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A resilient and efficient supply chain requires real-time risk management in an increasingly volatile global
marketplace. This study examines a supply chain risk management system based on machine learning-driven
prediction analytics. This research utilizes supervised and unsupervised learning methods, regression models,
clustering techniques, and neural networks to improve decision-making, resource allocation, and operational
efficiency. Data from logistics, inventory records, and external sources were collected, processed, and
analyzed to develop predictive models capable of anomaly detection, forecasting, and planning dynamic
responses. Key performance metrics were used in evaluating the proposed system, including MSE, RMSE,
MAE, and R2. Machine learning models significantly improve supply chain operations, particularly those that
use continuous learning and dynamic thresholds. Predictive analytics can transform traditional supply chain
management into an intelligent, proactive, and resilient system that enhances performance, mitigates risks,
reduces costs, supports rapid decision-making, strengthens responsiveness to disruptions, and effectively

addresses uncertainty in highly dynamic and competitive market environments.

1 INTRODUCTION

Across today's globally interconnected economy,
supply chains are becoming more complex, dynamic,
and prone to disruption due to shifts in demand,
transportation disruptions, geopolitical conflicts, and
environmental concerns. Risk management in real-
time has become a crucial priority for organizations
seeking to maintain resilience, continuity, and
competitiveness. Today's supply chains are marked
by rapidly evolving uncertainty, which makes risk
management approaches based on historical data and
reactive measures insufficient. Using predictive
analytics powered by machine learning, organizations
can anticipate risks before they arise with a
transformative solution [1]. By gaining these insights,
supply chain managers are able to make proactive,
data-driven decisions, optimize resources, and design
networks that are more agile and resilient. The
capabilities of predictive analytics systems have been
further enhanced by advances in machine learning
algorithms, including deep learning, ensemble
methods, and reinforcement learning. Through real-
time data processing combined with scalable cloud
computing platforms and Internet of Things (IoT)

technologies, supply chains can be continuously
monitored, and threats can be rapidly addressed [2].
As supply chain risk running processes are integrated
with ML and predictive analytics, a new era is
emerging for operational efficiency, customer
satisfaction, and strategic planning.

SCM (supply chain management) is an important
aspect of business operations that ensures efficient
delivery of goods and services. Modern supply chains
are complex and require robust strategies to manage
uncertainty and optimize processes due to
globalization, technological advancements, and
market fluctuations. The use of machine learning
(ML) and predictive analytics in this domain is
enabling better decisions and operational efficiency.
It is essential for forecasting demand, optimizing
inventory, enhancing supplier relationships, and
mitigating risks to have this capability. As ML is
incorporated into predictive analytics, SCM is
reshaping, providing unprecedented opportunities for
enhancing agility, resilience, and competitive
advantage. Increasing globalization, e-commerce,
and rapidly changing consumer preferences have
driven modern supply chains to become increasingly
complex. As suppliers, manufacturers, distributors,
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and retailers become more interconnected, advanced
tools and techniques become more necessary.

It enables companies to align their production and
inventory strategies with the anticipated market
demand through the identification of hidden patterns
and correlations [3]. Additionally, machine learning
can benefit supply chain management in addition to
inventory optimization. Consequently, substantial
cost savings can be achieved, customer satisfaction
can be improved, and overstocks can be avoided [4].
A predictive model can predict supplier behaviour
based on historical performance and external factors
and assess the likelihood of disruptions. Manage
supplier relationships proactively to mitigate risks,
negotiate better terms, and improve supply chain
resilience [5].

A circular economy is also enabled by predictive
models that can identify the most effective ways to
recycle and reuse materials. As companies seek to
align with global sustainability initiatives and meet
the expectations of socially conscious consumers,
balancing economic performance with environmental
responsibility becomes increasingly important [6]. As
data availability, computing power, and algorithmic
capabilities  improve, machine learning s
increasingly adopted in supply chain management.
Moreover, explainable Al techniques facilitate
transparency and understanding of ML decision-
making processes, creating confidence among
stakeholders [7]. Supply chain management isn't
without challenges despite its numerous benefits
when it comes to implementing machine learning.
The quality and availability of the data determine a
predictive model's Accuracy and reliability.
Similarly, collaborations with technology partners
and academic institutions can facilitate access to
cutting-edge supply chain analytics and machine
learning research [8]. It is also challenging to
integrate machine learning models with existing
supply chains and processes [9]. It can be difficult for
predictive analytics to be effective with legacy
systems and siloed data sources.

Machine learning initiatives can be successfully
adapted and used by aligning them with business
objectives and stakeholder expectations [10]. Supply
chain  management also involves ethical
considerations when using machine learning. There
are concerns about the privacy, security, and
algorithmic bias associated with predictive analytics.
Companies must follow regulations and ethical
standards when collecting and analyzing data. A
transparent and accountable process is crucial to
preventing unintended consequences and building
stakeholder trust as ML models are developed and

deployed. A key component of fair decision-making
is addressing algorithmic bias, especially when it
comes to supplier selection and workforce
management [11], [12].

2 LITERATURE REVIEW

The supply chain ecosystem should have quality
control in order to promote customer-centricity and
minimize risk. Increasing consumer satisfaction
through quality control has been shown to increase
satisfaction, according to one study [13]. Further, by
integrating ERP  systems and automation
technologies, you can mitigate global supply chain
complexity, resulting in significant cost savings [14].
It is recommended that further research be carried out
on how Al can further improve supply chain
management through a robust data infrastructure and
stakeholder engagement.

ML-driven quality control can enhance supply
chain performance, improving ROI while mitigating
quality-related risks and optimizing operational
efficiency. It is possible to prevent defects and ensure
consistent quality with machine learning-based defect
prediction systems. In addition to reducing defects
and rework costs, this proactive approach also
improves customer satisfaction and loyalty. By
leveraging predictive modelling, ML-driven quality
control drives business success by enabling
continuous improvement. Machine learning has a
profound impact on supply chain management
(SCM). A real-world dataset is crucial to
understanding how Al interacts with advanced
technologies in production, according to the
paper [1], [15]. The authors of [16], emphasize the
importance of real-world data for meaningful
innovation in healthcare start-ups, while the authors
of [17] emphasize the importance of real-world data
for building trustworthy Al applications.

When based on historical datasets, SCM quality
control goes beyond just product quality.
Furthermore, the Author [18] discusses loT and Al
technologies' role in predictive analytics and data
security for ERP-based supply chain collaborations.
As a result, [19] ndicates that choosing suppliers
involves multiple factors, including costs, delivery
times, and quality, as well as environmental
considerations.

In SCM, quality control plays a crucial role in
improving processes, reducing inefficiencies,
reducing costs, and maximizing return on investment.
To reduce costs and maximize ROI across the SC,
historical data can be leveraged to enhance quality
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control initiatives. Analyzing historical data is the
first step in improving quality control by identifying
and eliminating root causes of errors and defects.
Preventative measures reduce defects and reduce
excessive costs. The result is that enterprises reduce
costs associated with corrective actions, resulting in
improved profitability. As a result of supply chain
quality management, customers' needs are addressed,
performance is increased, and sustainability is
assured [20]. A historical data analysis improves
workflow, reduces cycle time, and optimizes resource
allocation by identifying supply chain inefficiencies
and bottlenecks [21]. Applying quality management
(QM) principles to supply chain management (SCM)
can improve its operation.

By leveraging historical data, quality control
procedures enhance both client satisfaction and
supply chain quality, contributing to return on
investment. The likelihood of repeat business
increases when customers are satisfied, thereby
improving profitability. A quality control method
must take into account how operators comply with
data collection activities about the amount of work,
fatigue, and experience [22] .

3 METHODOLOGY

As part of this research, supervised and unsupervised
machine learning algorithms will be used. A number
of researchers and industry practitioners have
demonstrated the effectiveness of these algorithms in
solving complex SC problems. In forecasting demand
or inventory levels, supervised algorithms, such as
regression models, are used because they are capable
of predicting continuous outcomes.

3.1 Supply Chain Agility

Agile supply chains are multidimensional and cross-
disciplinary [23]. There are two avenues for
examining SCA, according to [24]: (1) speed and
responsiveness to uncertain markets [25], [26] (2)
information-driven relationships [27]. Agile firms are
capable of adapting rapidly to changing markets,
according to the Authors [26]. Unexpected
circumstances can be handled more effectively by
firms with agile SCs. Agile processes can be
described as the integration of different companies
into a streamlined material, as well as the flexible
flow of information and performance [28]. There are
two broad dimensions of SCA, according to the
Author [29]: alertness and capability.

Firms need to ensure service continuity and
manage disruption risks as they take advantage of
changes and synchronize supply with demand, even
though there is no consensus on what agility
means [30], [31]. There is a need to differentiate
agility from resilience. The key to firm success when
facing low probability, difficult risks is agility [32].
In this study, four dimensions of SCA are identified:
decisiveness, visibility, response to demand, and
customer responsiveness.

3.2 Al-Risk Management and SCA

Firms operating in dynamic environments can
leverage their dynamic capabilities to generate
cutting-edge knowledge [33]. Integrating advanced
analytics into core processes enables faster, more
accurate information processing and better-informed
decisions. Artificial intelligence augments big-data
analytics [34]; for example, AIRM synthesizes multi-
source data to provide end-to-end visibility and
predictive insights, reducing inefficiencies in cold-
chain  logistics and  optimizing  resource
utilization [35]. Al also improves demand
forecasting, streamlines resource allocation, and
lowers capacity uncertainty [33]. Analytics-enabled
supply-chain ~ (SC)  practices  support  the
reconfiguration of resources, and this study shows
that firms can adapt resources to changing conditions
using AIRM [36]. In combination, AIRM and
analytics  capabilities  enhance  supply-chain
agility (SCA).
In this paper, we used the following supervised
algorithms:
= Linear Regression.Using one or more
independent variables, this form of regression
predicts a continuous dependent variable. There
is an assumption that the inputs (predictors) and
the outputs (response) are linear [37].
= Ridge Regression. The loss function is
regularized in this method, which extends linear
regression. A multicollinear prediction model or
a model with more predictors than observations
will result in a penalty reducing the coefficient
of correlated predictors.
= Lasso Regression. This operator reduces
overfitting by introducing a regularization term
that can also select features.
= Elastic Net Regression. A lasso-ridge regression
combined with an elastic net is particularly
useful when data have high correlations.
Likened to ordinary least squares, it reduces the
variability of coefficient estimates and is robust
to overfitting.
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= Gradient Boosted Trees. By allowing the
optimization of any differentiable loss function,
ensemble methods are similar to other boosting
methods, except that they construct models
stage-by-stage instead of boosting them.

3.2.1 Clustering Algorithms

By allowing the optimization of any differentiable
loss function, ensemble methods are similar to other
boosting methods, except that they construct models
stage-by-stage instead of boosting them. The study
used the following methods:
= K-means Clustering: This method is popular for
its simplicity and efficiency and is employed in
operational  optimization  for  inventory
categorization [27].
= DBSCAN (Density-Based Spatial Clustering of
Applications with Noise): Clusters of irregular
shapes and outliers can be identified using this
algorithm [28]. As DBSCAN detects and
analyzes atypical patterns in logistics data, it
improves the capability to monitor supply chain
risks.

3.2.2 Neural Networks

This research relies heavily on neural networks as
they can interpret structured and unstructured inputs
to model complex relationships within data. Atypical
patterns can be identified using DBSCAN in SCM,
which allows for improved risk management:
= Convolutional Neural Networks (CNNs). They
are larger at processing grid-like data, enabling
them to process images and spatial structures
quickly [29]. The purpose of logistics
optimization is to find the most efficient route
and schedule for transportation by analyzing
traffic patterns and route maps [38].
= RNNs with LSTM units. Forecasting demand
and managing inventory levels can be done
using historical sales data, market trends, and
seasonal fluctuations.
= FFNN with Attention Mechanisms. To assess
and make decisions about supply chain risks, we
will assess the effectiveness of these networks
in enhancing model interpretability and
managing complex multivariate time series data.

3.3 Data Sources and Collection

The purpose of this study was to develop and test
machine learning models tailored for supply chain
optimization by utilizing a variety of data sources.
Data can be divided into two categories:

= Transportation Data. Data provided by a global
logistics provider includes detailed records of
about 500,000 shipment transactions, including
the locations of pickup and delivery, weights,
modes of transportation, and carriers. On the
basis of this structured dataset, logistics
optimization tasks, such as route planning and
freight management, can be modelled.

= Inventory Data. A retailer's omnichannel sales,
demand fulfilment, and replenishment
transactions spanning two years are included in
the dataset. By providing granular inventory
information, it is possible to forecast demand
and optimize stock levels.

= External Data. There are approximately 10
million documents in these databases, including
traffic and road closure reports. It is possible to
improve supply chain performance by
incorporating  external contextual factors
through unstructured data.

Collaborations with retail chains and logistics
companies were utilized to collect data for this study.
It is important to have access to real-time and
historical data that reflects the current market
conditions and operational reality. Data feeds must be
consistent and reliable, data-sharing agreements must
respect privacy, and disparate source data must be
integrated into coherent datasets.

To give you an idea of the size and complexity of
the data, here is a summary: Furthermore, to
illustrates the volume of data processed as well as the
comprehensiveness of the analysis, taking into
account both structured and unstructured data, so that
a solid foundation would support the machine
learning tasks described in this study, as shown in
Figure 1.

3.4 Data Processing Steps

In machine learning, raw data must be processed
before it can be analyzed. Process pipelines include:
» Data Cleaning: Data inaccuracies and
inconsistencies, including missing values and
duplicate records, should be identified and
corrected. By performing this step, we ensure
the inputs of the models are accurate and
reliable.
= Data Transformation. Creating a format for
analyzing raw data. In this process, scales may
be normalized, categorical variables may be
encoded, or datetime features may be generated
from timestamps.
= Feature Engineering. To enhance model
performance, combine or transform existing
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features to create new variables. Data such as
inventory and transportation records can benefit
from PCA by reducing dimensionality or
creating interaction terms between features.

= Integration. A dataset created by combining data
from different sources. As a result, data must be
aligned on common identifiers, discrepancies
between related datasets need to be reconciled,
and timeframes need to be synchronized.

Pipelines feed high-quality, relevant data to
machine learning models so that they can build robust
foundations for analyzing supply chain data.

3.5 Machine Learning Models for Risk
Prediction

Detecting anomalies in data is crucial to identifying
issues or disruptions in the supply chain [39].
Analysis of historical data identifies patterns that
differ from those established in the past and can detect
deviations from normal behavior. There are several
methods for detecting anomalies, including Z-scores,
Grubbs' tests, Isolation Forests, One-Class SVMs,
and Autoencoders [40].

Data (Input)

Traditional
Programming Program
Program
Data (Input)
Machine
. Learning Program

Output

Figure 1: Models that use machine learning to predict risk.

By detecting anomalies in data streams in real
time, organizations have the ability to prevent major
problems, such as equipment failure, fraud, or supply
chain irregularities, from occurring. A time series
forecast uses historical trends and patterns to predict
values. A time series forecast uses historical trends
and patterns to predict values. Time series data can be
analyzed by using time series models such as ARIMA
and LSTM. Modelling stationary time series with
ARIMA involves combining autoregression,
differencing, and moving averages, which makes it
suitable for forecasting time series with time-
dependent variables. Time series forecasting can be
performed using LSTMs, which are recurrent neural
networks (RNNs) that handle sequential data and
long-term dependencies. Forecasting future trends,
optimizing inventory levels, and adjusting

procurement strategies can be done with both models
based on changing demand and supply conditions.

3.6 Performance Evaluation

Our paper evaluates these models based on certain
metrics. There are many types of error, including
MSE, RMSE, and MEA, as well as Adjusted Mean
Square Error.

Mean Squared Error (MSE) — the MSE is
calculated by taking the square root of the difference
between the actual and predicted values. Therefore,
MSE measures how closely a line of best fit fits the
data set. It is always positive when the MSE is
calculated. When negative signs are taken out of the
square, they are eliminated. Predictions are more
accurate when the MSE is close to 0.

MSE is calculated using the following (1):

n
1
MSE == (v = 907 (M
i=1

Root Mean Squared Error (RMSE) — this is also
known as the RMSD or the RMSE. This is referred to
as RMSE or root mean square error. Once again,
RMSE indicates how close the line of best fit is to the
points.

RMSE can be calculated using the following (2):

n
1
RMSE = |- (i =92 @
i=1

Mean Absolute Error (MAE) —a MAE can be used to
calculate the absolute difference  between
observational and predicted values, also referred to as
MAD. Using MAE, we consider the absolute
difference between predicted and observed values,
while using MSE, we consider the squared difference.
MAE is calculated as follows (3):

n
1
MAE == [y, =9l &)
i=1

R-squared (R?) — determination coefficients are
known as R?. Based on R-squared, it is more likely
that the independent variable accounts for more
variance in the dependent variable. A regression
model's goodness of fit (how closely the observed
values match the predicted values) can be determined
by R-squared:

SSR

RZ=1—-——.
TSS

“4)

309



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), July 2025

4 RESULTS AND DISCUSSION

Based on Accuracy, Precision, Recall, and F1-Scores,
Figure 2 shows the performance of a predictive
analytics model. The model achieves the highest
performance in Accuracy (around 88%), followed by
Precision (about 82%). Approximately 75% of recalls
are accurate, whereas the F1-Score is 78% accurate.
Despite its Accuracy and Precision, the model could
be improved to capture all the positives.

100

BD-‘-
60 -
40.‘
20 4
04

Accuracy Precision Recall F1-Score

Pradictive Analytics

Figure 2: Performance metrics of predictive analytics
model.

Figure 3 shows four metrics used to measure early
warning system performance: Accuracy, Precision,
Recall, and F1-Score. Accuracy (around 96%) is the
highest, indicating strong overall predictions. There
is a slight decrease in Precision and Recall, around
80%, with the F1-Score almost matching the Recall.
Although the system is highly accurate and balanced,
its precision and recall rates can be further improved
for better early warnings.

80 —
60
40 -
20
[

Accuracy Precision Recall F1-Score

Early Warning System

Figure 3: Performance metrics of the early warning system.
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Figure 4: Impact of time on adaptive decision-making
performance.

A bar chart shows improvements in resource
allocation and response time over six, twelve, twenty-
four, and forty-eight-hour periods in adaptive
decision-making (Fig. 4). At 6 hours, the metrics
improve the most, while at 48 hours, they improve the
least. A faster intervention yields better adaptive
decision outcomes at all-time points, illustrating the
importance of improving response time over resource
allocation efficiency.

20

I Model Performance Improvement|
I Response Optimization Impact

Evaluation and Learning
-
o
1

Dynamic Continuous
Thresholds Learning

Regular Update Hybrid Approach

Figure 5: Comparison of model performance and response
optimization across learning strategies.

Model Performance Improvement and Response
Optimization are illustrated in Figure 5 using a bar
chart comparing four strategies: Regular Updates,
Dynamic Thresholds, Continuous Learning, and
Hybrid Approaches. Model Performance
Improvements are achieved through Continuous
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Learning, while Response Optimization Impacts are
achieved through Dynamic Thresholds. The results
show that Continuous Learning and Dynamic
Thresholds are more effective in improving
evaluation and learning than Regular Update and
Hybrid Approaches.

5 CONCLUSIONS

Our study presents a real-time risk management
framework based on machine learning. This study
shows how predictive models can effectively identify
anomalies, forecast disruptions in supply chains, and
optimize  decisions by leveraging advanced
supervised algorithms, clustering techniques, and
neural network architectures. A robust model capable
of dynamic adaptation was developed using
comprehensive real-world data from logistics and
inventory operations, enabling precise, data-driven
decision-making.  Comparative  studies  have
demonstrated that models employing continuous
learning methods and dynamic thresholds
consistently outperform traditional approaches in
terms of accuracy, responsiveness, and operational
efficiency. Additionally, the strategic integration of
anomaly detection techniques with sophisticated
time-series forecasting significantly enhanced early-
warning capabilities, providing timely alerts and
empowering adaptive, informed responses to
disruptions. According to the findings, the
implementation of advanced machine learning
technologies can  fundamentally  transform
conventional supply chains into agile, resilient, and
sustainable systems, better prepared to manage
uncertainty and complexity. Future research could
further examine the potential for integrating
explainable Al within ethical decision-making
frameworks, aiming to create predictive models for
supply chain ecosystems that are not only transparent
and fair but also accountable and aligned with societal
values and regulatory expectations.
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