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Increasing global demands for sustainable agricultural practices, triggered by food security and climate
change, have evolved precision farming. By combining machine learning with the Internet of Things (loT),
precision agriculture can optimize resource use and crop yields. Data analytics based on 0T are used here to
enhance agricultural decision-making by using regression techniques like Support Vector Machines (SVMs)
and Multilayer Perceptrons (MLPs). Data from environmental and soil sensors are collected in agricultural
fields, including temperature, humidity, nitrogen, phosphorus, potassium, pH, and rainfall. Utilizing machine
learning algorithms, this data is processed to predict which crops will yield the highest yields and utilize the
most resources. Based on a comparative analysis, MLP models exhibit superior performance to SVM models
with respect to training time, testing time, and regression error (lower RMSE). It achieves the highest
classification accuracy (92%) among existing models such as SPS, CSMS, and SRIM. When farmers have
access to real-time, data-driven insights, they can make better decisions, increase productivity, and adopt more

sustainable farming practices.

1 INTRODUCTION

The Internet of Things (10T) has revolutionized many
industries, including agriculture, thanks to its rapid
growth. The concept of precision farming, which
maximizes agricultural practices based on real-time
data, has emerged as a powerful way to enhance
productivity, resource management, and
sustainability. loT-based data analytics systems play
an important role in this sector due to the collection
and analysis of sensor and device data on the
ground [1]. By making informed decisions, farmers
are able to increase yields and reduce costs by
irrigating, fertilizing, controlling pests, and harvesting
effectively. In agricultural data analysis, regression
techniques are particularly valuable. Based on
historical and real-time inputs, they help predict key
variables such as soil moisture levels and crop growth
rates. The integration of 10T devices with intelligent
regression models enables highly accurate forecasting
systems to be developed, which can adjust to dynamic
environmental conditions and optimize farm
management. It is designed to provide farmers with a

robust tool to enhance decision-making processes by
bridging the gap between data collection and
actionable insights. This study aims to harness the
application of advanced analytics to agricultural 10T
data in order to promote environmental conservation,
ensure food security, and develop sustainable
agricultural practices as a result of global challenges
such as climate change and population growth.

With precision farming, modern agriculture is
becoming more productive, efficient, and sustainable.
With the growing demand for food and the challenges
posed by climate change, agriculture practices must be
optimized. Many benefits can be achieved by
analyzing data using 10T and machine learning. Real-
time monitoring of environmental conditions, soil
quality, crop health, and other critical parameters is
made possible by the Internet of Things. To provide
actionable insights, these devices require massive
amounts of data to be processed intelligently. A
regression algorithm is a powerful tool for analyzing
and predicting agricultural outcomes, including yield
estimates, irrigation  requirements, and pest
management measures. Agrarian practices have
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become outdated due to a shortage of supplies,
incompetence with technology, and a lack of
knowledge among farmers [2], [3]. It is also common
for pests and insects to reduce the yield of certain
crops. Pests and insects have attacked several crops.
Animals and birds can be poisoned by some insects
and pesticides, making them ineffective. Additionally,
it damages animal and food chains' natural food
webs [4]. Due to crop diseases, there is a significant
reduction in throughput. Approximately 40% of
agricultural yield loss occurs due to insects, pests,
viruses, animals, and weeds, according to [5]. Pests,
diseases, animals, and weeds are responsible for 40%
of agricultural yield losses, according to [5].
Moreover, they have both short- and long-term
effects, some of which are temporary and others are
permanent [6]. A lot depends on the weather when it
comes to agriculture. The weather has a significant
impact on agriculture.

We live in a world where technology is
everywhere. Currently, remote monitoring techniques
are used to provide relevant information to
farmers [7]. Several factors contribute to this,
including WiFi sensor networks and the Internet of
Things [1]. Miniaturization led to the development of
the Internet of Things [8]. During his 1999 lecture on
Supply Chain Management, Kevin Ashton mentioned
the Internet of Things for the first time [9]. In the
Internet of Things, a sensor can uniquely identify a
smart object. Any object, sensor, person, or smart
device that connects and shares information is
considered a "thing” [10]. The traditional method of
detecting diseases and pests by hand and calculating
quantity and production based on statistics resulted in
human error in the past [11], [12]. The technology
learns from its experiences through machine learning.
By analyzing and modelling large datasets collected
from crop fields, valuable insights can be gained. This
technique identifies hidden patterns in horticulture,
including salt content, temperature, and humidity.
Several machine-learning approaches can be used for
crop disease prediction, such as artificial neural
networks, SVM regressions, logistic regressions,
fuzzy technologies, etc [13]. [14]. The use of machine
learning to predict apple diseases has been developed
by scientists. Additional information about coronaries
can be derived from apple leaf images in addition to
apple scab images. Four algorithms were used to
classify the same dataset: Support Vector Machine, K
Nearest Neighbor, Decision Tree, and Naive
Bayes [13]. Matlab 2016 was used for simulations.
According to this study, KNN categorizes diseases
with 99.4% accuracy. Himachal Pradesh and
Uttarakhand developed it as an alternative to existing

systems that were unreliable and expensive.
Predicting crop diseases using loT and machine
learning was discussed during the presentation [15].
The system's model was developed by combining loT
and machine learning. Several environmental sensors
collected data, including a temperature sensor and a
humidity sensor.

2 LITERATURE REVIEW

In the soil, plants can find the nutrients they need to
thrive. Minerals in the soil are necessary for growth,
but if any are missing, the plant will have trouble
growing. Soil composition must be regularly tested to
ensure that plants receive enough nutrients. An
application of fertilizer high in nutrients may correct
nutrient deficiency problems in the soil. Fertilizers
have positively influenced agricultural output, but
their extensive use has caused ecological damage. The
importance of soil nutrient testing in agriculture can
be attributed to this fact. Even though conventional
soil testing provides accurate data, it is unsuitable for
precision agriculture because of the cost and time
involved in obtaining the results. Tests that test a
larger number of samples are prohibitively expensive,
so they cannot measure a field's geographic
heterogeneity. Therefore, fast, portable, economical,
and highly precise methods are essential for achieving
the best results [16].

An expanding population and careful management
are essential for agriculture. According to the
authors [17], the modern agricultural system relies
heavily on human labour but is highly mechanized.
The return on a thirty per cent investment from 1920
to 1970 was one hundred eighty per cent. A significant
increase in productivity was not the result of a rise in
data sources but rather of advances in farming
techniques. It has been found that sifting machines,
mechanical innovations, and synthetic manures
contribute to agricultural profitability. Technology
has become more important to farmers over the last
decade for communicating and storing information.
They can, therefore, better monitor their financial data
and interactions with third parties. We live in a world
where information is readily available. As a result,
farmers can easily collect data and conduct statistical
analyses using field observations in horticulture.

According to the authors [18], several proprietary
techniques can be used to improve agricultural
monitoring. When it comes to keeping track of
geographical regions and climatic punctuations,
researchers have found more complex frameworks.
Over time, Farm Management Information Systems

234



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), July 2025

(FMIS) have evolved to address the specific needs and
activities of farms. In the present day, these
frameworks are integrating into the Internet age by
utilizing established systems management and
responses to strengthen agricultural structures. As
time has progressed, Farm Management Information
Systems, or FMIS, have evolved to meet the specific
needs of farms. However, many people think the
Internet is not perfect, particularly when it comes to
managing a large number of connected devices, such
as loT devices or stakeholder devices. There is,
however, no standardized solution that can ensure
reliable interoperability between relevant authorities.
FI has been providing frameworks to help close these
gaps since that time.

In recent years, farmers have been urged to adopt
thorough management practices, and a sensor-based
approach could finally allow them to do so. It has been
demonstrated that sensors play an important role in
agriculture, and their fundamental role has been
defined. To measure farming efficiency, the Precision
Agriculture Monitor System (PAMS) uses Shining
sensors. A monitoring and regulation system such as
the IFarm Framework is recommended to increase
agricultural production by reinforcing socioeconomic
elements. Monitoring and regulating water usage may
be easier with this system. Using a variety of
characteristics, [19], [20] classified sensor
technologies according to their performance.

The media, government agencies, and farm-based
equipment are the main sources of precision
agricultural information in Texas and New Mexico,
two states that grow cotton [21]. Precision agriculture
technology can be influenced in various ways by data
from a variety of sources. GPS-enabled yield monitors
and soil survey maps are popular examples. Dealers
contribute to the implementation of zone soil sampling
and soil survey maps in varying degrees. Smart
farming relies heavily on ML and the loT. When
implementing these practices, farmers face several
challenges, including predicting crop diseases.
Several diseases affect apple crops, but apple scab is
the most common. Using WSNs [22], [23] in apple
orchards allows real-time data collection and early
disease prediction. Additionally, he discussed the
challenges farmers face when handling hardware units
and sensors due to environmental factors [24]. As part
of precision farming, automated devices, Internet of
Things sensors, real-time data collection, and cloud
storage are used, as well as data analysis. Irrigation
systems and greenhouses can be controlled smartly
using a framework proposed by one author.
Nutritional, climate, and irrigation data can be stored,
managed, and analyzed with it [25]. Because the soil

nutrition level decreases from year to year due to
cultivation, this method maximizes soil fertility [26].
Combined with 10T sensors and smart tools, big data
plays an increasingly important role. An article
addressed the volume of sensor data generated, cloud
storage availability, and challenges associated with
real-time data analysis and visualization [27].

It was proposed that WSNs and 10Ts be used for
precision agriculture and irrigation monitoring. The
implementation and maintenance costs of fully
sensor-based agriculture, as well as farmers' lack of
knowledge, have been noted as limitations. A farmer
could, therefore, make an appropriate decision based
on updated information. According to one author, soil
samples could be used to predict the type of crop that
would be suitable for a particular field. ESP8266 WiFi
module, Arduino board, and other sensors were used
to collect soil temperatures, moisture, and mineral
values. The algorithms that performed most accurately
on the rainfall dataset were naive Bayes, logistic, and
C4.5[28].

3 METHODOLOGY

Agricultural producers have benefited from the
Internet of Things by improving irrigation efficiency,
increasing yields, and reducing costs. Through the
integration of agriculture and information technology,
an intelligent agricultural solution can be created.
With the advent of 10T technology, three aspects have
emerged.
= For years, WSNs have been driving the growth
of precision agriculture by enhancing crop yields
through the use of advanced technology.
= Crops are currently produced using farming
facilities that yield high-quality yields. Inputs are
high, outputs are high, capital is high, and labour
is high in the production process.
= Producing and managing crops on a contract
basis is a relatively new concept in agriculture.
Globally, urbanization has outpaced rural
development, creating a growing gap between
the two. According to statistics, 80% of
extremely poor people live in rural areas, and
75% of moderately poor people live in rural
areas.

3.1 1oT Framework for Agriculture
Cloud database management systems will access real-

world data to train machine learning models using
real-world data, which is accessed through storage
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media. Figure 2 illustrates one of 22 crops that could
be implemented as a result of the module.

3.1.1 Data Mining and Network
Implementation

A first-level architecture enables utilities to capture
and communicate data. Gateways and base stations
are connected to the sensor network. The second level
incorporates classification algorithms and
specifications. Next, the machine learning algorithms
must be implemented to acquire the server's results.
Irrigation crops are obtained from the server using a
trained module.  Specific sensors  measure
temperature, humidity, and rainfall, whereas nitrogen,
phosphorus, potassium, and pH parameters are
measured by analytical sensors. A spreadsheet was
used to compile the data, with 22 different crops as the
ground truth. Using machine learning algorithms, the
module is trained to recommend crops for irrigation
based on the model attained. In the article, it
demonstrates how loT-based smart agriculture can be
integrated into the field by combining physical
structure, data collection, data processing, and data
analytics. From Kaggle, we acquired the
datasheet [29]. The crop is irrigated as recommended
to predict crop yields and obtain maximum yields.

A variety of environmental factors determine how
well crops will be irrigated, such as soil fertility, i.e.,
nitrogen, phosphorous, and moisture. By considering
the 7 attributes, a crop can be irrigated to maximize
yield. Based on this article, it can be used to make
better decisions about planting different crops. With
WEKA or Waikato Environment for Knowledge
Analysis, a free, open-source software program
licensed under the GNU public license, you can

perform a wide range of fact-mining tasks as shown in
Figure 1.

3.2 Agriculture Sensor Layer

Mobile devices (smartphones, sensor nodes, etc.) use
GPS to create various loT devices for smart
agriculture, such as field sensors, greenhouse sensors,
photovoltaic farms, solar insecticide lamps, etc.
Consequently, 10T devices can be integrated and
adapted to serve two purposes in agriculture. Our first
commitment is to provide nutrient solutions in a
trustworthy manner, as well as distributing them in a
timely manner. As well as improving consumption
management, lowering costs, and reducing losses, we
strive for a better solution. In addition to being
beneficial for the economy, it will also be beneficial
for the environment. SCADA systems (supervisory
control and data acquisition) are used in agriculture to
control operations. 10T sensors and meters are
proposed for greenhouses:
loT sensors and meters are proposed for
greenhouses:
= Calculate the water pumping system pressure,
drip rate, and surface to be irrigated using l1oT
devices.
= Water meters that display real-time information
display the status of water storage.
= Systems that use 10T to filter water based on
physical properties (e.g., sand filters).
= Fertiliser meters should be able to provide real-
time updates for injections and storage tanks of
NPK fertilisers.
= It is possible to control the pH and electrical
conductivity of nutrient solutions through the
Internet of Things.

Sensor Network Uplink Spnlins el
Request
Y
Client process | Network | Server Process
Reply

Figure 1: A proposed 10T client-server architecture.
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Figure 2: Using machine learning modules to construct a block diagram.

3.3 Fog Computing Layer

Analyzing and making informed decisions is enabled
by the analytics and decision-making model, which
provides farmers with reports that accompany their
decisions. Several states, as well as machine
intelligence, are predicted to be created as a result of
the in-charge order. On the fog layer of data analytics
systems, machine learning algorithms and
classification models are typically used.

Sensors initially generate data, which is then
acquired by edge devices. A preprocessing step cleans
and corrects stored data. Data designed for a particular
purpose is used to train machine learning algorithms,
which are then initialized to reflect that purpose. A
sensor collects data in the Internet of Things, which
may be collected in real-time or in batches (for
instance, when to pump water) (for example,
temperature and humidity). A multilayer perceptron
neural network (MLP-ANN) makes predictions and
displays data in graphs using support vector machines.
In addition to its ability to learn nonlinear models in
high-dimensional spaces, this algorithm offers several
advantages.

3.3.1 Multilayer Perceptron

This type of NN can also supplement feedforward
neural networks. There are three layers in the MLP:
input, hidden, and output. As opposed to linear
functions, MLP approximates continuous functions.
Perceptions, or neurons, are part of the MLP. In this
case, (x =x; +x; + x4 + X5 .. .....Xp) receives n
features [30] as input (x=x;+x,+x,+
X5 eeeeee Xp).

Weighted sums are calculated for input layers
based on the n features sent to u.
n
o WiXi. €Y)
i=1

A result of this type should be passed on to the
activation function [f]. In this article, sigmoid nodes 0
to 35 are supposed to be passed on. A hidden layer or
layers can be found in MLP. There is, however, an
external layer between the input and output layers.

As far as support vector machines (SVMs) are
concerned, they are divided into two categories:
classification and regression. The goal of SVM is to

u, =
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shift nonlinear data into a linear space where it can be
separated. Two conditions must be met for the
hyperplane to effectively separate data: the distance
between vectors and the hyperplane must be adapted
to differing aspects of the vectors. Here is what the
assumption function looks like:

Flx) = {+1ifw.x+b = 0}.

—1lifwx+b<0

Class +1 place points cannot be found above,
below, or on the hyperplane, while class-1 place points
can be found above, below, and on the hyperplane.

Perceptrons with multiple layers in an artificial
neural network (ANN) are called multilayer
perceptrons. The animate nervous system is controlled
by perceptrons, which are interconnected systems. A
deep learning neural network simulates nonlinear
functions of high order as its foundation. Here are the
steps for calculating the degree of accuracy in output
node j based on the above example:

&(n) = d;(n) — y;(n). 3)

Perceptrons produce output values based on goal
values. Weight adjustments can reduce the output
error by adjusting the nodes' weights.

e(n) = %Z ef (n). 4
j

(2)

3.4 Edge Network Layer

Sensors are detected and connected to low-power
microcontrollers at remote locations using loT
microcontrollers designed for 10T. Sensor data can be
collected, analyzed, and transmitted to the edge layer's
base station using the ESP 32 Node MCU. The
calibration and comparison of sensors are required for
analogue and digital data collection. A healthy and
unhealthy climate is collected in order to ensure crop
survival.

A climate-based model tracks Gerbera and
Broccoli. The parameters of greenhouses are
monitored using Node MCU ESP 32 microcontrollers.
The data collected by personal computers is serialized
with timestamps. A DHT11 sensor measures
temperature and humidity, an LDR sensor measures
light intensity, an MQ2 sensor measures CO2, and a
Cu lead measures soil moisture. Ten days are
monitored continuously using the MQTT protocol by
Adafruit 10 over the cloud platform using a specific
time interval. Computers monitor sensor data in real
time using cloud-based controllers.

3.5 Cloud Computing Layer

Through an application that uses data from edge layer
nodes to process and control at the base station,
farmers can monitor crop cultivation progress. The
Adafruit 10 platform displays, acts on, and interacts
with sensor data. Additionally, MQTT ensures that the
dossier remains private and secure. The MQTT
protocol is an inconsequential problem-solving
protocol that is located on TCP/IP. A message broker
routes messages through MQTT, connecting senders
and receivers that send and receive messages.
Publishing and subscribing to messages can be done
with the same client. Data is sent from temperature
sensors based on a specific subject, such as in a
greenhouse system.

4 RESULTS AND DISCUSSION

In Figure 3, the training and testing times for SVM and
MLP models are compared. The MLP takes about 450
seconds to train (about 320 seconds), while the SVM
takes about 70 to 80 seconds to test. During training,
MLP uses more computation than SVM, but during
testing, it is similar to SVM.

500

B svm
S mLe

400 +

300 4

Time (Sec)

200 4

100

Training Testing
Evalution Time (Sec)

Figure 3: Representation of evaluation time.

A comparison of the SVM and MLP models is
presented in Figure 4. Pump and Fan data show that
SVM is more accurate than MLP in the Pump and Fan
category. Compared to SVM, MLP performs
significantly better in the Lift category. Pump and fan
performance are better with SVM, whereas lift
performance is better with MLP, as shown in
Figure 4.
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This bar chart compares pumps, fans, and lifts
using SVM and MLP models. Pump and Fan
performance is slightly better with SVM, while Lift
performance is significantly better with MLP. Pump
and fan performance are better with SVM, whereas lift
performance is better with MLP.

A bar chart representing the average RMSE (Root
Mean Square Error) for regression tasks for SVMs and
MLPs is shown in Figure 6. MLP is represented by the
blue bar, while SVM is represented by the yellow bar.
Based on the chart, MLP is better at regression with
lower prediction error than SVM (around 0.08), which
indicates better regression performance with MLP.
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Figure 4: Comparison of SVM and MLP performance across
equipment categories.
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Figure 5: Performance Comparison of SVM and MLP
across different equipment types.

In Figure 7, four models are compared, each of
which has an accuracy of 92%: the Proposed Model
(92%), the SPS (90%), the CSMS (66%), and the
SRIM (89%). According to the chart, SRIM and SPS

achieve a higher degree of accuracy than the Proposed
Model, while CSMS achieves the lowest degree of
accuracy. Classification accuracy is better with the
Proposed Model than with the other models.
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g
1

0.02

0.00

T
SVM MLP
RMSE (Avg)

Figure 6: Comparison of average RMSE between SVM and
MLP models.
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Figure 7: Accuracy comparison of SPS, CSMS, SRIM, and
proposed model.

5 CONCLUSIONS

Precision agriculture was the focus of this paper,
which presented a data analytics system based on loT
that is intelligent and loT-based. Real-time data
collection, analysis, and actionable insights are
delivered through the use of 10T sensors and machine-
learning regression models. Training and testing
experiments have consistently shown that Multi-Layer
Perceptrons (MLPs) outperform Support Vector
Machines (SVMs) in terms of Root Mean Square
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Error (RMSE) and accuracy metrics. A
comprehensive dataset obtained from Kaggle,
comprising detailed soil fertility indicators and varied
climatic conditions, was employed to rigorously test
and validate the effectiveness of the proposed system.
The model accurately recommended suitable crops
tailored to specific environmental conditions,
demonstrating practical applicability. Furthermore,
the proposed approach achieved the highest accuracy
of 92% when compared with other advanced
frameworks such as SPS, CSMS, and SRIM. These
results validate that intelligent loT-based agricultural
systems are not only feasible but essential for
achieving long-term sustainability and food security.
By providing farmers with actionable predictive

insights, this technology reduces reliance on
traditional, less-efficient agricultural practices,
optimizes resource allocation, minimizes

environmental impact, and significantly enhances the
resilience, productivity, and overall efficiency of
modern farming systems.
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