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Abstract: A resilient and efficient supply chain requires real-time risk management in an increasingly volatile global 

marketplace. This study examines a supply chain risk management system based on machine learning-driven 

prediction analytics. This research utilizes supervised and unsupervised learning methods, regression models, 

clustering techniques, and neural networks to improve decision-making, resource allocation, and operational 

efficiency. Data from logistics, inventory records, and external sources were collected, processed, and 

analyzed to develop predictive models capable of anomaly detection, forecasting, and planning dynamic 

responses. Key performance metrics were used in evaluating the proposed system, including MSE, RMSE, 

MAE, and R². Machine learning models significantly improve supply chain operations, particularly those that 

use continuous learning and dynamic thresholds. Predictive analytics can transform traditional supply chain 

management into an intelligent, proactive, and resilient system that enhances performance, mitigates risks, 

reduces costs, supports rapid decision-making, strengthens responsiveness to disruptions, and effectively 

addresses uncertainty in highly dynamic and competitive market environments. 

1 INTRODUCTION 

Across today's globally interconnected economy, 

supply chains are becoming more complex, dynamic, 

and prone to disruption due to shifts in demand, 

transportation disruptions, geopolitical conflicts, and 

environmental concerns. Risk management in real-

time has become a crucial priority for organizations 

seeking to maintain resilience, continuity, and 

competitiveness. Today's supply chains are marked 

by rapidly evolving uncertainty, which makes risk 

management approaches based on historical data and 

reactive measures insufficient. Using predictive 

analytics powered by machine learning, organizations 

can anticipate risks before they arise with a 

transformative solution [1]. By gaining these insights, 

supply chain managers are able to make proactive, 

data-driven decisions, optimize resources, and design 

networks that are more agile and resilient. The 

capabilities of predictive analytics systems have been 

further enhanced by advances in machine learning 

algorithms, including deep learning, ensemble 

methods, and reinforcement learning. Through real-

time data processing combined with scalable cloud 

computing platforms and Internet of Things (IoT) 

technologies, supply chains can be continuously 

monitored, and threats can be rapidly addressed [2]. 

As supply chain risk running processes are integrated 

with ML and predictive analytics, a new era is 

emerging for operational efficiency, customer 

satisfaction, and strategic planning. 

SCM (supply chain management) is an important 

aspect of business operations that ensures efficient 

delivery of goods and services. Modern supply chains 

are complex and require robust strategies to manage 

uncertainty and optimize processes due to 

globalization, technological advancements, and 

market fluctuations. The use of machine learning 

(ML) and predictive analytics in this domain is

enabling better decisions and operational efficiency.

It is essential for forecasting demand, optimizing

inventory, enhancing supplier relationships, and

mitigating risks to have this capability. As ML is

incorporated into predictive analytics, SCM is

reshaping, providing unprecedented opportunities for

enhancing agility, resilience, and competitive

advantage. Increasing globalization, e-commerce,

and rapidly changing consumer preferences have

driven modern supply chains to become increasingly

complex. As suppliers, manufacturers, distributors,
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and retailers become more interconnected, advanced 

tools and techniques become more necessary. 

It enables companies to align their production and 

inventory strategies with the anticipated market 

demand through the identification of hidden patterns 

and correlations [3]. Additionally, machine learning 

can benefit supply chain management in addition to 

inventory optimization. Consequently, substantial 

cost savings can be achieved, customer satisfaction 

can be improved, and overstocks can be avoided [4]. 

A predictive model can predict supplier behaviour 

based on historical performance and external factors 

and assess the likelihood of disruptions. Manage 

supplier relationships proactively to mitigate risks, 

negotiate better terms, and improve supply chain 

resilience [5].  

A circular economy is also enabled by predictive 

models that can identify the most effective ways to 

recycle and reuse materials. As companies seek to 

align with global sustainability initiatives and meet 

the expectations of socially conscious consumers, 

balancing economic performance with environmental 

responsibility becomes increasingly important [6]. As 

data availability, computing power, and algorithmic 

capabilities improve, machine learning is 

increasingly adopted in supply chain management. 

Moreover, explainable AI techniques facilitate 

transparency and understanding of ML decision-

making processes, creating confidence among 

stakeholders [7]. Supply chain management isn't 

without challenges despite its numerous benefits 

when it comes to implementing machine learning. 

The quality and availability of the data determine a 

predictive model's Accuracy and reliability. 

Similarly, collaborations with technology partners 

and academic institutions can facilitate access to 

cutting-edge supply chain analytics and machine 

learning research [8]. It is also challenging to 

integrate machine learning models with existing 

supply chains and processes [9]. It can be difficult for 

predictive analytics to be effective with legacy 

systems and siloed data sources.  

Machine learning initiatives can be successfully 

adapted and used by aligning them with business 

objectives and stakeholder expectations [10]. Supply 

chain management also involves ethical 

considerations when using machine learning. There 

are concerns about the privacy, security, and 

algorithmic bias associated with predictive analytics. 

Companies must follow regulations and ethical 

standards when collecting and analyzing data. A 

transparent and accountable process is crucial to 

preventing unintended consequences and building 

stakeholder trust as ML models are developed and 

deployed. A key component of fair decision-making 

is addressing algorithmic bias, especially when it 

comes to supplier selection and workforce 

management [11], [12]. 

2 LITERATURE REVIEW 

The supply chain ecosystem should have quality 

control in order to promote customer-centricity and 

minimize risk. Increasing consumer satisfaction 

through quality control has been shown to increase 

satisfaction, according to one study [13]. Further, by 

integrating ERP systems and automation 

technologies, you can mitigate global supply chain 

complexity, resulting in significant cost savings [14]. 

It is recommended that further research be carried out 

on how AI can further improve supply chain 

management through a robust data infrastructure and 

stakeholder engagement. 

ML-driven quality control can enhance supply

chain performance, improving ROI while mitigating 

quality-related risks and optimizing operational 

efficiency. It is possible to prevent defects and ensure 

consistent quality with machine learning-based defect 

prediction systems. In addition to reducing defects 

and rework costs, this proactive approach also 

improves customer satisfaction and loyalty. By 

leveraging predictive modelling, ML-driven quality 

control drives business success by enabling 

continuous improvement. Machine learning has a 

profound impact on supply chain management 

(SCM). A real-world dataset is crucial to 

understanding how AI interacts with advanced 

technologies in production, according to the 

paper [1], [15]. The authors of [16], emphasize the 

importance of real-world data for meaningful 

innovation in healthcare start-ups, while the authors 

of [17] emphasize the importance of real-world data 

for building trustworthy AI applications. 

When based on historical datasets, SCM quality 

control goes beyond just product quality. 

Furthermore, the Author [18] discusses IoT and AI 

technologies' role in predictive analytics and data 

security for ERP-based supply chain collaborations. 

As a result, [19] ndicates that choosing suppliers 

involves multiple factors, including costs, delivery 

times, and quality, as well as environmental 

considerations. 

In SCM, quality control plays a crucial role in 

improving processes, reducing inefficiencies, 

reducing costs, and maximizing return on investment. 

To reduce costs and maximize ROI across the SC, 

historical data can be leveraged to enhance quality 
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control initiatives. Analyzing historical data is the 

first step in improving quality control by identifying 

and eliminating root causes of errors and defects. 

Preventative measures reduce defects and reduce 

excessive costs. The result is that enterprises reduce 

costs associated with corrective actions, resulting in 

improved profitability. As a result of supply chain 

quality management, customers' needs are addressed, 

performance is increased, and sustainability is 

 assured [20]. A historical data analysis improves 

workflow, reduces cycle time, and optimizes resource 

allocation by identifying supply chain inefficiencies 

and bottlenecks [21]. Applying quality management 

(QM) principles to supply chain management (SCM) 

can improve its operation. 

By leveraging historical data, quality control 

procedures enhance both client satisfaction and 

supply chain quality, contributing to return on 

investment. The likelihood of repeat business 

increases when customers are satisfied, thereby 

improving profitability. A quality control method 

must take into account how operators comply with 

data collection activities about the amount of work, 

fatigue, and experience [22] . 

3 METHODOLOGY 

As part of this research, supervised and unsupervised 

machine learning algorithms will be used. A number 

of researchers and industry practitioners have 

demonstrated the effectiveness of these algorithms in 

solving complex SC problems. In forecasting demand 

or inventory levels, supervised algorithms, such as 

regression models, are used because they are capable 

of predicting continuous outcomes. 

3.1 Supply Chain Agility 

Agile supply chains are multidimensional and cross-

disciplinary [23]. There are two avenues for 

examining SCA, according to [24]: (1) speed and 

responsiveness to uncertain markets [25], [26] (2) 

information-driven relationships [27]. Agile firms are 

capable of adapting rapidly to changing markets, 

according to the Authors [26]. Unexpected 

circumstances can be handled more effectively by 

firms with agile SCs. Agile processes can be 

described as the integration of different companies 

into a streamlined material, as well as the flexible 

flow of information and performance [28]. There are 

two broad dimensions of SCA, according to the 

Author [29]: alertness and capability. 

Firms need to ensure service continuity and 

manage disruption risks as they take advantage of 

changes and synchronize supply with demand, even 

though there is no consensus on what agility 

means [30], [31]. There is a need to differentiate 

agility from resilience. The key to firm success when 

facing low probability, difficult risks is agility [32]. 

In this study, four dimensions of SCA are identified: 

decisiveness, visibility, response to demand, and 

customer responsiveness. 

3.2 AI-Risk Management and SCA 

Firms operating in dynamic environments can 

leverage their dynamic capabilities to generate 

cutting-edge knowledge [33]. Integrating advanced 

analytics into core processes enables faster, more 

accurate information processing and better-informed 

decisions. Artificial intelligence augments big-data 

analytics [34]; for example, AIRM synthesizes multi-

source data to provide end-to-end visibility and 

predictive insights, reducing inefficiencies in cold-

chain logistics and optimizing resource 

utilization [35]. AI also improves demand 

forecasting, streamlines resource allocation, and 

lowers capacity uncertainty [33]. Analytics-enabled 

supply-chain (SC) practices support the 

reconfiguration of resources, and this study shows 

that firms can adapt resources to changing conditions 

using AIRM [36]. In combination, AIRM and 

analytics capabilities enhance supply-chain 

agility (SCA). 

In this paper, we used the following supervised 

algorithms: 

▪ Linear Regression. Using one or more

independent variables, this form of regression

predicts a continuous dependent variable. There

is an assumption that the inputs (predictors) and

the outputs (response) are linear [37].

▪ Ridge Regression. The loss function is

regularized in this method, which extends linear

regression. A multicollinear prediction model or

a model with more predictors than observations

will result in a penalty reducing the coefficient

of correlated predictors.

▪ Lasso Regression. This operator reduces

overfitting by introducing a regularization term

that can also select features.

▪ Elastic Net Regression. A lasso-ridge regression

combined with an elastic net is particularly

useful when data have high correlations.

Likened to ordinary least squares, it reduces the

variability of coefficient estimates and is robust

to overfitting.
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▪ Gradient Boosted Trees. By allowing the

optimization of any differentiable loss function,

ensemble methods are similar to other boosting

methods, except that they construct models

stage-by-stage instead of boosting them.

3.2.1 Clustering Algorithms 

By allowing the optimization of any differentiable 

loss function, ensemble methods are similar to other 

boosting methods, except that they construct models 

stage-by-stage instead of boosting them. The study 

used the following methods: 

▪ K-means Clustering: This method is popular for

its simplicity and efficiency and is employed in

operational optimization for inventory

categorization [27].

▪ DBSCAN (Density-Based Spatial Clustering of

Applications with Noise): Clusters of irregular

shapes and outliers can be identified using this

algorithm [28]. As DBSCAN detects and

analyzes atypical patterns in logistics data, it

improves the capability to monitor supply chain

risks.

3.2.2 Neural Networks 

This research relies heavily on neural networks as 

they can interpret structured and unstructured inputs 

to model complex relationships within data. Atypical 

patterns can be identified using DBSCAN in SCM, 

which allows for improved risk management: 

▪ Convolutional Neural Networks (CNNs). They

are larger at processing grid-like data, enabling

them to process images and spatial structures

quickly [29]. The purpose of logistics

optimization is to find the most efficient route

and schedule for transportation by analyzing

traffic patterns and route maps [38].

▪ RNNs with LSTM units. Forecasting demand

and managing inventory levels can be done

using historical sales data, market trends, and

seasonal fluctuations.

▪ FFNN with Attention Mechanisms. To assess

and make decisions about supply chain risks, we

will assess the effectiveness of these networks

in enhancing model interpretability and

managing complex multivariate time series data.

3.3 Data Sources and Collection 

The purpose of this study was to develop and test 

machine learning models tailored for supply chain 

optimization by utilizing a variety of data sources. 

Data can be divided into two categories: 

▪ Transportation Data. Data provided by a global

logistics provider includes detailed records of

about 500,000 shipment transactions, including

the locations of pickup and delivery, weights,

modes of transportation, and carriers. On the

basis of this structured dataset, logistics

optimization tasks, such as route planning and

freight management, can be modelled.

▪ Inventory Data. A retailer's omnichannel sales,

demand fulfilment, and replenishment

transactions spanning two years are included in

the dataset. By providing granular inventory

information, it is possible to forecast demand

and optimize stock levels.

▪ External Data. There are approximately 10

million documents in these databases, including

traffic and road closure reports. It is possible to

improve supply chain performance by

incorporating external contextual factors

through unstructured data.

Collaborations with retail chains and logistics 

companies were utilized to collect data for this study. 

It is important to have access to real-time and 

historical data that reflects the current market 

conditions and operational reality. Data feeds must be 

consistent and reliable, data-sharing agreements must 

respect privacy, and disparate source data must be 

integrated into coherent datasets. 

To give you an idea of the size and complexity of 

the data, here is a summary: Furthermore, to 

illustrates the volume of data processed as well as the 

comprehensiveness of the analysis, taking into 

account both structured and unstructured data, so that 

a solid foundation would support the machine 

learning tasks described in this study, as shown in 

Figure 1. 

3.4 Data Processing Steps 

In machine learning, raw data must be processed 

before it can be analyzed. Process pipelines include: 

▪ Data Cleaning: Data inaccuracies and

inconsistencies, including missing values and

duplicate records, should be identified and

corrected. By performing this step, we ensure

the inputs of the models are accurate and

reliable.

▪ Data Transformation. Creating a format for

analyzing raw data. In this process, scales may

be normalized, categorical variables may be

encoded, or datetime features may be generated

from timestamps.

▪ Feature Engineering. To enhance model

performance, combine or transform existing
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features to create new variables. Data such as 

inventory and transportation records can benefit 

from PCA by reducing dimensionality or 

creating interaction terms between features. 

▪ Integration. A dataset created by combining data

from different sources. As a result, data must be

aligned on common identifiers, discrepancies

between related datasets need to be reconciled,

and timeframes need to be synchronized.

Pipelines feed high-quality, relevant data to 

machine learning models so that they can build robust 

foundations for analyzing supply chain data. 

3.5 Machine Learning Models for Risk 
Prediction 

Detecting anomalies in data is crucial to identifying 

issues or disruptions in the supply chain [39]. 

Analysis of historical data identifies patterns that 

differ from those established in the past and can detect 

deviations from normal behavior. There are several 

methods for detecting anomalies, including Z-scores, 

Grubbs' tests, Isolation Forests, One-Class SVMs, 

and Autoencoders [40]. 

Figure 1: Models that use machine learning to predict risk. 

By detecting anomalies in data streams in real 

time, organizations have the ability to prevent major 

problems, such as equipment failure, fraud, or supply 

chain irregularities, from occurring. A time series 

forecast uses historical trends and patterns to predict 

values. A time series forecast uses historical trends 

and patterns to predict values. Time series data can be 

analyzed by using time series models such as ARIMA 

and LSTM. Modelling stationary time series with 

ARIMA involves combining autoregression, 

differencing, and moving averages, which makes it 

suitable for forecasting time series with time-

dependent variables. Time series forecasting can be 

performed using LSTMs, which are recurrent neural 

networks (RNNs) that handle sequential data and 

long-term dependencies. Forecasting future trends, 

optimizing inventory levels, and adjusting 

procurement strategies can be done with both models 

based on changing demand and supply conditions. 

3.6 Performance Evaluation 

Our paper evaluates these models based on certain 

metrics. There are many types of error, including 

MSE, RMSE, and MEA, as well as Adjusted Mean 

Square Error.

Mean Squared Error (MSE) – the MSE is 

calculated by taking the square root of the difference 

between the actual and predicted values. Therefore, 

MSE measures how closely a line of best fit fits the 

data set. It is always positive when the MSE is 

calculated. When negative signs are taken out of the 

square, they are eliminated. Predictions are more 

accurate when the MSE is close to 0. 

MSE is calculated using the following (1): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 .  (1) 

Root Mean Squared Error (RMSE) – this is also 

known as the RMSD or the RMSE. This is referred to 

as RMSE or root mean square error. Once again, 

RMSE indicates how close the line of best fit is to the 

points. 

RMSE can be calculated using the following (2): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 .  (2) 

Mean Absolute Error (MAE) – a MAE can be used to 

calculate the absolute difference between 

observational and predicted values, also referred to as 

MAD. Using MAE, we consider the absolute 

difference between predicted and observed values, 

while using MSE, we consider the squared difference. 

MAE is calculated as follows (3): 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 .  (3) 

R-squared (R2) – determination coefficients are

known as R2. Based on R-squared, it is more likely

that the independent variable accounts for more

variance in the dependent variable. A regression

model's goodness of fit (how closely the observed

values match the predicted values) can be determined

by R-squared:

𝑅2 = 1 −
𝑆𝑆𝑅

𝑇𝑆𝑆
. (4)
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4 RESULTS AND DISCUSSION 

Based on Accuracy, Precision, Recall, and F1-Scores, 

Figure 2 shows the performance of a predictive 

analytics model. The model achieves the highest 

performance in Accuracy (around 88%), followed by 

Precision (about 82%). Approximately 75% of recalls 

are accurate, whereas the F1-Score is 78% accurate. 

Despite its Accuracy and Precision, the model could 

be improved to capture all the positives. 

Figure 2: Performance metrics of predictive analytics 

model. 

Figure 3 shows four metrics used to measure early 

warning system performance: Accuracy, Precision, 

Recall, and F1-Score. Accuracy (around 96%) is the 

highest, indicating strong overall predictions. There 

is a slight decrease in Precision and Recall, around 

80%, with the F1-Score almost matching the Recall. 

Although the system is highly accurate and balanced, 

its precision and recall rates can be further improved 

for better early warnings. 

Figure 3: Performance metrics of the early warning system. 

Figure 4: Impact of time on adaptive decision-making 

performance. 

A bar chart shows improvements in resource 

allocation and response time over six, twelve, twenty-

four, and forty-eight-hour periods in adaptive 

decision-making (Fig. 4). At 6 hours, the metrics 

improve the most, while at 48 hours, they improve the 

least. A faster intervention yields better adaptive 

decision outcomes at all-time points, illustrating the 

importance of improving response time over resource 

allocation efficiency. 

Figure 5: Comparison of model performance and response 

optimization across learning strategies. 

Model Performance Improvement and Response 

Optimization are illustrated in Figure 5 using a bar 

chart comparing four strategies: Regular Updates, 

Dynamic Thresholds, Continuous Learning, and 

Hybrid Approaches. Model Performance 

Improvements are achieved through Continuous 
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Learning, while Response Optimization Impacts are 

achieved through Dynamic Thresholds. The results 

show that Continuous Learning and Dynamic 

Thresholds are more effective in improving 

evaluation and learning than Regular Update and 

Hybrid Approaches. 

5 CONCLUSIONS 

Our study presents a real-time risk management 

framework based on machine learning. This study 

shows how predictive models can effectively identify 

anomalies, forecast disruptions in supply chains, and 

optimize decisions by leveraging advanced 

supervised algorithms, clustering techniques, and 

neural network architectures. A robust model capable 

of dynamic adaptation was developed using 

comprehensive real-world data from logistics and 

inventory operations, enabling precise, data-driven 

decision-making. Comparative studies have 

demonstrated that models employing continuous 

learning methods and dynamic thresholds 

consistently outperform traditional approaches in 

terms of accuracy, responsiveness, and operational 

efficiency. Additionally, the strategic integration of 

anomaly detection techniques with sophisticated 

time-series forecasting significantly enhanced early-

warning capabilities, providing timely alerts and 

empowering adaptive, informed responses to 

disruptions. According to the findings, the 

implementation of advanced machine learning 

technologies can fundamentally transform 

conventional supply chains into agile, resilient, and 

sustainable systems, better prepared to manage 

uncertainty and complexity. Future research could 

further examine the potential for integrating 

explainable AI within ethical decision-making 

frameworks, aiming to create predictive models for 

supply chain ecosystems that are not only transparent 

and fair but also accountable and aligned with societal 

values and regulatory expectations. 
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