
7

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Abstract—The use of system-on-chip (SoC) platforms has
emerged as an important integrated circuit design trend for
communication and industrial control applications. At the
same time, requirements of stable, efficient and precise
processing time values are growing rapidly. Since the ARM
processor doesn't possess known timers of PC-platforms such
as TSC counter or HPET timer, the common way to obtain
time values on ARM-architecture is still only through Linux
system calls which are mapped to ARM specific time counters.
Indeed, direct access to hardware can help to reduce costs
down to 200 nanoseconds against 2-1 microseconds of the time
acquisition via Unix system call interface. However, designing
this approach is a challenging task. This paper describes
specific issues and features of tracking system time on the
ARM Cortex A8 processor under Linux OS.

Keywords: timestamp precision; time-keeping; embedded
Linux; ARM architecture.

I. INTRODUCTION

Over the last few years, the ARM architecture has
become the most pervasive 32-bit architecture in the world,
with wide range of integrated circuits available from various
manufacturers. ARM processors are embedded in products
ranging from cell/mobile phones to control systems of wind-
turbines. Depending on the specific products [1][2][3],
requirements of meeting timing constrains vary from
reaction in a predefined time frame (as in the hard-real time
system) and not critical timely responsiveness (as in the
soft-real time system). However, any real-time requirements
on ARM embedded projects can’t be met without reliable
development platform.

The Linux kernel offers interrupt latency less than 100
nanoseconds in most cases on today's fast processors.
Although, the non-deterministic nature of task scheduling
may make it unsuitable for some hard real-time systems, the
wealth of utility programs included with Linux makes it
ideal for such tasks as report generation as well as
networking and addressing interoperability issues [4][5].
Though the Linux OS, running on diverse ARM
architectures becomes increasingly popular in embedded
systems, often exactly the lack of high-precision time
control pushes system designers to decisions against Linux-
based, towards more costly FPGA- or ASIC-based solutions

Modern PC-platforms come with different hardware
timers having different attributes. The most popular in the
PC domain is a 64-bit TSC counter which represents relative
time values and counts CPU cycles from the power on or

reset of the computer. The HPET device provides multiple
timers, each consisting of a timeout register that is compared
with its central counter. Meanwhile, the timing mechanism
of ARM-architecture appears more complex. The time
performance on ARM is limited by a 32-bit register with a
relatively low frequency of 41 ns and hence, the overflow
occurs in less than every 3 minutes. Additionally, ARM
specific restrictions of memory management allow
accessing to registers only from kernel space.

The remainder of the paper is organized as follows. In
Section II, related work is described. Section III shows the
specific details of each initial time source within the ARM
Cortex A8 processor. Some experimental results of
appropriate timer sources along with their performance
characteristics are shown in Section IV. Finally, Section V
describes next steps and future work in our effort to develop
a tool for efficient high-performance measurements.

II. RELATED WORK

Since the essence and importance of time acquisition in
embedded systems has become apparent, several research
projects have suggested to design timing mechanism for
real-time application [6][7]. However, these researches
consider handling of timer on the outdated platforms, such
as, for example, AVR microcontrollers. In other proposals,
the entire time capturing process is integrated into dedicated
hardware devices [8]. For PC-platforms based on x86 and
x86-64 processors, the idea of the invention single structure
providing access to different hardware timers has already
been suggested [9][10]. Nevertheless, our investigations
directed to specific timers of ARM-architecture with the
potential purpose of designing the new accurate real-time
system

III. ARM CORTEX A8 SPECIFIC CLOCKS AND TIMERS

All current investigations are being performed on the
BeagleBone credit-card-sized Linux computer with single-
core AM335x Cortex A8 ARM processor under the Debian
GNU/Linux 7.0 with the stable kernel version 3.8.10.

On the given platform, maximum performance and
operation timer for user satisfaction is ensured by the special
power, reset, and clock management (PRCM) module. This
module provides a centralized control for the generation,
distribution and gating of most clocks in the device. PRCM
gathers external clocks and internally generated clocks for
distribution to the model in the device. Moreover, PRCM

System Time Issues
for the ARM Cortex A8 Processor

Irina Fedotova, Eduard Siemens
Anhalt University of Applied Sciences - Faculty of Electrical, Mechanical and Industrial Engineering

Bernburger Str. 57, 06366 Koethen, Germany
E-mail: {i.fedotova, e.siemens}@emw.hs-anhalt.de

8

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

manages the system clock generation.
Following to the processor's technical manual [11,

Chapter 8], the device has two reference clocks which are
generated by on-chip oscillators or externally. These are for
the main clock tree and RTC block, respectively. In the case
of an external oscillator, the 32-KHz crystal oscillator is
controlled and is configurable by RTC. This device also
contains an on-chip oscillator. This oscillator is not
configurable and is always on. The main oscillator on the
device produces the master high frequency clock.

Therefore, we assume that there are oscillators with at
least two different frequencies. The first one is widespread
32,768 kHz frequency, which is exactly 215 cycles per
second, a convenient rate to use with simple binary counter
circuits. In this case, the time resolution is 31,25 µsec The
second value, so called master frequency, is equaled to 25
MHz with 40 nsec resolution, which allows performing
comparatively fast measurements. Table 1 gives more
detailed description of available clocks.

TABLE I
CLOCKS RESOLUTION AND MAXIMUM RANGE

Clock Prescaler Resolution Interrupt
Period Range

Wraps
every

32.768
KHz

1 (min) 31.25 us 31.25 us to
~36h 35m 37 h

256 (max) 8 ms 8 ms to
~391d 22h 48m

25
MHz

1 (min) 40 ns 40 ns to
~171.8s 2, 983 m

256 (max) 10.24 us ~20.5 us to
~24h 32m

A prescaler is an electronic counting circuit, which allows
the timer to be clocked at the rate user desires. The prescaler
takes the basic timer clock frequency and divides it by some
value before feeding it to the timer. For the given clocks,
prescaler's divisor varies from 1 to 256 and accordingly
provides 8 different values (divisible by two) of clock
resolution. So, with every increase of clock range, the
resolution is decreased.

According to the processor specification [11, Chapter 20],
four possible timers exist on this processor:
− Dual Mode Timer (DMTimer);
− Dual Mode Timer 1 ms (DMTimer 1 ms);
− Real Time Clock Subsystem (RTS_SS);
− WATCHDOG.

The peripheral DMTimer is 32-bit timer and the module
contains a free running upward counter with auto reload
capability on overflow. The timer counter can be read and
written in real-time (while counting) and configured for 32-
bit or 16-bit operation. DMTimer can be configured in three
modes of operation: timer mode, capture and compare
mode. The compare logic allows an interrupt event on a
programmable counter matching value. The capture mode
allows capturing of the timer value in a separate register
based on an input signal. By default, after core reset, the
capture and compare modes are disabled.

In fact, DMTimer provides eight multiple timers:
− The DMTimer0 can only be clocked from the internal

RC oscillator of 32.768 KHz.

− The DMTimer1 is implemented using the
DMTimer_1ms module, which is capable of generating
an accurate 1 ms tick using a 32.768 KHz clock. During
low power modes, the master oscillator is disabled.
Hence, in this scenario for generating the OS 1ms tick
and timer based wakeup, it is sourced from the 32K RC
oscillator.

− Each functional clock of DMTimer[2-7] is selected
using the associated register from 3 possible sources:
the 24-MHz system clock, the 32.768 KHz clock (see
Table 1) or the external timer input clock. The
availability of particular DMTimer[2-7] depends on the
platform implementation. The Linux kernel already
contains dmtimer driver, which allows using system
time through accessing to the DMTimer2. Therefore,
this timer is considered as preferable.

Additionally, as any other electronic device, the given
processor possesses RTC clock, which keeps time of day,
and have an alternate source of power, so that it works even
with system power off. The RTC supports external 32.768-
kHz crystal or external clock source of the same frequency.

The processor also contains a WATCHDOG timer based
on an upward 32-bit counter coupled with a prescaler. It
causes the system to be reset if it is not poked periodically.
After reset generation, the counter is automatically reloaded
with the value stored in the watchdog load register, the
prescaler is reset and the timer counter begins incrementing
again.

IV. TIME FETCHING PERFORMANCE RESULTS

On ARM platforms, all I/O access is memory-mapped.
That means that timers’ registers have their specific address
stored in a known private memory region and access to them
potentially possible only from kernel space. The dmtimer
driver available in Linux also does not provide high-level
abstractions. It is merely a small library supplying some
functions for the clients of DMTimers to reserve and
program the timers. So, the clients have to manage all the
low-level programming and interrupt handling themselves.
Accordingly, this driver is considered not used by many.

So, the suggested way of avoiding this obstacle for user
would be writing a character device driver and implement
mmap() function and the read-only access to the timer. It
will allow mapping of the physical address of the
DMTimer2 main counter to a virtual address in the program
memory space.

The idea of timers map is as follows: firstly, the user
process invokes an appropriate mmap() function and the
kernel calls the device driver passing all necessary
parameters. The driver validates the request and executes a
function to map the necessary range of physical addresses
into the address space of the user space. The driver returns
an exit code to the kernel and the kernel re-dispatches the
user process. Therefore, the user process accesses data of
timing hardware by accessing the virtual address returned to
it from mmap() call. Herewith, inaccurate offset in timer
register from user space is handled in the open device
operation in kernel space and in the case of error, returns
user appropriate message.

Table 2 shows the performance results of getting the time
values using direct access to hardware versus using a system

9

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

call. Initially hardware timer, DMTimer2 with 25 MHz
frequency was chosen. For the system call, clock_gettime()
was issued. For this investigation, time was fetched in a
loop of 10 million consecutive runs. The values are not
filtered.

TABLE II
THE COSTS OF OBTAINING TIME VALUES ON ARM PROCESSOR

Time source Mean, µsec Standard
deviation, µsec

System Call 1.025 2.201
Direct Access
to DMTimer 0.201 0.800

Additionally, during these tests, CPU system time was
estimated relatively real execution time of the program. In
fact, CPU costs value of system call is more than 10 times
greater than direct access to hardware.

TABLE III
CPU COSTS ON ARM CORTEX A8 PROCESSOR

Time source Real time of
test execution System time Percentage

ratio

System Call 2m 59.203s 0m 20.846s 11.632%
Direct Access
to DMTimer 2m 15.723s 0m 1.303s 0.960%

The chart in Fig. 1 demonstrates more detailed results of
this experiment. The range of samples was decreased to
track the behavior of timers more carefully. It shows the
clear similarity of both timers’ behaviors and proves that the
given system interacts with this particular DMTimer2
hardware.

Fig. 1. Measurements of timers costs on the ARM Cortex A8 processor

V. CONCLUSION AND FUTURE WORK

With the rapid development of the field of industrial
process control and the wide range of embedded systems, it
is necessary to make a higher demand of the time accuracy
and reliability of the control system. The embedded ARM
Cortex A8 platforms can adapt to strict requirements of the
time acquisition and potentially become a basis for building
new real-time systems.

Nevertheless, primarily the number of significant issues
must be satisfied. Firstly, the reliable interface allowing
interacting with system timer must be provided, wherein the
benefits of hardware access (such as low cost of obtaining
values and low CPU costs) are saved. Secondly, a protection

from timer 2.9 min overflow should guarantee meeting real-
time constraints. Therefore, at this stage accomplishment of
all above challenges is in progress. Moreover, to the next
steps, the better support of the ARM Cortex A9 processor
will be addressed. The potential benefits of multi-core
processors for real-time embedded systems are enormous,
but however have even more dangerous drawbacks.

REFERENCES

[1] M. Manivannan and N. Kumaresan, “Embedded web server & GPRS
based advanced industrial automation using Linux RTOS,”
International Journal of Engineering Science and Technology, vol. 2
(11), no. 8, pp. 6074-6081, 2010.

[2] D. Wiklund and D.Liu, “SoCBUS: Cwitched network on chip for hard
real time embedded systems,” Proc. of the 17st Intl. Symposium on
Parallel and Distributed Processing, Los Alamitos, pp. 78.1, IEEE
Computer Society Press, 2003.

[3] I. Fedotova and E. Siemens, “Usage of high-precision timers in the
wind turbines control systems,” Supercomputers Jornal, Moscow,
Publishing House SCR-Media LTD, Number 16, winter 2013.

[4] R. Lehrbaum, “Using Linux in Embedded and Real Time Systems,”
Linux Journal, vol. 2000 (75), Specialized Systems Consultants, Inc.,
2000.

[5] B. Japenga, “Why Use Linux for Real-Time Embedded Systems”
White paper. [Online]. Available: http://www.microtoolsinc.com/
Articles/Why%20Use%20Embedded%20Linux%20for%20Real%20T
ime%20Embedded%20Systems%20Rev%20A.pdf

[6] A. A. Fröhlich, G. Gracioli, and J. F. Santos, “Periodic timers
revisited: The real-time embedded system perspective,” Computers
\& Electrical Engineering, vol. 37, no. 3, 365-375, May 2011.

[7] K. G. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating system,” Proc. of the 8st ACM Symposium on
Operating Systems Principles, New York, USA, pp. 89-102, 2001,
doi: 10.1145/502034.502044

[8] A. Pásztor and D. Veitch, “PC based precision timing without GPS,”
The 2002 ACM SIGMETRICS international conference on
Measurement and modeling of systems, Marina Del Rey California,
USA, vol. 30, no. 1, pp. 1-10, June, 2002,
doi: 10.1145/511334.511336.

[9] A. Aust, J. Brocke, F. Glaeser, R. Koehler, S. Kubsch, and E.
Siemens, “Method for processing time values in a computer or
programmable machine,” US Patent 8, 185, 770, 2012.

[10] I. Fedotova, E. Siemens, H. Hu. “A high-precision Time Handling
Library,” Proc. of the 9th International Conference on Networking
and Services, (ICNS 2013), Lisbon, pp. 193-199, March 2013.

[11] AM335x ARM Cortex-A8 Microprocessors, Technical Refernce
Manual p. 5.2.5. [Online]. Available: https://s3-us-west-
1.amazonaws.com/123d-circuits-datasheets/uploads%2F1378501288
286-gibpl1belakmx6r-2561e976ef65a4ecf67b3a3ba2590088 %2FAM
335x_ARM_Cortex-A8%28spruh73h%29.pdf

