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Melanoma, in particular, is one of the most common and dangerous cancers in the world, and early diagnosis
is critical to improving survival rates. A traditional diagnostic method, such as visual examination or
dermoscopy, often requires expert intervention, but it can be challenging to distinguish early-stage melanoma
from benign lesions. Artificial intelligence (Al), particularly machine learning and deep learning techniques,
are applied to dermoscopic images in this study to detect skin cancer more accurately. Results showed that
deep learning models were more accurate, more recallable, and had higher F scores than traditional machine
learning algorithms. We compare the performance of Logistic Regression, K-Nearest Neighbors, and
advanced deep learning architectures such as Xception, VGG16, and ResNet50 on two public datasets
containing dermatoscopic images, HAM10000 and PH2. As a result of the study, deep learning models,
especially when fine-tuned, offer significant improvements in detecting skin lesions, including melanoma,

allowing for early detection.

1 INTRODUCTION

The early detection of skin cancer is critical to
improving the patient's outcome since it is one of the
most common types of cancer worldwide.
Dermatologists rely heavily on dermoscopic images
to diagnose skin cancer, which is diagnosed through
examining lesions and moles. In order to detect
disease more efficiently, accurately, and scalable,
new detection methods are needed to cope with the
growing number of patients and the complexity of
some cases. Al advances, specifically machine
learning (ML) and deep learning (DL), have
demonstrated promise in automating and improving
the detection of skin cancer from dermoscopic
images. The use of machine learning models can help
us differentiate benign lesions from malignant lesions
[1]. Using multiple layers of neural networks, deep
learning is capable of extracting complex features
from raw image data automatically.

An individual's skin covers their entire exterior,
making it the major organ of the body. Among the
human body's first lines of defence is its skin [2].
Protection against external environmental factors,
regulation of body temperature, immunity against
many diseases, and enhancement of beauty are some

of its functions [3]. Sunlight exposes the skin to
harmful ultraviolet rays, but it also produces vitamin
D, which is imperative to human health. There are
different skin colours (body pigmentation) and
moisturizing levels (oily versus dry) depending on
where you live in the world [4], [5]. In the presence
of sunlight for a long time or when exposure to
ultraviolet rays is prolonged, malignant skin diseases
are more likely to develop and pigmentation declines.
Detecting melanoma early is essential for its survival.
As the cancer cells are similar to other skin cells, they
are not detected when the disease is in its early stages.
Malignant melanomas are caused by abnormal
cancerous cells dividing rapidly under the surface of
the skin and penetrating deep into the tissue [6].
Treatment of melanoma is challenging when the
cancer spreads throughout the body. As a result, early
diagnosis is crucial for saving lives. Dermatoscopic
images reveal a wide variety of skin conditions. The
two most common skin diseases are melanocytosis
and nonmelanocytosis [7]. Skin colours vary from
person to person, and air bubbles, hair, and artefacts
all complicate matters. There are also many
similarities between early-stage skin diseases,
especially when they are in their early stages.
Inadequate medical resources result in 420 million
people suffering from skin diseases globally. A lack
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of early diagnosis also reduces the quality of life and
social advancement in developing countries due to
high treatment costs [8].

More than 70,000 cancer cases were reported in
the United States in 2017, according to the American
Cancer Society. A total of 100,350 cases of
melanoma were diagnosed in that country in 2020,
with 60,190 men and 40,160 women being diagnosed
[9]. Early-stage melanoma and benign lesions are
difficult to distinguish due to their similar appearance
during the early stages. Computer-assisted diagnosis
(Al) is, therefore, essential for early diagnosis. Using
computer-aided diagnosis, physicians and experts can
diagnose diseases earlier and more efficiently. In this
study, we used artificial intelligence techniques to
detect skin lesions at an early stage. Using artificial
intelligence techniques, specific samples are trained
to solve particular problems using many layers and
complex neurons. In recent years, deep learning
techniques have been used for diagnosing problems
that cannot be solved using  machine
learning [10], [11].

2 LITERATURE REVIEW

The deadly disease of melanomas is responsible for
thousands of fatalities worldwide as a result of skin
cancer. Throughout history, much has been done to
detect and save the victims at the earliest stages of the
disease. The first step is to introduce handcrafted
features-based techniques for detecting it. In [12],
edge-color histograms and local binary patterns
(LBP) were used for melanoma lesion detection by
using edge and color histograms alongside LBP.
Combining two different techniques to
incorporate features of local and global images. The
Author [13] proposed two different approaches for
localizing melanoma skin cancer. Global image
features such as colour, size, shape, texture, and shape
of the melanoma lesion are determined using the
Laplacian pyramid and a gradient histogram. On the
basis of the data obtained, a binary classifier is
trained. Bag-of-functions (BoF) classifiers are used to
recognize local features in images [14]. Compared to
texture features, colour features perform better in this
study. Due to the variations in sizes, textures, shapes,
and colours of melanoma moles, hand-coded feature-
based approaches are often ineffective at detecting
skin lesions. According to the Author [15], melanoma
lesions can be classified according to the following
methods. We calculated the scale-invariant feature
transforms (SIFTs) and histograms of oriented
gradients (HOGs) of representative features.

Melanoma moles were classified using support vector
machines (SVMs) and k-nearest neighbours
(KNNs) [16].

Several image-processing techniques were used
by the Author [17] to identify lesions on the skin. This
approach involved obtaining a medical history before
diagnosing. An expert examines the attributes and
provides a set of them. Descriptors are derived
automatically, and those observable are chosen as a
final decision. Segmentation-based techniques are
well suited to situations in which the chrominance
distribution is uniform and the illumination of an
image changes little. Still, in real-time applications,
these lighting and illumination variations are usually
inevitable. Using skin lesion recognition and
segmentation, the Author [18] presented his
approach. The input images were then preprocessed,
and lesion segmentation was performed using seed
region growing and graph-cut approaches. SURF and
HOG descriptors were used to compute the features
from the segmented lesions. In order to categorize
lesions based on the extracted features, an SVM
classifier was trained using the extracted features.
Although the method is better at segmenting lesions
and classifying them, it is computationally expensive.

Due to ML advancements, DL methods are
becoming increasingly popular since they provide
high accuracy. Radiologists and dermatologists are
therefore exploring the use of these techniques for
medical imaging as well, allowing them to detect fatal
diseases sooner. As a result of deep learning
approaches like CNN, it has proven possible to
classify skin lesions with good accuracy. The Author
[19] suggests that instead of training the CNN from
scratch to detect melanoma lesions, pretrained
ConvNets are used. The Author has developed a DL-
based model for segmenting and categorizing
melanomas. Feature calculation from the area of
interest was performed using the area-average
pooling (RAPooling) method in the first step. A
classification framework was proposed using the
lesion regions identified in the first step, as well as a
segmentation process using RAPooling to guide the
classification process. A RankOpt classifier was used
for the final step of melanoma classification.
Although it performs well for segmenting and
categorizing skin moles, it is inefficient
economically [20].

Key points from the computed key points were
used to train SVMs, KNNs, and Random Forests (RF)
to identify melanoma from benign moles. While the
method is robust, it needs further improvement to
improve its performance in detecting melanoma. In
his paper [21], the Author introduced a method of
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localizing melanoma lesions automatically. For the
first step, feature correlations were calculated using a
linearly independent and linear prediction method
(LP). The second step involved computing a
representative set of keypoint vectors using RGB
colour histograms and SIFT. The input samples were
classified into melanoma and nonmelanoma
categories based on the computed key points by SVM
classifiers. While computationally efficient, this
method may not be appropriate for samples whose
chrominance changes are intense.

A variety of factors have hindered previously
conducted studies, including hair, air bubbles,
artefacts, and light reflections. Furthermore, similar
characteristics between diseases pose a major
challenge when diagnosing and separating them.
There have been no differences between this study
and previous studies in terms of issues addressed. The
images were cleaned with average and Laplacian
filters in order to remove artefacts, air bubbles, skin
lines, and reflections. A high degree of accuracy can
also be achieved when removing hair from images
using dull razor technology. Several diseases share
similar features, so these features were extracted from
each image and combined into one vector using three
hybrid algorithms. Consequently, each disease has its
characteristics. A deep and representative
characteristic of each disease was extracted using

ResNet-50 and AlexNet.

3 PROPOSED METHODOLOGY

3.1 Methods and Materials

In this study, not only melanoma and nevi are
distinguished from pigmented lesions that commonly
appear in clinics, but also no melanocytic pigments.
With the help of two publicly available datasets, pre-
trained CNNs are used to classify skin cancer images.
First, we have the HAM1000 dataset [22]. This
dataset is a benchmark for academic machine
learning.

In addition, there is the PH2 dataset [23]. In this
database, 200 dermatoscopic images of lesions with
melanocytic cells are included. This database
contains 80 samples of atypical nevi (Atyp NV) and
40 samples of melanoma (Mel), which we used to
expand our diagnostic categories. A 768 x 560-pixel
resolution RGB image in 8-bit colour. This paper
contains 8 diagnostic classes in total.

Researchers have developed CNN in recent years
to solve computer vision problems with greater
accuracy. Our paper uses 4 deep CNN trained on

ImageNet [24] using Tensor Flow [24], a framework
developed by Google for deep
learning [25].

3.2 Artificial Intelligence

In addition to planning, problem-solving,
understanding natural language, and learning,
machines can also perform some other tasks
characteristic of human intelligence thanks to
artificial intelligence. Our discussion of artificial
intelligence will be divided into two main categories.
There is also a discussion of pre-trained networks and
transfer learning (TL).

3.2.1 Machine Learning

In machine learning, useful information is extracted
from data by separate algorithms. After training,
machine learning extracts salient features and natural
patterns that are used to assign attributes to samples
or cluster them based on cluster identifications.
Models can be used to predict data that was
previously unknown based on this information. We
will outline the main ML models in the following
sections:
= Decision Trees. DTs can be used for
categorical as well as numerical variables in
ML since they do not require assumptions
regarding data distribution or classifier
structure. Consequently, they are suitable for
classification, regression, and multi-output
analysis. Datasets of any size and complexity
can be classified effectively and efficiently
using them. Decision trees are assembled into
random forests (RFs). When DTs are
multiplied, the variance of each DT is reduced,
resulting in RFs that are more robust and
generalizable.
=  Support Vector Machines. An SVM can be
used to perform linear and nonlinear
classifications  (kernel ~ methods) and
regressions, as well as to detect outliers. In
spite of this, it is important to keep in mind that
SVMs perform best when the dataset is
complex. As a result of using SVMs for
classification, hyperplanes are constructed. As
a result of every hyperplane, two distinct
classes of features can be separated and
differentiated from one another.
= K-Nearest Neighbors. Using KNN, new data is
classified based on how similar it is to the
nearest labelled data. As soon as a KNN
classifier's parameters, namely the number of
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nearest neighbours and the distance metric, are
chosen (Euclidean and Manhattan distances are
most relevant), a majority vote is used to assign
a label to the new data set. Typically, K is set
between 3 and 10 to prevent overfitting and
underfitting.

= Artificial Neural Networks. ANNs were
introduced as an alternative method of solving
complex problems based on neuronal
connections studies. Despite early attempts to
mimic the human brain and synaptic
connections between neurons, only a small
amount of its mechanisms could be understood.
The ANNSs are implemented using simpler and
more ordered architectures consisting of
neurons (or nodes), which correspond to
synaptic connections and layering. Using
neural networks, data is analyzed based on the
relevance of representations to the problem at
hand. The process of learning occurs when
neurons in a neural network change their
connections between each other as they learn
(e.g., as they gain experience). Methods for
training neural networks are called learning
paradigms.

3.2.2 Deep Learning

Due to the fact that it mimics the human brain in its
architecture, deep learning has proven to be the most
successful solution in DL. Computer vision
algorithms based on CNNs gained popularity in the
early 2000s. Developed on the basis of neural
networks in the visual cortex, they have excellent
results. Each CNN layer has a distinct function, and
there are several types. Some of them can indeed be
trained, while others only need to implement
established functions. CNN architectures commonly
use the following layers:
= Convolutional layers. In addition to learning
local patterns, convolutional layers can learn
spatial hierarchies of patterns as well as
translation-invariant ~ patterns.  With  the
increasing depth of the network, CNN is able
to learn increasingly complex visual concepts
efficiently. In addition to being translation-
invariant, convolutional layers can learn spatial
hierarchies of patterns, and these two
properties allow them to learn local patterns
efficiently. Layers that perform convolution
over input images produce feature maps to be
sent to the following layers as a result of each
layer's convolution operation.

= Normalization layers. There is no trainable
parameter in the normalization function, and
forward propagation is the only available
option. In recent years, these layers have
become less popular.

= Regularization layer. During training, these
layers ignore a portion of neurons randomly in
order to reduce overfitting. Dropout is the most
common regularization technique.

= Pooling layers. By pooling layers, feature maps
can be subsampled while maintaining the main
information presented therein, thus reducing
model parameters and computation costs.
Feature maps are convolutioned using average
pooling and max pooling, like convolutional
layers, but no trainable parameters are
included.

= Fully connected layers. There is a connection
between a neuron and an activation function in
another layer. Using a CNN classifier, the
classification results are determined after a
fully connected layer (FC).

3.2.3 Transfer Learning and Pre-Trained
Modelsgoogle's Inception V3

Based on Google's Inception v3 architecture, we were
able to categorize 8 diagnostic categories by
connecting two fully connected layers, one average
pooling layer, and a softmax layer [26]. To make this
model compatible with input images, they were all
resized to (299, 299). Based on a decay and
momentum of 0.9 and a learning rate of 0.0007, the
stochastic gradient descent (SGD) algorithm was
used to optimize:

» InceptionResNet v2. Using our dataset, the
Inception ResNet v2 architecture [27] was
retrained by replacing the top layer with a
global-average pooling layer, followed by a
fully connected layer, followed by a softmax
layer, allowing the classification of eight
diagnostic categories.

= ResNet 152. Using our dataset, ResNet 152
architecture [28] was retrained by replacing top
layers with one average-pooling, one fully
connected, and finally, one softmax layer,
which allowed the organization of 8 diagnostic
categories.

= DenseNet 201. An eight-category classification
system was built using DenseNet 201
architecture [29] and a global average pooling
layer plus an SL.
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3.3 Model Performance Evaluation

The effectiveness of the proposed model was assessed
through a comprehensive performance evaluation
using a confusion matrix framework. Prior to model
development, the dataset was partitioned into distinct
training and testing sets to ensure unbiased
evaluation. After model training, performance
assessment was conducted exclusively on the test set
to measure generalization capability.

Following the methodology presented in [30], the
skin cancer detection effectiveness of the proposed
model was evaluated using four key performance
metrics derived from the confusion matrix: accuracy,
precision, recall, and F1-score. These metrics
collectively provide a comprehensive assessment of
the model's classification performance across all test
instances.

4 RESULT ANALYSIS AND
DISCUSSION

The five machine learning algorithms presented in
Figure 1 — LR, LDA, KNN, Classification, and RT,
and GNB — are compared based on four metrics:
accuracy, precision, recall, and F-score. True
positives are more likely to be detected using KNN
and CART, particularly in terms of recall and F-score.
There is, however, a lower recall for LR and GNB,
which indicates that they miss more positive results.
Each algorithm for detecting skin cancer is ranked
according to its strengths and weaknesses in the chart
below.
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Figure 1: Kaggle-based machine learning models for skin
cancer prediction.

In Figure 2, three digital learning models are
compared with the frozen base approach to detect

skin cancers (Xception, VGG16, and ResNet50).
Xception, ResNet50, and VGG16 achieve the best
accuracy and F-score. There is good true positive
detection in every model, but Xception performs the
best overall in terms of recall, indicating it is the most
reliable.
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Figure 2: Performance of DL Model versus Frozen Base.

Figure 3 compares the performance of three deep
learning models, VGG16 and ResNet50-on skin
cancer detection, using a "Fine-Tuning" approach, in
which the pre-trained models are more extensively
modified to improve results. The Xception model
performs better in this scenario compared to the
"Frozen Base" scenario, followed closely by
ResNet50 and VGG16. There is strong precision and
recall across all three models, indicating their ability
to detect true positives effectively. As a result of this
fine-tuning configuration, Xception remains the most
effective model, demonstrating increased
performance in all metrics.

In Figure 4, accuracy values for a deep learning
model in both frozen and tuned configurations are
shown over 25 epochs. It is evident that Tuned
Accuracy and Tuned Validation Accuracy are
improving steadily, especially after the 10th epoch,
surpassing the Frozen Accuracy and Frozen
Validation Accuracy, which remain constant.
Comparing fine-tuning to using frozen layers
highlights the benefits of fine-tuning.

For a frozen deep learning model and a tuned deep
learning model, Figure 5 shows loss values over 25
epochs. Losses for Tuned and Tuned Validation are
steadily decreasing, reaching lower values than for
Frozen and Frozen Validation Losses, which fluctuate
more. Using fine-tuned layers is more efficient than
using frozen layers for convergence and performance.
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Figure 3: Performance of DL Model versus Fine-Tuning.
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Figure 4: Model accuracy comparison across epochs for
frozen and tuned models.
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Figure 5: Epoch-by-epoch comparison of frozen and tuned
models.

5 CONCLUSIONS

Using machine learning and deep learning, this study
demonstrated that skin cancer can be effectively
detected in the early stages from dermoscopic images.
The comparative analysis clearly showed that pre-
trained deep learning models significantly
outperformed  traditional ~ machine  learning
approaches, particularly when enhanced through
advanced fine-tuning techniques. Among the
evaluated models, Xception consistently exhibited
superior performance over ResNet50 and VGGL16,
achieving higher accuracy, precision, and sensitivity
across all tested metrics. This highlights that fine-
tuning deep learning models results in more precise
and dependable skin cancer detection, positioning
these tools as highly valuable resources for
dermatologists, clinicians, and patients, enabling
faster and more accurate diagnoses. Future research
could further explore how variations in skin types,
pigmentation, demographic factors, and
environmental influences impact the reliability and
efficacy of these Al models when integrated into real-
time clinical diagnostic systems.
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