for user 
would be writing a character device driver and implement 
mmap() function and the read-only access to the timer. It 
will allow mapping of the physical address of the 
DMTimer2 main counter to a virtual address in the program 
memory space.

The idea of timers map is as follows: firstly, the user 
process invokes an appropriate mmap() function and the 
kernel calls the device driver passing all necessary 
parameters. The driver validates the request and executes a 
function to map the necessary range of physical addresses 
into the address space of the user space. The driver returns 
an exit code to the kernel and the kernel re-dispatches the 
user process. Therefore, the user process accesses data of 
timing hardware by accessing the virtual address returned to 
it from mmap() call. Herewith, inaccurate offset in timer 
register from user space is handled in the open device 
operation in kernel space and in the case of error, returns 
user appropriate message.

Table 2 shows the performance results of getting the time 
values using direct access to hardware versus using a system 
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call. Initially hardware timer, DMTimer2 with 25 MHz 
frequency was chosen. For the system call, clock_gettime() 
was issued. For this investigation, time was fetched in a  
loop of 10 million consecutive runs. The values are not 
filtered.

TABLE II
THE COSTS OF OBTAINING TIME VALUES ON ARM PROCESSOR

Time source Mean, µsec Standard 
deviation, µsec

System Call 1.025 2.201
Direct Access 
to DMTimer 0.201 0.800

Additionally, during these tests, CPU system time was 
estimated relatively real execution time of the program. In 
fact, CPU costs value of system call is more than 10 times 
greater than direct access to hardware.

TABLE III
CPU COSTS ON ARM CORTEX A8 PROCESSOR

Time source Real time of 
test execution System time Percentage 

ratio

System Call 2m 59.203s 0m 20.846s 11.632%
Direct Access
to DMTimer 2m 15.723s 0m 1.303s 0.960%

The chart in Fig. 1 demonstrates more detailed results of 
this experiment. The range of samples was decreased to 
track the behavior of timers more carefully. It shows the 
clear similarity of both timers’ behaviors and proves that the 
given system interacts with this particular DMTimer2 
hardware.

Fig. 1. Measurements of timers costs on the ARM Cortex A8 processor

V. CONCLUSION AND FUTURE WORK

With the rapid development of the field of industrial 
process control and the wide range of embedded systems, it 
is necessary to make a higher demand of the time accuracy 
and reliability of the control system. The embedded ARM 
Cortex A8 platforms can adapt to strict requirements of the 
time acquisition and potentially become a basis for building 
new real-time systems. 

Nevertheless, primarily the number of significant issues 
must be satisfied. Firstly, the reliable interface allowing 
interacting with system timer must be provided, wherein the 
benefits of hardware access (such as low cost of obtaining 
values and low CPU costs) are saved. Secondly, a protection 

from timer 2.9 min overflow should guarantee meeting real-
time constraints. Therefore, at this stage accomplishment of 
all above challenges is in progress. Moreover, to the next 
steps, the better support of the ARM Cortex A9 processor 
will be addressed. The potential benefits of multi-core 
processors for real-time embedded systems are enormous, 
but however have even more dangerous drawbacks.
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