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Abstract: Increasing global demands for sustainable agricultural practices, triggered by food security and climate 

change, have evolved precision farming. By combining machine learning with the Internet of Things (IoT), 

precision agriculture can optimize resource use and crop yields. Data analytics based on IoT are used here to 

enhance agricultural decision-making by using regression techniques like Support Vector Machines (SVMs) 

and Multilayer Perceptrons (MLPs). Data from environmental and soil sensors are collected in agricultural 

fields, including temperature, humidity, nitrogen, phosphorus, potassium, pH, and rainfall. Utilizing machine 

learning algorithms, this data is processed to predict which crops will yield the highest yields and utilize the 

most resources. Based on a comparative analysis, MLP models exhibit superior performance to SVM models 

with respect to training time, testing time, and regression error (lower RMSE). It achieves the highest 

classification accuracy (92%) among existing models such as SPS, CSMS, and SRIM. When farmers have 

access to real-time, data-driven insights, they can make better decisions, increase productivity, and adopt more 

sustainable farming practices. 

1 INTRODUCTION 

The Internet of Things (IoT) has revolutionized many 

industries, including agriculture, thanks to its rapid 

growth. The concept of precision farming, which 

maximizes agricultural practices based on real-time 

data, has emerged as a powerful way to enhance 

productivity, resource management, and 

sustainability. IoT-based data analytics systems play 

an important role in this sector due to the collection 

and analysis of sensor and device data on the 

ground [1]. By making informed decisions, farmers 

are able to increase yields and reduce costs by 

irrigating, fertilizing, controlling pests, and harvesting 

effectively. In agricultural data analysis, regression 

techniques are particularly valuable. Based on 

historical and real-time inputs, they help predict key 

variables such as soil moisture levels and crop growth 

rates. The integration of IoT devices with intelligent 

regression models enables highly accurate forecasting 

systems to be developed, which can adjust to dynamic 

environmental conditions and optimize farm 

management. It is designed to provide farmers with a 

robust tool to enhance decision-making processes by 

bridging the gap between data collection and 

actionable insights. This study aims to harness the 

application of advanced analytics to agricultural IoT 

data in order to promote environmental conservation, 

ensure food security, and develop sustainable 

agricultural practices as a result of global challenges 

such as climate change and population growth. 

With precision farming, modern agriculture is 

becoming more productive, efficient, and sustainable. 

With the growing demand for food and the challenges 

posed by climate change, agriculture practices must be 

optimized. Many benefits can be achieved by 

analyzing data using IoT and machine learning. Real-

time monitoring of environmental conditions, soil 

quality, crop health, and other critical parameters is 

made possible by the Internet of Things. To provide 

actionable insights, these devices require massive 

amounts of data to be processed intelligently. A 

regression algorithm is a powerful tool for analyzing 

and predicting agricultural outcomes, including yield 

estimates, irrigation requirements, and pest 

management measures. Agrarian practices have 
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become outdated due to a shortage of supplies, 

incompetence with technology, and a lack of 

knowledge among farmers [2], [3]. It is also common 

for pests and insects to reduce the yield of certain 

crops. Pests and insects have attacked several crops. 

Animals and birds can be poisoned by some insects 

and pesticides, making them ineffective. Additionally, 

it damages animal and food chains' natural food 

webs [4]. Due to crop diseases, there is a significant 

reduction in throughput. Approximately 40% of 

agricultural yield loss occurs due to insects, pests, 

viruses, animals, and weeds, according to [5]. Pests, 

diseases, animals, and weeds are responsible for 40% 

of agricultural yield losses, according to [5]. 

Moreover, they have both short- and long-term 

effects, some of which are temporary and others are 

permanent [6]. A lot depends on the weather when it 

comes to agriculture. The weather has a significant 

impact on agriculture. 

We live in a world where technology is 

everywhere. Currently, remote monitoring techniques 

are used to provide relevant information to 

farmers [7]. Several factors contribute to this, 

including WiFi sensor networks and the Internet of 

Things [1]. Miniaturization led to the development of 

the Internet of Things [8]. During his 1999 lecture on 

Supply Chain Management, Kevin Ashton mentioned 

the Internet of Things for the first time [9]. In the 

Internet of Things, a sensor can uniquely identify a 

smart object. Any object, sensor, person, or smart 

device that connects and shares information is 

considered a "thing” [10]. The traditional method of 

detecting diseases and pests by hand and calculating 

quantity and production based on statistics resulted in 

human error in the past [11], [12]. The technology 

learns from its experiences through machine learning. 

By analyzing and modelling large datasets collected 

from crop fields, valuable insights can be gained. This 

technique identifies hidden patterns in horticulture, 

including salt content, temperature, and humidity. 

Several machine-learning approaches can be used for 

crop disease prediction, such as artificial neural 

networks, SVM regressions, logistic regressions, 

fuzzy technologies, etc [13]. [14]. The use of machine 

learning to predict apple diseases has been developed 

by scientists. Additional information about coronaries 

can be derived from apple leaf images in addition to 

apple scab images. Four algorithms were used to 

classify the same dataset: Support Vector Machine, K 

Nearest Neighbor, Decision Tree, and Naive 

Bayes [13]. Matlab 2016 was used for simulations. 

According to this study, KNN categorizes diseases 

with 99.4% accuracy. Himachal Pradesh and 

Uttarakhand developed it as an alternative to existing 

systems that were unreliable and expensive. 

Predicting crop diseases using IoT and machine 

learning was discussed during the presentation [15]. 

The system's model was developed by combining IoT 

and machine learning. Several environmental sensors 

collected data, including a temperature sensor and a 

humidity sensor. 

2 LITERATURE REVIEW 

In the soil, plants can find the nutrients they need to 

thrive. Minerals in the soil are necessary for growth, 

but if any are missing, the plant will have trouble 

growing. Soil composition must be regularly tested to 

ensure that plants receive enough nutrients. An 

application of fertilizer high in nutrients may correct 

nutrient deficiency problems in the soil. Fertilizers 

have positively influenced agricultural output, but 

their extensive use has caused ecological damage. The 

importance of soil nutrient testing in agriculture can 

be attributed to this fact. Even though conventional 

soil testing provides accurate data, it is unsuitable for 

precision agriculture because of the cost and time 

involved in obtaining the results. Tests that test a 

larger number of samples are prohibitively expensive, 

so they cannot measure a field's geographic 

heterogeneity. Therefore, fast, portable, economical, 

and highly precise methods are essential for achieving 

the best results [16]. 

An expanding population and careful management 

are essential for agriculture. According to the 

authors [17], the modern agricultural system relies 

heavily on human labour but is highly mechanized. 

The return on a thirty per cent investment from 1920 

to 1970 was one hundred eighty per cent. A significant 

increase in productivity was not the result of a rise in 

data sources but rather of advances in farming 

techniques. It has been found that sifting machines, 

mechanical innovations, and synthetic manures 

contribute to agricultural profitability. Technology 

has become more important to farmers over the last 

decade for communicating and storing information. 

They can, therefore, better monitor their financial data 

and interactions with third parties. We live in a world 

where information is readily available. As a result, 

farmers can easily collect data and conduct statistical 

analyses using field observations in horticulture. 

According to the authors [18], several proprietary 

techniques can be used to improve agricultural 

monitoring. When it comes to keeping track of 

geographical regions and climatic punctuations, 

researchers have found more complex frameworks. 

Over time, Farm Management Information Systems 
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(FMIS) have evolved to address the specific needs and 

activities of farms. In the present day, these 

frameworks are integrating into the Internet age by 

utilizing established systems management and 

responses to strengthen agricultural structures. As 

time has progressed, Farm Management Information 

Systems, or FMIS, have evolved to meet the specific 

needs of farms. However, many people think the 

Internet is not perfect, particularly when it comes to 

managing a large number of connected devices, such 

as IoT devices or stakeholder devices. There is, 

however, no standardized solution that can ensure 

reliable interoperability between relevant authorities. 

FI has been providing frameworks to help close these 

gaps since that time. 

In recent years, farmers have been urged to adopt 

thorough management practices, and a sensor-based 

approach could finally allow them to do so. It has been 

demonstrated that sensors play an important role in 

agriculture, and their fundamental role has been 

defined. To measure farming efficiency, the Precision 

Agriculture Monitor System (PAMS) uses Shining 

sensors. A monitoring and regulation system such as 

the IFarm Framework is recommended to increase 

agricultural production by reinforcing socioeconomic 

elements. Monitoring and regulating water usage may 

be easier with this system. Using a variety of 

characteristics, [19], [20] classified sensor 

technologies according to their performance. 

The media, government agencies, and farm-based 

equipment are the main sources of precision 

agricultural information in Texas and New Mexico, 

two states that grow cotton [21]. Precision agriculture 

technology can be influenced in various ways by data 

from a variety of sources. GPS-enabled yield monitors 

and soil survey maps are popular examples. Dealers 

contribute to the implementation of zone soil sampling 

and soil survey maps in varying degrees. Smart 

farming relies heavily on ML and the IoT. When 

implementing these practices, farmers face several 

challenges, including predicting crop diseases. 

Several diseases affect apple crops, but apple scab is 

the most common. Using WSNs [22], [23] in apple 

orchards allows real-time data collection and early 

disease prediction. Additionally, he discussed the 

challenges farmers face when handling hardware units 

and sensors due to environmental factors [24]. As part 

of precision farming, automated devices, Internet of 

Things sensors, real-time data collection, and cloud 

storage are used, as well as data analysis. Irrigation 

systems and greenhouses can be controlled smartly 

using a framework proposed by one author. 

Nutritional, climate, and irrigation data can be stored, 

managed, and analyzed with it [25]. Because the soil 

nutrition level decreases from year to year due to 

cultivation, this method maximizes soil fertility [26]. 

Combined with IoT sensors and smart tools, big data 

plays an increasingly important role. An article 

addressed the volume of sensor data generated, cloud 

storage availability, and challenges associated with 

real-time data analysis and visualization [27]. 

It was proposed that WSNs and IoTs be used for 

precision agriculture and irrigation monitoring. The 

implementation and maintenance costs of fully 

sensor-based agriculture, as well as farmers' lack of 

knowledge, have been noted as limitations. A farmer 

could, therefore, make an appropriate decision based 

on updated information. According to one author, soil 

samples could be used to predict the type of crop that 

would be suitable for a particular field. ESP8266 WiFi 

module, Arduino board, and other sensors were used 

to collect soil temperatures, moisture, and mineral 

values. The algorithms that performed most accurately 

on the rainfall dataset were naive Bayes, logistic, and 

C 4.5 [28]. 

3 METHODOLOGY 

Agricultural producers have benefited from the 

Internet of Things by improving irrigation efficiency, 

increasing yields, and reducing costs. Through the 

integration of agriculture and information technology, 

an intelligent agricultural solution can be created. 

With the advent of IoT technology, three aspects have 

emerged. 

▪ For years, WSNs have been driving the growth

of precision agriculture by enhancing crop yields

through the use of advanced technology.

▪ Crops are currently produced using farming

facilities that yield high-quality yields. Inputs are

high, outputs are high, capital is high, and labour

is high in the production process.

▪ Producing and managing crops on a contract

basis is a relatively new concept in agriculture.

Globally, urbanization has outpaced rural

development, creating a growing gap between

the two. According to statistics, 80% of

extremely poor people live in rural areas, and

75% of moderately poor people live in rural

areas.

3.1 IoT Framework for Agriculture 

Cloud database management systems will access real-

world data to train machine learning models using 

real-world data, which is accessed through storage 
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media. Figure 2 illustrates one of 22 crops that could 

be implemented as a result of the module. 

3.1.1 Data Mining and Network 
Implementation 

A first-level architecture enables utilities to capture 

and communicate data. Gateways and base stations 

are connected to the sensor network. The second level 

incorporates classification algorithms and 

specifications. Next, the machine learning algorithms 

must be implemented to acquire the server's results. 

Irrigation crops are obtained from the server using a 

trained module. Specific sensors measure 

temperature, humidity, and rainfall, whereas nitrogen, 

phosphorus, potassium, and pH parameters are 

measured by analytical sensors. A spreadsheet was 

used to compile the data, with 22 different crops as the 

ground truth. Using machine learning algorithms, the 

module is trained to recommend crops for irrigation 

based on the model attained. In the article, it 

demonstrates how IoT-based smart agriculture can be 

integrated into the field by combining physical 

structure, data collection, data processing, and data 

analytics. From Kaggle, we acquired the 

datasheet [29]. The crop is irrigated as recommended 

to predict crop yields and obtain maximum yields. 

A variety of environmental factors determine how 

well crops will be irrigated, such as soil fertility, i.e., 

nitrogen, phosphorous, and moisture. By considering 

the 7 attributes, a crop can be irrigated to maximize 

yield. Based on this article, it can be used to make 

better decisions about planting different crops. With 

WEKA or Waikato Environment for Knowledge 

Analysis, a free, open-source software program 

licensed under the GNU public license, you can 

perform a wide range of fact-mining tasks as shown in 

Figure 1. 

3.2 Agriculture Sensor Layer 

Mobile devices (smartphones, sensor nodes, etc.) use 

GPS to create various IoT devices for smart 

agriculture, such as field sensors, greenhouse sensors, 

photovoltaic farms, solar insecticide lamps, etc. 

Consequently, IoT devices can be integrated and 

adapted to serve two purposes in agriculture. Our first 

commitment is to provide nutrient solutions in a 

trustworthy manner, as well as distributing them in a 

timely manner. As well as improving consumption 

management, lowering costs, and reducing losses, we 

strive for a better solution. In addition to being 

beneficial for the economy, it will also be beneficial 

for the environment. SCADA systems (supervisory 

control and data acquisition) are used in agriculture to 

control operations. IoT sensors and meters are 

proposed for greenhouses: 

IoT sensors and meters are proposed for 

greenhouses: 

▪ Calculate the water pumping system pressure,

drip rate, and surface to be irrigated using IoT

devices.

▪ Water meters that display real-time information

display the status of water storage.

▪ Systems that use IoT to filter water based on

physical properties (e.g., sand filters).

▪ Fertiliser meters should be able to provide real-

time updates for injections and storage tanks of

NPK fertilisers.

▪ It is possible to control the pH and electrical

conductivity of nutrient solutions through the

Internet of Things.

Figure 1: A proposed IoT client-server architecture. 
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Figure 2: Using machine learning modules to construct a block diagram. 

3.3 Fog Computing Layer 

Analyzing and making informed decisions is enabled 

by the analytics and decision-making model, which 

provides farmers with reports that accompany their 

decisions. Several states, as well as machine 

intelligence, are predicted to be created as a result of 

the in-charge order. On the fog layer of data analytics 

systems, machine learning algorithms and 

classification models are typically used.  

Sensors initially generate data, which is then 

acquired by edge devices. A preprocessing step cleans 

and corrects stored data. Data designed for a particular 

purpose is used to train machine learning algorithms, 

which are then initialized to reflect that purpose. A 

sensor collects data in the Internet of Things, which 

may be collected in real-time or in batches (for 

instance, when to pump water) (for example, 

temperature and humidity). A multilayer perceptron 

neural network (MLP-ANN) makes predictions and 

displays data in graphs using support vector machines. 

In addition to its ability to learn nonlinear models in 

high-dimensional spaces, this algorithm offers several 

advantages. 

3.3.1 Multilayer Perceptron 

This type of NN can also supplement feedforward 

neural networks. There are three layers in the MLP: 

input, hidden, and output. As opposed to linear 

functions, MLP approximates continuous functions. 

Perceptions, or neurons, are part of the MLP. In this 

case, (𝑥 = 𝑥1 + 𝑥2 + 𝑥4 + 𝑥5 … … . . 𝑥𝑛) receives n

features [30] as input (𝑥 = 𝑥1 + 𝑥2 + 𝑥4 +
𝑥5 … … . . 𝑥𝑛).

Weighted sums are calculated for input layers 

based on the n features sent to u. 

𝑢𝑥 = ∑ 𝑤𝑖𝑥𝑖 .
𝑛

𝑖=1
  (1) 

A result of this type should be passed on to the 

activation function [f]. In this article, sigmoid nodes 0 

to 35 are supposed to be passed on. A hidden layer or 

layers can be found in MLP. There is, however, an 

external layer between the input and output layers. 

As far as support vector machines (SVMs) are 

concerned, they are divided into two categories: 

classification and regression. The goal of SVM is to 
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shift nonlinear data into a linear space where it can be 

separated. Two conditions must be met for the 

hyperplane to effectively separate data: the distance 

between vectors and the hyperplane must be adapted 

to differing aspects of the vectors. Here is what the 

assumption function looks like: 

𝑓(𝑥𝑖) = {
+1 𝑖𝑓 𝑤. 𝑥 + 𝑏 ≥ 0
−1 𝑖𝑓 𝑤. 𝑥 + 𝑏 < 0

}.  (2) 

Class +1 place points cannot be found above, 

below, or on the hyperplane, while class-1 place points 

can be found above, below, and on the hyperplane. 

Perceptrons with multiple layers in an artificial 

neural network (ANN) are called multilayer 

perceptrons. The animate nervous system is controlled 

by perceptrons, which are interconnected systems. A 

deep learning neural network simulates nonlinear 

functions of high order as its foundation. Here are the 

steps for calculating the degree of accuracy in output 

node j based on the above example: 

𝑒𝑗(𝑛) = 𝑑𝑗(𝑛) − 𝑦𝑗(𝑛).  (3) 

Perceptrons produce output values based on goal 

values. Weight adjustments can reduce the output 

error by adjusting the nodes' weights. 

𝑒(𝑛) =
1

2
∑ 𝑒𝑗

2(𝑛)

𝑗

.  (4) 

3.4 Edge Network Layer 

Sensors are detected and connected to low-power 

microcontrollers at remote locations using IoT 

microcontrollers designed for IoT. Sensor data can be 

collected, analyzed, and transmitted to the edge layer's 

base station using the ESP 32 Node MCU. The 

calibration and comparison of sensors are required for 

analogue and digital data collection. A healthy and 

unhealthy climate is collected in order to ensure crop 

survival. 

A climate-based model tracks Gerbera and 

Broccoli. The parameters of greenhouses are 

monitored using Node MCU ESP 32 microcontrollers. 

The data collected by personal computers is serialized 

with timestamps. A DHT11 sensor measures 

temperature and humidity, an LDR sensor measures 

light intensity, an MQ2 sensor measures CO2, and a 

Cu lead measures soil moisture. Ten days are 

monitored continuously using the MQTT protocol by 

Adafruit IO over the cloud platform using a specific 

time interval. Computers monitor sensor data in real 

time using cloud-based controllers. 

3.5 Cloud Computing Layer 

Through an application that uses data from edge layer 

nodes to process and control at the base station, 

farmers can monitor crop cultivation progress. The 

Adafruit IO platform displays, acts on, and interacts 

with sensor data. Additionally, MQTT ensures that the 

dossier remains private and secure. The MQTT 

protocol is an inconsequential problem-solving 

protocol that is located on TCP/IP. A message broker 

routes messages through MQTT, connecting senders 

and receivers that send and receive messages. 

Publishing and subscribing to messages can be done 

with the same client. Data is sent from temperature 

sensors based on a specific subject, such as in a 

greenhouse system. 

4 RESULTS AND DISCUSSION 

In Figure 3, the training and testing times for SVM and 

MLP models are compared. The MLP takes about 450 

seconds to train (about 320 seconds), while the SVM 

takes about 70 to 80 seconds to test. During training, 

MLP uses more computation than SVM, but during 

testing, it is similar to SVM. 

Figure 3: Representation of evaluation time. 

A comparison of the SVM and MLP models is 

presented in Figure 4. Pump and Fan data show that 

SVM is more accurate than MLP in the Pump and Fan 

category. Compared to SVM, MLP performs 

significantly better in the Lift category. Pump and fan 

performance are better with SVM, whereas lift 

performance is better with MLP, as shown in 

Figure 4.  
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This bar chart compares pumps, fans, and lifts 

using SVM and MLP models. Pump and Fan 

performance is slightly better with SVM, while Lift 

performance is significantly better with MLP. Pump 

and fan performance are better with SVM, whereas lift 

performance is better with MLP. 

A bar chart representing the average RMSE (Root 

Mean Square Error) for regression tasks for SVMs and 

MLPs is shown in Figure 6. MLP is represented by the 

blue bar, while SVM is represented by the yellow bar. 

Based on the chart, MLP is better at regression with 

lower prediction error than SVM (around 0.08), which 

indicates better regression performance with MLP. 

Figure 4: Comparison of SVM and MLP performance across 

equipment categories. 

Figure 5: Performance Comparison of SVM and MLP 

across different equipment types. 

In Figure 7, four models are compared, each of 

which has an accuracy of 92%: the Proposed Model 

(92%), the SPS (90%), the CSMS (66%), and the 

SRIM (89%). According to the chart, SRIM and SPS 

achieve a higher degree of accuracy than the Proposed 

Model, while CSMS achieves the lowest degree of 

accuracy. Classification accuracy is better with the 

Proposed Model than with the other models. 

Figure 6: Comparison of average RMSE between SVM and 

MLP models. 

Figure 7: Accuracy comparison of SPS, CSMS, SRIM, and 

proposed model. 

5 CONCLUSIONS 

Precision agriculture was the focus of this paper, 

which presented a data analytics system based on IoT 

that is intelligent and IoT-based. Real-time data 

collection, analysis, and actionable insights are 

delivered through the use of IoT sensors and machine-

learning regression models. Training and testing 

experiments have consistently shown that Multi-Layer 

Perceptrons (MLPs) outperform Support Vector 

Machines (SVMs) in terms of Root Mean Square 
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Error (RMSE) and accuracy metrics. A 

comprehensive dataset obtained from Kaggle, 

comprising detailed soil fertility indicators and varied 

climatic conditions, was employed to rigorously test 

and validate the effectiveness of the proposed system. 

The model accurately recommended suitable crops 

tailored to specific environmental conditions, 

demonstrating practical applicability. Furthermore, 

the proposed approach achieved the highest accuracy 

of 92% when compared with other advanced 

frameworks such as SPS, CSMS, and SRIM. These 

results validate that intelligent IoT-based agricultural 

systems are not only feasible but essential for 

achieving long-term sustainability and food security. 

By providing farmers with actionable predictive 

insights, this technology reduces reliance on 

traditional, less-efficient agricultural practices, 

optimizes resource allocation, minimizes 

environmental impact, and significantly enhances the 

resilience, productivity, and overall efficiency of 

modern farming systems. 
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