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Abstract: Melanoma, in particular, is one of the most common and dangerous cancers in the world, and early diagnosis 

is critical to improving survival rates. A traditional diagnostic method, such as visual examination or 

dermoscopy, often requires expert intervention, but it can be challenging to distinguish early-stage melanoma 

from benign lesions. Artificial intelligence (AI), particularly machine learning and deep learning techniques, 

are applied to dermoscopic images in this study to detect skin cancer more accurately. Results showed that 

deep learning models were more accurate, more recallable, and had higher F scores than traditional machine 

learning algorithms. We compare the performance of Logistic Regression, K-Nearest Neighbors, and 

advanced deep learning architectures such as Xception, VGG16, and ResNet50 on two public datasets 

containing dermatoscopic images, HAM10000 and PH2. As a result of the study, deep learning models, 

especially when fine-tuned, offer significant improvements in detecting skin lesions, including melanoma, 

allowing for early detection. 

1 INTRODUCTION 

The early detection of skin cancer is critical to 

improving the patient's outcome since it is one of the 

most common types of cancer worldwide. 

Dermatologists rely heavily on dermoscopic images 

to diagnose skin cancer, which is diagnosed through 

examining lesions and moles. In order to detect 

disease more efficiently, accurately, and scalable, 

new detection methods are needed to cope with the 

growing number of patients and the complexity of 

some cases. AI advances, specifically machine 

learning (ML) and deep learning (DL), have 

demonstrated promise in automating and improving 

the detection of skin cancer from dermoscopic 

images. The use of machine learning models can help 

us differentiate benign lesions from malignant lesions 

[1]. Using multiple layers of neural networks, deep 

learning is capable of extracting complex features 

from raw image data automatically. 

An individual's skin covers their entire exterior, 

making it the major organ of the body. Among the 

human body's first lines of defence is its skin [2]. 

Protection against external environmental factors, 

regulation of body temperature, immunity against 

many diseases, and enhancement of beauty are some 

of its functions [3]. Sunlight exposes the skin to 

harmful ultraviolet rays, but it also produces vitamin 

D, which is imperative to human health. There are 

different skin colours (body pigmentation) and 

moisturizing levels (oily versus dry) depending on 

where you live in the world [4], [5]. In the presence 

of sunlight for a long time or when exposure to 

ultraviolet rays is prolonged, malignant skin diseases 

are more likely to develop and pigmentation declines. 

Detecting melanoma early is essential for its survival. 

As the cancer cells are similar to other skin cells, they 

are not detected when the disease is in its early stages. 

Malignant melanomas are caused by abnormal 

cancerous cells dividing rapidly under the surface of 

the skin and penetrating deep into the tissue [6]. 

Treatment of melanoma is challenging when the 

cancer spreads throughout the body. As a result, early 

diagnosis is crucial for saving lives. Dermatoscopic 

images reveal a wide variety of skin conditions. The 

two most common skin diseases are melanocytosis 

and nonmelanocytosis [7]. Skin colours vary from 

person to person, and air bubbles, hair, and artefacts 

all complicate matters. There are also many 

similarities between early-stage skin diseases, 

especially when they are in their early stages. 

Inadequate medical resources result in 420 million 

people suffering from skin diseases globally. A lack 
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of early diagnosis also reduces the quality of life and 

social advancement in developing countries due to 

high treatment costs [8].  

More than 70,000 cancer cases were reported in 

the United States in 2017, according to the American 

Cancer Society. A total of 100,350 cases of 

melanoma were diagnosed in that country in 2020, 

with 60,190 men and 40,160 women being diagnosed 

[9]. Early-stage melanoma and benign lesions are 

difficult to distinguish due to their similar appearance 

during the early stages. Computer-assisted diagnosis 

(AI) is, therefore, essential for early diagnosis. Using 

computer-aided diagnosis, physicians and experts can 

diagnose diseases earlier and more efficiently. In this 

study, we used artificial intelligence techniques to 

detect skin lesions at an early stage. Using artificial 

intelligence techniques, specific samples are trained 

to solve particular problems using many layers and 

complex neurons. In recent years, deep learning 

techniques have been used for diagnosing problems 

that cannot be solved using machine 

learning [10], [11]. 

2 LITERATURE REVIEW 

The deadly disease of melanomas is responsible for 

thousands of fatalities worldwide as a result of skin 

cancer. Throughout history, much has been done to 

detect and save the victims at the earliest stages of the 

disease. The first step is to introduce handcrafted 

features-based techniques for detecting it. In [12], 

edge-color histograms and local binary patterns 

(LBP) were used for melanoma lesion detection by 

using edge and color histograms alongside LBP.  

Combining two different techniques to 

incorporate features of local and global images. The 

Author [13] proposed two different approaches for 

localizing melanoma skin cancer. Global image 

features such as colour, size, shape, texture, and shape 

of the melanoma lesion are determined using the 

Laplacian pyramid and a gradient histogram. On the 

basis of the data obtained, a binary classifier is 

trained. Bag-of-functions (BoF) classifiers are used to 

recognize local features in images [14]. Compared to 

texture features, colour features perform better in this 

study. Due to the variations in sizes, textures, shapes, 

and colours of melanoma moles, hand-coded feature-

based approaches are often ineffective at detecting 

skin lesions. According to the Author [15], melanoma 

lesions can be classified according to the following 

methods. We calculated the scale-invariant feature 

transforms (SIFTs) and histograms of oriented 

gradients (HOGs) of representative features. 

Melanoma moles were classified using support vector 

machines (SVMs) and k-nearest neighbours 

(KNNs) [16]. 

Several image-processing techniques were used 

by the Author [17] to identify lesions on the skin. This 

approach involved obtaining a medical history before 

diagnosing. An expert examines the attributes and 

provides a set of them. Descriptors are derived 

automatically, and those observable are chosen as a 

final decision. Segmentation-based techniques are 

well suited to situations in which the chrominance 

distribution is uniform and the illumination of an 

image changes little. Still, in real-time applications, 

these lighting and illumination variations are usually 

inevitable. Using skin lesion recognition and 

segmentation, the Author [18] presented his 

approach. The input images were then preprocessed, 

and lesion segmentation was performed using seed 

region growing and graph-cut approaches. SURF and 

HOG descriptors were used to compute the features 

from the segmented lesions. In order to categorize 

lesions based on the extracted features, an SVM 

classifier was trained using the extracted features. 

Although the method is better at segmenting lesions 

and classifying them, it is computationally expensive. 

Due to ML advancements, DL methods are 

becoming increasingly popular since they provide 

high accuracy. Radiologists and dermatologists are 

therefore exploring the use of these techniques for 

medical imaging as well, allowing them to detect fatal 

diseases sooner. As a result of deep learning 

approaches like CNN, it has proven possible to 

classify skin lesions with good accuracy. The Author 

[19] suggests that instead of training the CNN from

scratch to detect melanoma lesions, pretrained

ConvNets are used.  The Author has developed a DL-

based model for segmenting and categorizing

melanomas. Feature calculation from the area of

interest was performed using the area-average

pooling (RAPooling) method in the first step. A

classification framework was proposed using the

lesion regions identified in the first step, as well as a

segmentation process using RAPooling to guide the

classification process. A RankOpt classifier was used

for the final step of melanoma classification.

Although it performs well for segmenting and

categorizing skin moles, it is inefficient

economically [20].

Key points from the computed key points were 

used to train SVMs, KNNs, and Random Forests (RF) 

to identify melanoma from benign moles. While the 

method is robust, it needs further improvement to 

improve its performance in detecting melanoma. In 

his paper [21], the Author introduced a method of 
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localizing melanoma lesions automatically. For the 

first step, feature correlations were calculated using a 

linearly independent and linear prediction method 

(LP). The second step involved computing a 

representative set of keypoint vectors using RGB 

colour histograms and SIFT. The input samples were 

classified into melanoma and nonmelanoma 

categories based on the computed key points by SVM 

classifiers. While computationally efficient, this 

method may not be appropriate for samples whose 

chrominance changes are intense. 

A variety of factors have hindered previously 

conducted studies, including hair, air bubbles, 

artefacts, and light reflections. Furthermore, similar 

characteristics between diseases pose a major 

challenge when diagnosing and separating them. 

There have been no differences between this study 

and previous studies in terms of issues addressed. The 

images were cleaned with average and Laplacian 

filters in order to remove artefacts, air bubbles, skin 

lines, and reflections. A high degree of accuracy can 

also be achieved when removing hair from images 

using dull razor technology. Several diseases share 

similar features, so these features were extracted from 

each image and combined into one vector using three 

hybrid algorithms. Consequently, each disease has its 

characteristics. A deep and representative 

characteristic of each disease was extracted using 

ResNet-50 and AlexNet. 

3 PROPOSED METHODOLOGY 

3.1 Methods and Materials 

In this study, not only melanoma and nevi are 

distinguished from pigmented lesions that commonly 

appear in clinics, but also no melanocytic pigments. 

With the help of two publicly available datasets, pre-

trained CNNs are used to classify skin cancer images. 

First, we have the HAM1000 dataset [22]. This 

dataset is a benchmark for academic machine 

learning.  

In addition, there is the PH2 dataset [23]. In this 

database, 200 dermatoscopic images of lesions with 

melanocytic cells are included. This database 

contains 80 samples of atypical nevi (Atyp NV) and 

40 samples of melanoma (Mel), which we used to 

expand our diagnostic categories. A 768 x 560-pixel 

resolution RGB image in 8-bit colour. This paper 

contains 8 diagnostic classes in total. 

Researchers have developed CNN in recent years 

to solve computer vision problems with greater 

accuracy. Our paper uses 4 deep CNN trained on 

ImageNet [24] using Tensor Flow [24], a framework 

developed by Google for deep 

learning [25]. 

3.2 Artificial Intelligence 

In addition to planning, problem-solving, 

understanding natural language, and learning, 

machines can also perform some other tasks 

characteristic of human intelligence thanks to 

artificial intelligence. Our discussion of artificial 

intelligence will be divided into two main categories. 

There is also a discussion of pre-trained networks and 

transfer learning (TL). 

3.2.1 Machine Learning 

In machine learning, useful information is extracted 

from data by separate algorithms. After training, 

machine learning extracts salient features and natural 

patterns that are used to assign attributes to samples 

or cluster them based on cluster identifications. 

Models can be used to predict data that was 

previously unknown based on this information. We 

will outline the main ML models in the following 

sections: 

▪ Decision Trees. DTs can be used for

categorical as well as numerical variables in

ML since they do not require assumptions

regarding data distribution or classifier

structure. Consequently, they are suitable for

classification, regression, and multi-output

analysis. Datasets of any size and complexity

can be classified effectively and efficiently

using them. Decision trees are assembled into

random forests (RFs). When DTs are

multiplied, the variance of each DT is reduced,

resulting in RFs that are more robust and

generalizable.

▪ Support Vector Machines. An SVM can be

used to perform linear and nonlinear

classifications (kernel methods) and

regressions, as well as to detect outliers. In

spite of this, it is important to keep in mind that

SVMs perform best when the dataset is

complex. As a result of using SVMs for

classification, hyperplanes are constructed. As

a result of every hyperplane, two distinct

classes of features can be separated and

differentiated from one another.

▪ K-Nearest Neighbors. Using KNN, new data is

classified based on how similar it is to the

nearest labelled data. As soon as a KNN

classifier's parameters, namely the number of
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nearest neighbours and the distance metric, are 

chosen (Euclidean and Manhattan distances are 

most relevant), a majority vote is used to assign 

a label to the new data set. Typically, K is set 

between 3 and 10 to prevent overfitting and 

underfitting. 

▪ Artificial Neural Networks. ANNs were

introduced as an alternative method of solving

complex problems based on neuronal

connections studies. Despite early attempts to

mimic the human brain and synaptic

connections between neurons, only a small

amount of its mechanisms could be understood.

The ANNs are implemented using simpler and

more ordered architectures consisting of

neurons (or nodes), which correspond to

synaptic connections and layering. Using

neural networks, data is analyzed based on the

relevance of representations to the problem at

hand. The process of learning occurs when

neurons in a neural network change their

connections between each other as they learn

(e.g., as they gain experience). Methods for

training neural networks are called learning

paradigms.

3.2.2 Deep Learning 

Due to the fact that it mimics the human brain in its 

architecture, deep learning has proven to be the most 

successful solution in DL. Computer vision 

algorithms based on CNNs gained popularity in the 

early 2000s. Developed on the basis of neural 

networks in the visual cortex, they have excellent 

results. Each CNN layer has a distinct function, and 

there are several types. Some of them can indeed be 

trained, while others only need to implement 

established functions. CNN architectures commonly 

use the following layers: 

▪ Convolutional layers. In addition to learning

local patterns, convolutional layers can learn

spatial hierarchies of patterns as well as

translation-invariant patterns. With the

increasing depth of the network, CNN is able

to learn increasingly complex visual concepts

efficiently. In addition to being translation-

invariant, convolutional layers can learn spatial

hierarchies of patterns, and these two

properties allow them to learn local patterns

efficiently. Layers that perform convolution

over input images produce feature maps to be

sent to the following layers as a result of each

layer's convolution operation.

▪ Normalization layers. There is no trainable

parameter in the normalization function, and

forward propagation is the only available

option. In recent years, these layers have

become less popular.

▪ Regularization layer. During training, these

layers ignore a portion of neurons randomly in

order to reduce overfitting. Dropout is the most

common regularization technique.

▪ Pooling layers. By pooling layers, feature maps

can be subsampled while maintaining the main

information presented therein, thus reducing

model parameters and computation costs.

Feature maps are convolutioned using average

pooling and max pooling, like convolutional

layers, but no trainable parameters are

included.

▪ Fully connected layers. There is a connection

between a neuron and an activation function in

another layer. Using a CNN classifier, the

classification results are determined after a

fully connected layer (FC).

3.2.3 Transfer Learning and Pre-Trained 
Modelsgoogle's Inception V3 

Based on Google's Inception v3 architecture, we were 

able to categorize 8 diagnostic categories by 

connecting two fully connected layers, one average 

pooling layer, and a softmax layer [26]. To make this 

model compatible with input images, they were all 

resized to (299, 299). Based on a decay and 

momentum of 0.9 and a learning rate of 0.0007, the 

stochastic gradient descent (SGD) algorithm was 

used to optimize: 

▪ InceptionResNet v2. Using our dataset, the

Inception ResNet v2 architecture [27] was

retrained by replacing the top layer with a

global-average pooling layer, followed by a

fully connected layer, followed by a softmax

layer, allowing the classification of eight

diagnostic categories.

▪ ResNet 152. Using our dataset, ResNet 152

architecture [28] was retrained by replacing top

layers with one average-pooling, one fully

connected, and finally, one softmax layer,

which allowed the organization of 8 diagnostic

categories.

▪ DenseNet 201. An eight-category classification

system was built using DenseNet 201

architecture [29] and a global average pooling

layer plus an SL.
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3.3  Model Performance Evaluation 

The effectiveness of the proposed model was assessed 

through a comprehensive performance evaluation 

using a confusion matrix framework. Prior to model 

development, the dataset was partitioned into distinct 

training and testing sets to ensure unbiased 

evaluation. After model training, performance 

assessment was conducted exclusively on the test set 

to measure generalization capability.  

Following the methodology presented in [30], the 

skin cancer detection effectiveness of the proposed 

model was evaluated using four key performance 

metrics derived from the confusion matrix: accuracy, 

precision, recall, and F1-score. These metrics 

collectively provide a comprehensive assessment of 

the model's classification performance across all test 

instances. 

4 RESULT ANALYSIS AND 

DISCUSSION 

The five machine learning algorithms presented in 

Figure 1 – LR, LDA, KNN, Classification, and RT, 

and GNB – are compared based on four metrics: 

accuracy, precision, recall, and F-score. True 

positives are more likely to be detected using KNN 

and CART, particularly in terms of recall and F-score. 

There is, however, a lower recall for LR and GNB, 

which indicates that they miss more positive results. 

Each algorithm for detecting skin cancer is ranked 

according to its strengths and weaknesses in the chart 

below. 

Figure 1: Kaggle-based machine learning models for skin 

cancer prediction. 

In Figure 2, three digital learning models are 

compared with the frozen base approach to detect 

skin cancers (Xception, VGG16, and ResNet50). 

Xception, ResNet50, and VGG16 achieve the best 

accuracy and F-score. There is good true positive 

detection in every model, but Xception performs the 

best overall in terms of recall, indicating it is the most 

reliable. 

Figure 2: Performance of DL Model versus Frozen Base. 

Figure 3 compares the performance of three deep 

learning models, VGG16 and ResNet50-on skin 

cancer detection, using a "Fine-Tuning" approach, in 

which the pre-trained models are more extensively 

modified to improve results. The Xception model 

performs better in this scenario compared to the 

"Frozen Base" scenario, followed closely by 

ResNet50 and VGG16. There is strong precision and 

recall across all three models, indicating their ability 

to detect true positives effectively. As a result of this 

fine-tuning configuration, Xception remains the most 

effective model, demonstrating increased 

performance in all metrics. 

In Figure 4, accuracy values for a deep learning 

model in both frozen and tuned configurations are 

shown over 25 epochs. It is evident that Tuned 

Accuracy and Tuned Validation Accuracy are 

improving steadily, especially after the 10th epoch, 

surpassing the Frozen Accuracy and Frozen 

Validation Accuracy, which remain constant. 

Comparing fine-tuning to using frozen layers 

highlights the benefits of fine-tuning. 

For a frozen deep learning model and a tuned deep 

learning model, Figure 5 shows loss values over 25 

epochs. Losses for Tuned and Tuned Validation are 

steadily decreasing, reaching lower values than for 

Frozen and Frozen Validation Losses, which fluctuate 

more. Using fine-tuned layers is more efficient than 

using frozen layers for convergence and performance. 
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Figure 3: Performance of DL Model versus Fine-Tuning. 

Figure 4: Model accuracy comparison across epochs for 

frozen and tuned models. 

Figure 5: Epoch-by-epoch comparison of frozen and tuned 

models. 

5 CONCLUSIONS 

Using machine learning and deep learning, this study 

demonstrated that skin cancer can be effectively 

detected in the early stages from dermoscopic images. 

The comparative analysis clearly showed that pre-

trained deep learning models significantly 

outperformed traditional machine learning 

approaches, particularly when enhanced through 

advanced fine-tuning techniques. Among the 

evaluated models, Xception consistently exhibited 

superior performance over ResNet50 and VGG16, 

achieving higher accuracy, precision, and sensitivity 

across all tested metrics. This highlights that fine-

tuning deep learning models results in more precise 

and dependable skin cancer detection, positioning 

these tools as highly valuable resources for 

dermatologists, clinicians, and patients, enabling 

faster and more accurate diagnoses. Future research 

could further explore how variations in skin types, 

pigmentation, demographic factors, and 

environmental influences impact the reliability and 

efficacy of these AI models when integrated into real-

time clinical diagnostic systems. 
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