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Abstract: Integrating different biological features — for example, the informativeness of topological features and gene

expression — is challenging because each feature must be accounted for individually if the features are used
to help forecast models. In this process, ensuring that the outcomes reflect the underlying biological structure
of the network information while minimizing noise and irrelevant data is crucial. This study identifies the
importance of rigorous pre-analyses in determining statistically significant correlations and joint effects
among preprocess features before applying machine-learning techniques. Thus, when deploying
multidimensional datasets, a systematic multi-feature methodology is presented in this paper to unify
optimized graph clustering, weighted Jaccard similarity, and dimension reduction based on principal
component analysis (PCA). Specifically, the objective was to identify novel uncharacterized gene associations
in complex biological networks. Moreover, this study offers more refined insights into gene interactions
within their networks, revealing patterns and relationships that might be hidden by broad data analysis. The
method's performance was validated according to the benchmarks for a Dialogue on Reverse Engineering
Assessment of Methods, fifth edition (DREAMS) challenge project, to determine its ability to analyze
complex biological networks.

1 INTRODUCTION subtype classification by incorporating biological
structure [4], Moreover, integrating regulatory

Biological systems often involve complex networks into statistical models allows for a richer

interactions among numerous genes and chemicals
within cellular networks, especially in multifactorial
diseases [1], [2]. Advances in experimental and
computational methods now enable precise mapping
of physical (e.g., protein-protein, signaling, and
regulatory) and functional (Yet, the scale of these
networks poses challenges for extracting biological
insights, making community detection a vital graph-
clustering task for identifying functional modules [3].

While many algorithms have been tested on
benchmark in silico networks, their utility in real
molecular contexts remains uncertain. Nevertheless,
identifying modules is critical for downstream
analyses like link prediction and disease mechanism
interpretation. Features from community structures
and gene expression data can be combined to detect
regulatory  patterns and  deeper  functional
associations. Dimensionality reduction techniques
such as PCA help extract biologically relevant
features from high-dimensional gene expression data.
As early as 2010, PCA was shown to improve cancer

interpretation of genetic architecture and biological
function [5]. By combining community data with
PCA loadings, researchers gain deeper insights into
genetic network organization, surpassing traditional
analytical methods [6]. This paper presents a novel
multi-feature framework that integrates gene
expression profiles, community structures, and
principal components to identify highly variable
genes within selected modules — prioritizing targets
for experimental validation and enhancing biological
understanding.

2 RELATED WORK

The graph structures are non-Euclidean, meaning
they are characterized by irregular arrangements,
make it hard to identify the nearby genes of a given
point in the data, and vary in the number of
surrounding nodes of various genes. Several recent
studies have highlighted the importance of clustering
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as a critical step in single-cell data integration and
analysis. The method's primary innovation in this
study [7] is its simultaneous consideration of the
condition manifold's and gene manifold's internal
geometric structures, this novel approach used
DGPCA, its Laplacian embedding to approximate
the cluster membership indicators and obtain
principal components (PCs) to characterize the data.
The condition manifold and gene manifold, two
internal geometric structures that are appropriate for
bi-clustering, are features of DGPCAA new
interpretable framework for solving the single-cell
RNA-Seq clustering challenge was proposed in [8].
The system could generate many clustering’s of the
same dataset at a low cost, in addition to retrieving
results from a wide range of single-cell research. The
algorithm was able to provide interpretable
justifications for each of its choices and be used as a
backend algorithm for interactive interpretation and
analysis. In [9] to extract attribute information, the
scDFN algorithm uses a dual mechanism that
includes an autoencoder. This is the first study to
use an enhanced graph network for single-cell
topological data representation. Using the triple self-
supervision technique and the cross-network
information fusion mechanism, the information
fusion module merges the retrieved attribute and
topology data. To maximize the cell clustering
representation throughout the entire model, quadruple
joint losses are used. scGMAI, a novel Gaussian
mixture clustering technique based on autoencoder
networks and FastICA, was proposed in [10]. It is a
powerful tool for precisely classifying and
distinguishing cell types from scRNA-Seq data and
demonstrates the wide range of applications it can
have in scRNA-Seq data analysis. The defining
genes of cell clusters are more precisely identified by
this methodology. In scGMAI, FastICA selects the
most important independent features to create a low-
dimensional space that retains all of the data's
fundamental properties. In order to assess how
effectively biological variation is maintained during
integration, the study in [11] has extensively
benchmarked data integration techniques utilizing
Louvain clustering.  Researchers were able to
statistically evaluate the quality of integration by
comparing cluster assignments with reference cell
type labels using measures such as NMI and ARI.
This method has made clustering, when combined
with strong validation metrics, a common technique
for single-cell genomics batch correction evaluation
and biological discovery.

3 METHODOLOGY

The nature of molecular networks is modular, and the
subsets of nodes are more interconnected than pure
chance would suggest. These subsets often consist of
genes or proteins that share biological functions.
Therefore, community detection is an intrinsic step
towards deriving findings from network data [12].
However, biological networks' sheer scale and
complexity present an obstacle to their analysis.
Consequently, the present researcher has focused on
community structures to identify functionally related
groups of genes or proteins involved in biological
processes. Here, together with module identification
and graph clustering, the traditional network science
task of community detection was the objective of
applying a number of proposed methods [13].

In particular, this paper [14] reports on detecting
protein complexes based on gene expressions.
However, the resulting framework addresses broader
challenges, such as integrating multiple data sources
and analyzing complex networks. Nevertheless,
despite these advances, there is still very little
understanding of how the different approaches
identify biologically meaningful communities in
molecular networks. For instance, although the
Dialogue on Reverse Engineering Assessment of
Methods (DREAM) project demonstrated robust
methods of network inference [15], very little
downstream analysis has been conducted of the
reconstructed networks, for example, in predicting
regulatory pairs or discovering new links.

Hence, a broad three-component framework is
proposed in this study, deploying robust methods of
community detection to identify groups of
functionally related genes accurately. Consequently,
additional biological insights were anticipated,
together with a PCA-based feature selection strategy
for reducing the dimensionality of gene expression
data by selecting various pertinent principal
components (PCs), according to cumulative variance.
This framework is schematically represented in
Figure 1, which illustrates the workflow and further
clarifies the functions of the regulatory gene network.
Here, highly diverse features are typically gathered
from a variety of databases (see top panel).

A feature table or matrix is then produced by
merging the feature data with the already identified
gene regulatory network, sourced from open
databases like DREAMS5. From this gene regulatory
network, appropriate algorithms are applied to the
relevant genes, selected by graph clustering from, for
example, an E. coli dataset.
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Figure 1: Overview of the proposed scheme for integrating biological data.

3.1 Feature Selection and Extraction

Feature selection enhances predictive accuracy and
deepens understanding of biological networks,
especially in the context of genomics and
personalized medicine where accurate prediction is
crucial [16]. To achieve this, the paper employs two
main criteria: the "Predicting Communities"
approach, which leverages prior knowledge of gene
regulatory networks, and Principal Component
Analysis (PCA), used to select the top 10 features
(principal components) based on variance. Detailed
descriptions of these criteria follow in the
methodology section.

Features were extracted from both regulatory and
inferred gene expression networks, focusing on
dynamic elements such as transcription factors and
co-expressed genes. Communities of highly
interconnected genes and transcription factors were
also incorporated. These were merged into a unified
feature matrix, offering an integrated view of diverse
biological data. Subsequent unsupervised clustering,
based purely on network topology, identified non-
overlapping communities ranging from 3 to 226
elements. This integrative approach supports robust
exploration of molecular network structure.

3.2 Predicting Communities

In order to predict communities of related genes
referred to as 'regulatory communities' or 'gene
regulatory networks', it is crucial to cluster features
using robust methods of community detection.

A framework of module predictions is proposed,
consisting of four phases and represented in Figure 2.
The architecture of the proposed framework consists
of four key phases:

1) community detection to identify functional
groups;

2) parameter optimization;

3) integration of transcription factors and target
genes;

4) module validation to link biological functions
with the detected communities.

In brief, Phase 1 consists of communities being
used to seed or initialize groups of genes, in order to
preprocess communities. The groups are refined by
ranking and selecting those features that will best
preserve the local structure, using mutual
information.

In Phase 2, weighted Jaccard similarity takes
place. The key difference between normal and
weighted Jaccard is that the latter does not operate
with binary features alone; instead, the numerical
values of each feature used to calculate similarity.
Specifically, in weighted Jaccard, the numerical
values of each feature considered to compute
similarity, as in the proposal, using the numerical
values of the genes, for example, PageRank,
in_degree, etc. Genes that show very similar
numerical values have high similarity, thereby
increasing the accuracy of the gene grouping in
populations.

In Phase 3, information about aggregation
attributes, shared neighbours, and connectivity is
used to build similarity matrices, thereby enhancing
the performance of the existing community detection
algorithms.

Finally, in Phase 4, communities are clustered on
the similarity matrix to obtain the final clustering
(module). All four of these phases are described in
detail in the following sub-sections.
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Figure 2: Framework of module predictions.

The communities illustrated in Figure 2 are made
up of groups of genes and transcription factors that
collectively perform specific biological functions,
such as stress response or cell differentiation.
Regulatory communities not only help shed light on
the regulation of gene expression but also reveal the
functional relationships between genes. This
information helps to identify biological pathways and
understand cellular processes. For instance, in stress
response, a regulatory module could include stress
resistance genes and their transcriptional regulators.
Meanwhile, a cell differentiation network may
contain differentiation genes and the transcription
factors that control their expression. Therefore, this
paper continues and extends the work reported
in [17], introducing community detection algorithms
that are enhanced by parameter learning. The latter
has previously been applied in the literature to social
networks but is now extended to biological networks.
This parameter controls the tendency of nodes to form
communities, consequently influencing community
size by optimizing the modularity function.

The parameter would inversely influence the size
of the detected communities, thereby increasing the
value results in smaller, more tightly knit
communities. This adjustment offers a scalable and
flexible approach to analyzing large and complex
biological networks. Unsupervised clustering
algorithms were therefore employed, relying solely
on network structure (link and attribute information)
without  additional biological annotations,
consequently ensuring unbiased module
identification.

3.2.1 Phase 1: Local Clustering and
Topological Features

Phase 1 was subdivided into two stages: local
clustering and topological feature extraction:

1) Local Clustering Phase. Initial clusters were
formed using cluster density from the gene
network, followed by attribute weighting and
refinement via the Louvain modularity
optimization algorithm [18], The DICCA
algorithm was employed to group genes based
on proximity and attributes, targeting densely
connected subgroups. Jaccard similarity and

modularity optimization further enhanced
cluster identification and weighting.
2) Topological Feature Stage. Topological

features — such as eigenvalue, closeness, and
edge — were extracted to assess their influence
on the target variable. Mutual information was
used to rank these features, with the most
informative ones selected for prediction tasks.

3.2.2 Phase 2: Weighted Jaccard Similarity
Algorithm

Once the initial clusters are formed, the weighted
Jaccard similarity algorithm can be applied as the key
approach to detecting communities within biological
networks. This algorithm is specifically designed to
render similarity measures more relevant by
accounting for the strength and importance of
interactions. Other than the original Jaccard index,
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which assigns equal weights to all attributes of
interest, the weighted Jaccard similarity algorithm
weights attributes according to their importance,
minimizing the effect of weak/nonspecific
interaction. In this paper, the weighted Jaccard
similarity of two genes was calculated based on (1):

T . .\ _ xmin (atti,attj)

Similarity (i, j) = EPr— Q)
In (1), atti and attj are the attribute vectors for the
clustered i-th and j-th genes. This ensures that more
importance is given to the features with higher values,
while calculating the similarity score between the
genes within a single cluster. It helps to identify
biologically significant gene communities.

After constructing a Jaccard similarity matrix (see
Definition 2) and calculating attribute weights (see
Definition 3), the next logical steps consist of
leveraging these definitions, in order to gain further
insights into gene clustering and network analysis. On
the basis of the attribute weights calculated
therefrom, the algorithm emphasizes the importance
of significant interactions and minimizes the
influence of nonspecific interactions.

Definition 2: Jaccard similarity — matrix
construction: J= [similarity (i, j)], where J is the
Jaccard similarity matrix for a cluster, and i, j
represent the index genes within that cluster. This
matrix is populated by computing the Jaccard
similarity for each pair of genes in the cluster.

Definition 3: Attribute weight calculation:

1
Wi = —Xitq ik )

where w,, is the weight for the k-th attribute,
calculated as the average Jaccard similarity involving
that attribute across all pairs of genes within the
cluster. Meanwhile, n denotes the number of genes in
the cluster, and Ji signifies the element of the Jaccard
matrix for the i-th gene and k-th attributes.

Definition 4: Weighted gene similarity
calculation: Using the attribute weight w, derived
in Definition 3, a weighted similarity score can be
computed as (2) for any pair of i and j genes within a
cluster. The weighted similarity measure adjusts the
raw Jaccard similarity by amplifying the contribution
of attributes with higher weights:

Weighted Similarity (i,j) =Xr, wi - Jix (3)

Where: w,, is the weight of the k-th attribute,
Jie is the Jaccard similarity matrix element for gene
i and attribute £; m is the total number of attributes.

This step ensures that attributes with greater
biological significance exert a stronger influence on
the clustering process.

3.2.3 Phase 3: Aggregation of Information

Building on this, the algorithm incorporated a hybrid
similarity measure (3) to integrate multiple aspects of
similarity, including structural, attribute, and
neighbour-based metrics:

Hyprid Similarity=axStructural similarity+
+ (1—a) x(p xAttribute similarity+
+ (I 7ﬁ) XNEIgthUY Similarity) (3)

Structural similarity is captured by the adjacency
matrix A while attribute similarity is represented by
matrix W, and shared neighbour similarity by SNsim.
The balance among these is controlled by parameters
a and B, with 0>0.5 ensuring structural dominance.
Jaccard similarity was integrated with these metrics
to form biologically meaningful gene clusters. This
method enhances network analysis accuracy and
interpretability. Modularity , as defined in (4), was
used to assess community quality by measuring intra-
community  density  versus  inter-community
separation, thus validating the cohesiveness of
detected structures. Using the following (4),
modularity can be defined in formal terms, placing
this evaluation in a mathematical framework:

K; K]'

Q ==Xy -8, ¢) . (@)

2m

Where:

= Ay is entry into an adjacency matrix if the
edge between the genes is i and j, otherwise
valued as 0.

* K; and K; represent the value of genes i and j,
respectively. This refers to the number of edges
that connect each gene.

= m isthe total number of edges in the network.

= 8(C;,Cy) represents the delta, equal to 1 when
genes i and j are in the same module but
otherwise equal to 0.

The Modularity formula evaluates the strength of
communities by comparing actual and expected edge
distributions within them — higher values indicate
well-defined structures. This paper enhances
modularity by optimizing weights o and f using
network feature analysis rather than fixed values. Key
features include the In-Degree Z-Score (which
identifies influential nodes), PageRank (which
assesses node importance via connectivity), and
Betweenness Centrality (which highlights bridging
nodes). This tuning aligns modularity with structural
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and functional network properties, thereby enabling
more precise detection of biologically and
structurally significant communities.

3.2.4 Phase 4: Predicted Communities in
Priors Network Analysis

Phase 4 consisted of constructing the hybrid
similarity matrix, integrated with the Louvain
algorithm to extract optimum community clusters.
The predicted communities were compared with
known biological databases to validate their
biological relevance and interpret their genetic roles.
In this study, the communities were grouped into
three broad categories: (1) High Diversity, (2) High
Potential, and (3) Moderate/Low (see Table 1).
Meanwhile, some of the communities based on graph
clusters and predicted in this study retained a
considerable level of complexity and the potential for
important biological activities, whereas others were
expected to possess a wide range of biological roles
and adaptabilities. Therefore, most of the
communities were expected to have a less flexible or
more specialized genetic configure ration, which
could be concentrated in a small  number of vital
biological processes.

3.3 Principal Component Analysis
Feature

Principal Component Analysis (PCA) was employed
to reduce dimensionality while preserving key
transcriptional signals [19]. In this study, PCA
loadings were integrated with gene community
information within a single interaction network to
explore intra-community gene relationships and their
biological implications. The normalized, log-
transformed expression matrix was analyzed across
all samples, retaining the top 10 principal components
to capture maximum variance. To correct for batch
effects, the Harmony algorithm was applied to the
PCs [20]. ensuring the preservation of true biological
signals. Focusing on the components with the highest
contributions enhanced interpretability and supported
more accurate modeling of gene relationships,
ultimately improving feature matrices and biological
prediction outcomes.

3.4 Biological Information Aggregation
Using Multi-feature Reconstruction

Multi-feature reconstruction integrates outputs from
PCA, community predictions, and gene expression

into a unified feature matrix. This matrix captures key
biological patterns by combining variance in gene
expression, structural relationships, and community
affiliation. Each sample is represented by a row, with
columns encoding the top 10 principal components,
expression values, and binary indicators of
community membership. This integrative approach
enhances the representation of latent factors
influencing gene expression and improves predictive
accuracy. By unifying multidimensional data, the
matrix serves as a robust framework for identifying
novel functional activities, structural links, and
regulatory interactions — insights that would be
missed using isolated data sources.

4 RESULT DISCUSSION

This study utilized gene expression microarray data
from E. coli, sourced from the DREAMb5
Challenge [21], comprising 4511 genes, 805
samples, and 2066 experimentally validated
regulatory interactions. The network was constructed
based on the RegulonDB database, which includes
only interactions classified as strong evidence [22],
[23] Given E. coli’s status as a well-studied model
organism, it serves as a reliable foundation for
regulatory network analysis. In this context, validated
interactions were treated as true positives, while
others were considered negatives. The datasets used
included E.coli_chip_features, E.coli_expression_
data, and the gold standard network.

For a clearer understanding of the data patterns,
a smooth density curve is included with the histogram
(see Figure 3), showing the distribution of average
hybrid similarity among the clusters. Eight clusters
are centred in the first noticeable peak, which is
located at an average hybrid similarity of around 0.1.
Another cluster grouping with eight clusters is
indicated by the second peak, amounting to around
0.4. Based on the hybrid similarity metric, the
distribution shows diverse levels of similarity in the
nodes within clusters, ranging from 0.05 to 0.6.
However, clusters close to 0.1 may have more varied
features or weaker relationships.

The Louvain algorithm provided stability in the
partitions. Section 3.3 lists a set of criteria besides
community size that can be used to determine the
likelihood of undiscovered genes and transcription
factors. These criteria would help gain a better
understanding of the regulatory network. Overall, the
interactions between the gene communities were
likely to be complex, involving shared regulators,
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Table 1: Performance comparison of the proposed method with existing approaches.

Studies Algorithm Used Dataset Mogular-ny No. of Prefj'?ted
core Communi-ties
Choobdar et al. (2019) Random Walk Clustering D.REAM . 0.45~ 60
(multiple species)
Weighted Jaccard Similarity )
Proposed method ) ) DREAM (E.coli) 0.6488 38
Louvain Clustering

metabolic pathway connections, stress response
mechanisms, regulatory cascades, and
transport/signalling  processes. However, the
evaluation of predicted modules is challenging
because there is no ground truth of ‘correct’ modules
in molecular networks. Therefore, in this study, a
framework was introduced to empirically assess
modules based on their association with complex
traits using STRING?. The updated STRING version
was evaluated and the prediction of E. coli genes in
the communities of 1081 was assessed, in order to
further ascertain the accuracy of community
predictions using the current researcher's methods.
All of the communities added to the most recent
version of STRING had a true percentage of > 90%,
with the exception of two communities that had <
90%, namely, Communities 1 and 9, which had
respective Jaccard index values of 0.52 and 0.75.
Average precision for the total number of given
communities was approximately 0.97.

The modularity score, calculated as 0.6488
using (4), was used to assess community detection
quality. Compared to the 0.45 score reported by
Choobdar et al. [20], this reflects a 44%
improvement, indicating enhanced clustering and
network organization. The results demonstrate the
method's effectiveness in identifying biologically
meaningful  structures and improving the
interpretation of gene interactions.

! https://string-db.org/

Table 1 demonstrates the performance of this
method and the method proposed in [24] to predict
communities across DREAM datasets. As this
method has significantly outperformed other
competing methods, it indicates the formativeness of
topological properties and content in predicting
communities.

A set of genes was analyzed within specific
communities. These genes were selected based on
their highest PC variance of average gene expression
across samples. Thus, the goal of the current approach
was achieved by integrating biological information
from different networks to enable more accurate
prediction of new gene connections and to support a
deeper understanding of complex biological systems.
These communities prioritize novel candidate genes;
reveal pathway-level rate was then applied to the
genes with the highest variance for each component,
to identify important genes. In Figure 4, horizontal
axis reflects the amount of variance of each gene,
showing how gene expression varied across the PCs.
The vertical axis represents the mean expression of
each gene for all samples. Each dot refers to a gene
with the highest PC variance indicated. The orange
dots denote the position of the genes, whereas the text
accompanying each dot (in blue) presents the names
of the corresponding genes.
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Table 2: Top genes selected by graph clustering dataset.
Genes Biological Process P-value
. ada, hns, Irp, tdh, Metabolic & Regulatory
Community_11 Networks 0.0283
Community_12 ePd‘Cf;r’ e, Cellular Regulation & Adaptation 0.00554
Community 25 fnr, hmp, hep,... Stress Response & Detoxification 3.47x107
. Energy Homeostasis &
Community_2 hpt, acs, ged, ... Metabolism 0.157
Community 16 Ipd, icd, ssh DNA Interaction & Metabolism 0.21
. Environmental & Metabolic
Community_23 uof, rob, slp, ... Adaptation 0.132

The genes to the upper right of the graphic (for
example, hcr and hcp) exhibited high variance and
high mean expression, indicating their potentially
important role in a specific biological process. In
contrast, the genes illustrated lower left (for example,
epd) displayed low variance and low mean
expression, and may therefore be less important in
this context. The relationship between high variance
and high mean expression can be interpreted as
representing genes that are dynamically active and
associated with a response or function.

Focusing on the results in Table 2, which
correspond to the integration of expression data with
topological properties, it may be seen that the method
of integrating the expression data played an essential
role in performance. Meanwhile, the p-values in the
various groups denote the levels of statistical
significance and stand to offer new insights into

functional integration among the genes in each group.
By way of illustration, Communi-ty_25 was topped
with genes such as fnr, hmp, hcr, and hcp and had a
p-value of 3.47x10-7, exhibiting highly significant
interactions and integrations as physiological
responses to oxidative conditions and nitrosative
stress. Here, some communities such as 29 and 0
had p-values at 1, reflecting comparatively lower
significance in their interactions. In contrast, high p-
values in groups such as Community 29 and
Community_0 could be the starting point for further,
more detailed investigation into new relations and
interactions, which could be relevant to deeper
insights into biological networks.

Moreover, advanced bioinformatics tools and
techniques may give way to new horizons opening up
for possible discoveries in molecular biology and
genomics. Conversely, Community_11 is composed
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of ada, hns, Irp, tdh, and kbl genes with a p-value of
0.0283, thereby evidencing significant functional
cooperation in terms of the impact on cellular
regulatory networks and metabolic pathways. This
difference in p-values enabled highly interactive
groups to be identified, namely, high functional
integration, which suggests the important biological
functions of these genes in the face of environmental
and physio-logical change. The identified genes were
associated with critical biological functions such as
gene regulation, cell signalling, and basic biological
processes, consequently enhancing their biological
significance.

5 CONCLUSIONS

This paper presents a comprehensive framework
that leverages multiple types of features and advanced
graph clustering techniques to predict gene
interactions with notable precision. By integrating
information from diverse biological data sources, the
approach not only increased the accuracy of link
prediction but also allowed for a nuanced exploration
of both dynamic and static aspects within gene
networks. The two-step clustering strategy proved
effective in disentangling these facets, ultimately
shedding light on key gene relationships that might
otherwise remain obscured by traditional analysis
methods. Importantly, the findings highlight the value
of combining different data perspectives — such as
gene expression profiles, topological network
properties, and community structures — to gain a more
holistic understanding of genetic connectivity. The
resulting framework has enabled a more detailed
mapping of gene regulatory mechanisms and offered
new insights into the fundamental organization of
cellular processes. This work not only enriches our
understanding of gene networks but also establishes a
methodological foundation for future studies aiming
to interpret complex molecular interactions.

Moreover, the methodology has practical
implications beyond basic research. Its ability to
reliably predict novel gene interactions positions it as
a valuable tool for applications in fields such as
precision medicine and drug discovery, where
understanding the intricacies of gene regulation is
critical. The structured, data-driven approach laid out
in this research provides a reproducible pathway for
future exploration and validation in both
experimental and clinical settings. Ultimately, this
study contributes meaningfully to the ongoing effort
to decode the complexity of biological systems
through computational innovation.
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