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Abstract: Integrating different biological features – for example, the informativeness of topological features and gene 

expression – is challenging because each feature must be accounted for individually if the features are used 

to help forecast models. In this process, ensuring that the outcomes reflect the underlying biological structure 

of the network information while minimizing noise and irrelevant data is crucial. This study identifies the 

importance of rigorous pre-analyses in determining statistically significant correlations and joint effects 

among preprocess features before applying machine-learning techniques. Thus, when deploying 

multidimensional datasets, a systematic multi-feature methodology is presented in this paper to unify 

optimized graph clustering, weighted Jaccard similarity, and dimension reduction based on principal 

component analysis (PCA). Specifically, the objective was to identify novel uncharacterized gene associations 

in complex biological networks. Moreover, this study offers more refined insights into gene interactions 

within their networks, revealing patterns and relationships that might be hidden by broad data analysis. The 

method's performance was validated according to the benchmarks for a Dialogue on Reverse Engineering 

Assessment of Methods, fifth edition (DREAM5) challenge project, to determine its ability to analyze 

complex biological networks. 

1 INTRODUCTION 

Biological systems often involve complex 

interactions among numerous genes and chemicals 

within cellular networks, especially in multifactorial 

diseases [1], [2]. Advances in experimental and 

computational methods now enable precise mapping 

of physical (e.g., protein-protein, signaling, and 

regulatory) and functional (Yet, the scale of these 

networks poses challenges for extracting biological 

insights, making community detection a vital graph-

clustering task for identifying functional modules [3]. 

While many algorithms have been tested on 

benchmark in silico networks, their utility in real 

molecular contexts remains uncertain. Nevertheless, 

identifying modules is critical for downstream 

analyses like link prediction and disease mechanism 

interpretation. Features from community structures 

and gene expression data can be combined to detect 

regulatory patterns and deeper functional 

associations. Dimensionality reduction techniques 

such as PCA help extract biologically relevant 

features from high-dimensional gene expression data. 

As early as 2010, PCA was shown to improve cancer 

subtype classification by incorporating biological 

structure [4], Moreover, integrating regulatory 

networks into statistical models allows for a richer 

interpretation of genetic architecture and biological 

function [5]. By combining community data with 

PCA loadings, researchers gain deeper insights into 

genetic network organization, surpassing traditional 

analytical methods [6]. This paper presents a novel 

multi-feature framework that integrates gene 

expression profiles, community structures, and 

principal components to identify highly variable 

genes within selected modules – prioritizing targets 

for experimental validation and enhancing biological 

understanding. 

2 RELATED WORK 

The graph structures are non-Euclidean, meaning 

they are characterized by irregular arrangements, 

make it hard to identify the nearby genes of a given 

point in the data, and vary in the number of 

surrounding nodes of various genes. Several recent 

studies have highlighted the importance of clustering 
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as a critical step in single-cell data integration and 

analysis. The method's primary innovation in this 

study [7] is its simultaneous consideration of the 

condition manifold's and gene manifold's internal 

geometric structures, this novel approach used 

DGPCA,  its Laplacian embedding to approximate 

the cluster membership indicators and obtain 

principal components (PCs) to characterize the data. 

The condition manifold and gene manifold, two 

internal geometric structures that are appropriate for 

bi-clustering, are features of DGPCAA new 

interpretable framework for solving the single-cell 

RNA-Seq clustering challenge was proposed in [8]. 

The system could generate many clustering’s of the 

same dataset at a low cost, in addition to retrieving 

results from a wide range of single-cell research. The 

algorithm was able to provide interpretable 

justifications for each of its choices and be used as a 

backend algorithm for interactive interpretation and 

analysis. In [9] to extract attribute information, the 

scDFN algorithm uses a dual mechanism that 

includes an autoencoder.  This is the first study to 

use an enhanced graph network for single-cell 

topological data representation. Using the triple self-

supervision technique and the cross-network 

information fusion mechanism, the information 

fusion module merges the retrieved attribute and 

topology data. To maximize the cell clustering 

representation throughout the entire model, quadruple 

joint losses are used. scGMAI, a novel Gaussian 

mixture clustering technique based on autoencoder 

networks and FastICA, was proposed in [10]. It is a 

powerful tool for precisely classifying and 

distinguishing cell types from scRNA-Seq data and 

demonstrates the wide range of applications it can 

have in scRNA-Seq data analysis.  The defining 

genes of cell clusters are more precisely identified by 

this methodology. In scGMAI, FastICA selects the 

most important independent features to create a low-

dimensional space that retains all of the data's 

fundamental properties. In order to assess how 

effectively biological variation is maintained during 

integration, the study in [11] has extensively 

benchmarked data integration techniques utilizing 

Louvain clustering. Researchers were able to 

statistically evaluate the quality of integration by 

comparing cluster assignments with reference cell 

type labels using measures such as NMI and ARI. 

This method has made clustering, when combined 

with strong validation metrics, a common technique 

for single-cell genomics batch correction evaluation 

and biological discovery. 

3 METHODOLOGY 

The nature of molecular networks is modular, and the 

subsets of nodes are more interconnected than pure 

chance would suggest. These subsets often consist of 

genes or proteins that share biological functions. 

Therefore, community detection is an intrinsic step 

towards deriving findings from network data [12]. 

However, biological networks' sheer scale and 

complexity present an obstacle to their analysis. 

Consequently, the present researcher has focused on 

community structures to identify functionally related 

groups of genes or proteins involved in biological 

processes. Here, together with module identification 

and graph clustering, the traditional network science 

task of community detection was the objective of 

applying a number of proposed methods [13].  

  In particular, this paper [14] reports on detecting 

protein complexes based on gene expressions. 

However, the resulting framework addresses broader 

challenges, such as integrating multiple data sources 

and analyzing complex networks. Nevertheless, 

despite these advances, there is still very little 

understanding of how the different approaches 

identify biologically meaningful communities in 

molecular networks. For instance, although the 

Dialogue on Reverse Engineering Assessment of 

Methods (DREAM) project demonstrated robust 

methods of network inference [15], very little 

downstream analysis has been conducted of the 

reconstructed networks, for example, in predicting 

regulatory pairs or discovering new links. 

Hence, a broad three-component framework is 

proposed in this study, deploying robust methods of 

community detection to identify groups of 

functionally related genes accurately. Consequently, 

additional biological insights were anticipated, 

together with a PCA-based feature selection strategy 

for reducing the dimensionality of gene expression 

data by selecting various pertinent principal 

components (PCs), according to cumulative variance. 

This framework is schematically represented in 

Figure 1, which illustrates the workflow and further 

clarifies the functions of the regulatory gene network. 

Here, highly diverse features are typically gathered 

from a variety of databases (see top panel).  

A feature table or matrix is then produced by 

merging the feature data with the already identified 

gene regulatory network, sourced from open 

databases like DREAM5. From this gene regulatory 

network, appropriate algorithms are applied to the 

relevant genes, selected by graph clustering from, for 

example, an E. coli dataset. 

254 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), July 2020225  



Figure 1: Overview of the proposed scheme for integrating biological data. 

3.1 Feature Selection and Extraction 

Feature selection enhances predictive accuracy and 

deepens understanding of biological networks, 

especially in the context of genomics and 

personalized medicine where accurate prediction is 

crucial [16]. To achieve this, the paper employs two 

main criteria: the "Predicting Communities" 

approach, which leverages prior knowledge of gene 

regulatory networks, and Principal Component 

Analysis (PCA), used to select the top 10 features 

(principal components) based on variance. Detailed 

descriptions of these criteria follow in the 

methodology section. 

Features were extracted from both regulatory and 

inferred gene expression networks, focusing on 

dynamic elements such as transcription factors and 

co-expressed genes. Communities of highly 

interconnected genes and transcription factors were 

also incorporated. These were merged into a unified 

feature matrix, offering an integrated view of diverse 

biological data. Subsequent unsupervised clustering, 

based purely on network topology, identified non-

overlapping communities ranging from 3 to 226 

elements. This integrative approach supports robust 

exploration of molecular network structure. 

3.2 Predicting Communities 

In order to predict communities of related genes 

referred to as 'regulatory communities' or 'gene 

regulatory networks', it is crucial to cluster features 

using robust methods of community detection.  

A framework of module predictions is proposed, 

consisting of four phases and represented in Figure 2. 
The architecture of the proposed framework consists 
of four key phases:  

1) community detection to identify functional

groups;

2) parameter optimization;

3) integration of transcription factors and target

genes;

4) module validation to link biological functions

with the detected communities.

In brief, Phase 1 consists of communities being 

used to seed or initialize groups of genes, in order to 

preprocess communities. The groups are refined by 

ranking and selecting those features that will best 

preserve the local structure, using mutual 

information. 

In Phase 2, weighted Jaccard similarity takes 

place. The key difference between normal and 

weighted Jaccard is that the latter does not operate 

with binary features alone; instead, the numerical 

values of each feature used to calculate similarity. 

Specifically, in weighted Jaccard, the numerical 

values of each feature considered to compute 

similarity, as in the proposal, using the numerical 

values of the genes, for example, PageRank, 

in_degree, etc. Genes that show very similar 

numerical values have high similarity, thereby 

increasing the accuracy of the gene grouping in 

populations. 

 In Phase 3, information about aggregation 

attributes, shared neighbours, and connectivity is 

used to build similarity matrices, thereby enhancing 

the performance of the existing community detection 

algorithms. 

Finally, in Phase 4, communities are clustered on 

the similarity matrix to obtain the final clustering 

(module). All four of these phases are described in 

detail in the following sub-sections.   
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Figure 2: Framework of module predictions. 

The communities illustrated in Figure 2 are made 

up of groups of genes and transcription factors that 

collectively perform specific biological functions, 

such as stress response or cell differentiation. 

Regulatory communities not only help shed light on 

the regulation of gene expression but also reveal the 

functional relationships between genes. This 

information helps to identify biological pathways and 

understand cellular processes. For instance, in stress 

response, a regulatory module could include stress 

resistance genes and their transcriptional regulators. 

Meanwhile, a cell differentiation network may 

contain differentiation genes and the transcription 

factors that control their expression. Therefore, this 

paper continues and extends the work reported 

in [17], introducing community detection algorithms 

that are enhanced by parameter learning. The latter 

has previously been applied in the literature to social 

networks but is now extended to biological networks. 

This parameter controls the tendency of nodes to form 

communities, consequently influencing community 

size by optimizing the modularity function.  

The parameter would inversely influence the size 

of the detected communities, thereby increasing the 

value results in smaller, more tightly knit 

communities. This adjustment offers a scalable and 

flexible approach to analyzing large and complex 

biological networks. Unsupervised clustering 

algorithms were therefore employed, relying solely 

on network structure (link and attribute information) 

without additional biological annotations, 

consequently ensuring unbiased module 

identification. 

3.2.1 Phase 1: Local Clustering and 
Topological Features 

Phase 1 was subdivided into two stages: local 

clustering and topological feature extraction:  

1) Local Clustering Phase. Initial clusters were

formed using cluster density from the gene

network, followed by attribute weighting and

refinement via the Louvain modularity

optimization algorithm [18], The DICCA

algorithm was employed to group genes based

on proximity and attributes, targeting densely

connected subgroups. Jaccard similarity and

modularity optimization further enhanced

cluster identification and weighting.

2) Topological Feature Stage. Topological

features – such as eigenvalue, closeness, and

edge – were extracted to assess their influence

on the target variable. Mutual information was

used to rank these features, with the most

informative ones selected for prediction tasks.

3.2.2 Phase 2: Weighted Jaccard Similarity 
Algorithm 

Once the initial clusters are formed, the weighted 

Jaccard similarity algorithm can be applied as the key 

approach to detecting communities within biological 

networks. This algorithm is specifically designed to 

render similarity measures more relevant by 

accounting for the strength and importance of 

interactions. Other than the original Jaccard index, 
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which assigns equal weights to all attributes of 

interest, the weighted Jaccard similarity algorithm 

weights attributes according to their importance, 

minimizing the effect of weak/nonspecific 

interaction. In this paper, the weighted Jaccard 

similarity of two genes was calculated based on (1): 

Similarity (i, j) = 
∑ 𝑚𝑖𝑛 (𝑎𝑡𝑡𝑖,𝑎𝑡𝑡𝑗)

∑ 𝑚𝑎𝑥 (𝑎𝑡𝑡𝑖,𝑎𝑡𝑡𝑗)
.  (1) 

In (1), atti and attj are the attribute vectors for the 

clustered i-th and j-th genes. This ensures that more 

importance is given to the features with higher values, 

while calculating the similarity score between the 

genes within a single cluster. It helps to identify 

biologically significant gene communities. 

After constructing a Jaccard similarity matrix (see 

Definition 2) and calculating attribute weights (see 

Definition 3), the next logical steps consist of 

leveraging these definitions, in order to gain further 

insights into gene clustering and network analysis. On 

the basis of the attribute weights calculated 

therefrom, the algorithm emphasizes the importance 

of significant interactions and minimizes the 

influence of nonspecific interactions. 

Definition 2: Jaccard similarity matrix 

construction: J= [similarity (i, j)], where J is the 

Jaccard similarity matrix for a cluster, and i, j 

represent the index genes within that cluster. This 

matrix is populated by computing the Jaccard 

similarity for each pair of genes in the cluster. 

Definition 3: Attribute weight calculation: 

wk =
1

n
∑ Jik,

n
i=1        (2) 

where 𝑤𝑘 is the weight for the k-th attribute,

calculated as the average Jaccard similarity involving 

that attribute across all pairs of genes within the 

cluster. Meanwhile, n denotes the number of genes in 

the cluster, and Jik signifies the element of the Jaccard 

matrix for the i-th gene and k-th attributes. 

Definition 4: Weighted gene similarity 

calculation: Using the attribute weight 𝑤𝑘  derived

in Definition 3, a weighted similarity score can be 

computed as (2) for any pair of i and j genes within a 

cluster. The weighted similarity measure adjusts the 

raw Jaccard similarity by amplifying the contribution 

of attributes with higher weights: 

 Weighted Similarity (i,j) =∑ 𝑤𝑘  𝑚
𝑘=1 . 𝐽𝑖𝑘 (3) 

Where: 𝑤𝑘  is the weight of the k-th attribute,

𝐽𝑖𝑘  is the Jaccard similarity matrix element for gene

𝑖 and attribute 𝑘; m is the total number of attributes. 

This step ensures that attributes with greater 

biological significance exert a stronger influence on 

the clustering process. 

3.2.3 Phase 3: Aggregation of Information 

Building on this, the algorithm incorporated a hybrid 

similarity measure (3) to integrate multiple aspects of 

similarity, including structural, attribute, and 

neighbour-based metrics: 

Hyprid Similarity=α×Structural Similarity+ 

+ (1−α)×(β×Attribute Similarity+

+ (1−β)×Neighbour Similarity)  (3) 

Structural similarity is captured by the adjacency 

matrix 𝐴 while attribute similarity is represented by 

matrix W, and shared neighbour similarity by SNsim. 

The balance among these is controlled by parameters 

α and β, with α≥0.5 ensuring structural dominance. 

Jaccard similarity was integrated with these metrics 

to form biologically meaningful gene clusters. This 

method enhances network analysis accuracy and 

interpretability. Modularity  , as defined in (4), was 

used to assess community quality by measuring intra-

community density versus inter-community 

separation, thus validating the cohesiveness of 

detected structures. Using the following (4), 

modularity can be defined in formal terms, placing 

this evaluation in a mathematical framework: 

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝐾𝑖  𝐾𝑗

2𝑚
] δ(𝐶𝑖 , 𝐶𝑗) .  (4) 

Where: 

▪ 𝐴𝑖𝑗 is entry into an adjacency matrix if the

edge between the genes is i and j, otherwise

valued as 0.

▪ 𝐾𝑖  𝑎𝑛𝑑 𝐾𝑗 represent the value of genes i and j,

respectively. This refers to the number of edges

that connect each gene.

▪ 𝑚  is the total number of edges in the network.

▪ δ(𝐶𝑖 , 𝐶𝑗) represents the delta, equal to 1 when

genes i and j are in the same module but

otherwise equal to 0.

The Modularity formula evaluates the strength of 

communities by comparing actual and expected edge 

distributions within them – higher values indicate 

well-defined structures. This paper enhances 

modularity by optimizing weights α and β using 

network feature analysis rather than fixed values. Key 

features include the In-Degree Z-Score (which 

identifies influential nodes), PageRank (which 

assesses node importance via connectivity), and 

Betweenness Centrality (which highlights bridging 

nodes). This tuning aligns modularity with structural 
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and functional network properties, thereby enabling 

more precise detection of biologically and 

structurally significant communities.  

3.2.4 Phase 4: Predicted Communities in 
Priors Network Analysis 

Phase 4 consisted of constructing the hybrid 

similarity matrix, integrated with the Louvain 

algorithm to extract optimum community clusters. 

The predicted communities were compared with 

known biological databases to validate their 

biological relevance and interpret their genetic roles. 

In this study, the communities were grouped into 

three broad categories: (1) High Diversity, (2) High 

Potential, and (3) Moderate/Low (see Table 1). 

Meanwhile, some of the communities based on graph 

clusters and predicted in this study retained a 

considerable level of complexity and the potential for 

important biological activities, whereas others were 

expected to possess a wide range of biological roles 

and adaptabilities. Therefore, most of the 

communities were expected to have a less flexible or 

more specialized genetic configure ration, which 

could be concentrated in a small   number of vital 

biological processes. 

3.3 Principal Component Analysis 
Feature 

Principal Component Analysis (PCA) was employed 

to reduce dimensionality while preserving key 

transcriptional signals [19]. In this study, PCA 

loadings were integrated with gene community 

information within a single interaction network to 

explore intra-community gene relationships and their 

biological implications. The normalized, log-

transformed expression matrix was analyzed across 

all samples, retaining the top 10 principal components 

to capture maximum variance. To correct for batch 

effects, the Harmony algorithm was applied to the 

PCs [20]. ensuring the preservation of true biological 

signals. Focusing on the components with the highest 

contributions enhanced interpretability and supported 

more accurate modeling of gene relationships, 

ultimately improving feature matrices and biological 

prediction outcomes. 

3.4 Biological Information Aggregation 
Using Multi-feature Reconstruction 

Multi-feature reconstruction integrates outputs from 

PCA, community predictions, and gene expression 

into a unified feature matrix. This matrix captures key 

biological patterns by combining variance in gene 

expression, structural relationships, and community 

affiliation. Each sample is represented by a row, with 

columns encoding the top 10 principal components, 

expression values, and binary indicators of 

community membership. This integrative approach 

enhances the representation of latent factors 

influencing gene expression and improves predictive 

accuracy. By unifying multidimensional data, the 

matrix serves as a robust framework for identifying 

novel functional activities, structural links, and 

regulatory interactions – insights that would be 

missed using isolated data sources. 

4 RESULT DISCUSSION 

This study utilized gene expression microarray data 

from E. coli, sourced from the DREAM5 

Challenge [21],  comprising 4511 genes, 805 

samples, and 2066 experimentally validated 

regulatory interactions. The network was constructed 

based on the RegulonDB database, which includes 

only interactions classified as strong evidence [22], 

[23] Given E. coli’s status as a well-studied model

organism, it serves as a reliable foundation for

regulatory network analysis. In this context, validated

interactions were treated as true positives, while

others were considered negatives. The datasets used

included E.coli_chip_features, E.coli_expression_

data, and the gold standard network.

For a clearer understanding of the data patterns, 

a smooth density curve is included with the histogram 

(see Figure 3), showing the distribution of average 

hybrid similarity among the clusters. Eight clusters 

are centred in the first noticeable peak, which is 

located at an average hybrid similarity of around 0.1. 

Another cluster grouping with eight clusters is 

indicated by the second peak, amounting to around 

0.4. Based on the hybrid similarity metric, the 

distribution shows diverse levels of similarity in the 

nodes within clusters, ranging from 0.05 to 0.6. 

However, clusters close to 0.1 may have more varied 

features or weaker relationships.  

The Louvain algorithm provided stability in the 

partitions. Section 3.3 lists a set of criteria besides 

community size that can be used to determine the 

likelihood of undiscovered genes and transcription 

factors. These criteria would help gain a better 

understanding of the regulatory network. Overall, the 

interactions between the gene communities were 

likely to be complex, involving  shared  regulators, 
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Figure 3: Distribution of hybrid similarity. 

Table 1: Performance comparison of the proposed method with existing approaches. 

Studies Algorithm Used Dataset
Modular-ity 

Score

No. of Predicted 

Communi-ties

Choobdar et al. (2019) Random Walk Clustering
DREAM 

(multiple species)
0.45~ 60

Proposed  method
Weighted Jaccard Similarity 

Louvain Clustering 
DREAM (E.coli) 0.6488 38

metabolic pathway connections, stress response 
mechanisms, regulatory cascades, and 
transport/signalling processes.  However, the 
evaluation of predicted modules is challenging 
because there is no ground truth of 'correct' modules 
in molecular networks. Therefore, in this study, a 
framework was introduced to empirically assess 
modules based on their association with complex 
traits using STRING1. The updated STRING version 
was evaluated and the prediction of E. coli genes in 
the communities of 1081 was assessed, in order to 
further ascertain the accuracy of community 
predictions using the current researcher's methods. 
All of the communities added to the most recent 
version of STRING had a true percentage of > 90%, 
with the exception of two communities that had < 
90%, namely, Communities 1 and 9, which had 
respective Jaccard index values of 0.52 and 0.75. 
Average precision for the total number of given 
communities was approximately 0.97. 

The modularity score, calculated as 0.6488 
using (4), was used to assess  community detection 
quality. Compared to the 0.45 score reported by 
Choobdar et al. [20], this reflects a 44% 
improvement, indicating enhanced clustering and 
network organization. The results demonstrate the 
method's effectiveness in identifying biologically 
meaningful structures and improving the 
interpretation of gene interactions . 

Table 1 demonstrates the performance of this 
method and the method proposed in [24] to predict 
communities across DREAM datasets. As this 
method has significantly outperformed other 
competing methods, it indicates the formativeness of 
topological properties and content in predicting 
communities.  

A set of genes was analyzed within specific 
communities. These genes were selected based on 
their highest PC variance of average gene expression 
across samples. Thus, the goal of the current approach 
was achieved by integrating biological information 
from different networks to enable more accurate 
prediction of new gene connections and to support a 
deeper understanding of complex biological systems. 
These communities prioritize novel candidate genes; 
reveal pathway-level rate was then applied to the 
genes with the highest variance for each component, 
to identify important genes. In Figure 4, horizontal 
axis reflects the amount of variance of each gene, 
showing how gene expression varied across the PCs. 
The vertical axis represents the mean expression of 
each gene for all samples. Each dot refers to a gene 
with the highest PC variance indicated. The orange 
dots denote the position of the genes, whereas the text 
accompanying each dot (in blue) presents the names 
of the corresponding genes.   

______ 
1 https://string-db.org/ 
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Figure 4: Relationships between variance and mean. 

Table 2: Top genes selected by graph clustering dataset. 

Genes Biological Process P-value

Community_11
ada, hns, lrp, tdh, 

… 
Metabolic & Regulatory 

Networks 
0.0283

Community_12
epd, aer, crr, 

crp,...
Cellular Regulation & Adaptation 0.00554

Community_25 fnr, hmp, hcp,… Stress Response & Detoxification 7-10×3.47

Community_2 hpt, acs, gcd, …
Energy Homeostasis & 

Metabolism 
0.157

Community_16 lpd, icd,  ssb DNA Interaction & Metabolism 0.21

Community_23 uof, rob, slp, …
Environmental & Metabolic 

Adaptation 
0.132

The genes to the upper right of the graphic (for 

example, hcr and hcp) exhibited high variance and 

high mean expression, indicating their potentially 

important role in a specific biological process. In 

contrast, the genes illustrated lower left (for example, 

epd) displayed low variance and low mean 

expression, and may therefore be less important in 

this context. The relationship between high variance 

and high mean expression can be interpreted as 

representing genes that are dynamically active and 

associated with a response or function. 

Focusing on the results in Table 2, which 

correspond to the integration of expression data with 

topological properties, it may be seen that the method 

of integrating the expression data played an essential 

role in performance. Meanwhile, the p-values in the 

various groups denote the levels of statistical 

significance and stand to offer new insights into 

functional integration among the genes in each group. 

By way of illustration, Communi-ty_25 was topped 

with genes such as fnr, hmp, hcr, and hcp and had a 

p-value of 3.47×10-7, exhibiting highly significant

interactions and integrations as physiological

responses to oxidative conditions and nitrosative

stress.  Here, some communities such as 29 and 0

had p-values at 1, reflecting comparatively lower

significance in their interactions. In contrast, high p-

values in groups such as Community_29 and

Community_0 could be the starting point for further,

more detailed investigation into new relations and

interactions, which could be relevant to deeper

insights into biological networks.

Moreover, advanced bioinformatics tools and 

techniques may give way to new horizons opening up 

for possible discoveries in molecular biology and 

genomics. Conversely, Community_11 is composed 
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of ada, hns, lrp, tdh, and kbl genes with a p-value of 

0.0283, thereby evidencing significant functional 

cooperation in terms of the impact on cellular 

regulatory networks and metabolic pathways. This 

difference in p-values enabled highly interactive 

groups to be identified, namely, high functional 

integration, which suggests the important biological 

functions of these genes in the face of environmental 

and physio-logical change. The identified genes were 

associated with critical biological functions such as 

gene regulation, cell signalling, and basic biological 

processes, consequently enhancing their biological 

significance. 

5 CONCLUSIONS 

This paper  presents a comprehensive framework 

that leverages multiple types of features and advanced 

graph clustering techniques to predict gene 

interactions with notable precision. By integrating 

information from diverse biological data sources, the 

approach not only increased the accuracy of link 

prediction but also allowed for a nuanced exploration 

of both dynamic and static aspects within gene 

networks. The two-step clustering strategy proved 

effective in disentangling these facets, ultimately 

shedding light on key gene relationships that might 

otherwise remain obscured by traditional analysis 

methods. Importantly, the findings highlight the value 

of combining different data perspectives – such as 

gene expression profiles, topological network 

properties, and community structures – to gain a more 

holistic understanding of genetic connectivity. The 

resulting framework has enabled a more detailed 

mapping of gene regulatory mechanisms and offered 

new insights into the fundamental organization of 

cellular processes. This work not only enriches our 

understanding of gene networks but also establishes a 

methodological foundation for future studies aiming 

to interpret complex molecular interactions.  

Moreover, the methodology has practical 

implications beyond basic research. Its ability to 

reliably predict novel gene interactions positions it as 

a valuable tool for applications in fields such as 

precision medicine and drug discovery, where 

understanding the intricacies of gene regulation is 

critical. The structured, data-driven approach laid out 

in this research provides a reproducible pathway for 

future exploration and validation in both 

experimental and clinical settings. Ultimately, this 

study contributes meaningfully to the ongoing effort 

to decode the complexity of biological systems 

through computational innovation. 
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