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Performance prediction via simulations is laborious and tedious. To avoid this problem, one way is to use
supervised learning to forecast how well a system will do on SPEC benchmarks. This year's SPEC CPU
includes a publicly available collection of results from 43 standardized performance tests divided into 4 suites
and run on a variety of hardware setups. In this study, we will examine the dataset and try to find the answers
to these questions: Can we reliably forecast the SPEC outcomes from the dataset's setups, without actually
running the benchmarks? Secondly, which software and hardware aspects are most crucial? On the third point,
in regard to forecast time and inaccuracy, which hyperparameters and models work best? thirdly, is it possible
to use historical data to foretell how future systems will be performing? Preparing data, choosing features,
this talk covers a wide range of topics, including hyperparameter tuning, employing decision trees, random
forests, multi-layer perceptrons, and multi-task elastic-net neural networks to evaluate regression models, and
more. There are three stages to feature selection: deleting features with zero variance, removing features with
strong correlation, and finally, using Functional Recursion Using permutation importance, elastic-net
coefficients, or importance metrics depending on trees to filter out candidates. Searching the hyperparameter
space with a grid, we select the best models. Afterwards, we compare and evaluate their performance. We
prove that using the initial set of 29 features in tree-based models yields 4% or better accuracy in predictions.
With 10 characteristics, both the Random Forest and Quick Decision Tree models keep their average errors
at 5% and 6%, respectively.

1 INTRODUCTION

Research on the use of Machine Learning (ML) to
estimate computer systems' performance and enhance
system design is ongoing [1]. System designers and
engineers can learn more about how different
configuration changes affect system performance and
use that information to make more informed design
decisions with the predicted results. Before
developing their solutions, vendors research the
market to achieve ideal positioning. Predicting how
well future system configurations will perform is,
nevertheless, no easy feat [2].

People also look for optimal system setups to
maximize performance or make logical purchases to
enhance the cost-performance ratio. Customers may
need performance statistics for new systems or
configurations they have never seen before.
Therefore, it is insufficient to only possess access to
the outcomes of various workloads executed on large
clusters of computers [3]. Research into performance
prediction and evaluation is driven by these
difficulties. Nevertheless, it is difficult to accurately
forecast the performance of unknown setups when
doing many tasks simultaneously, in terms of either
execution time or throughput. It could necessitate the
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ever-more-complicated process of exact analytical
modeling of future systems brought about by
developments in computer architecture. In addition,
the most accurate forecasts may not be produced by
modeling techniques that depend on laborious and
comprehensive simulations [2], [4]. Therefore, we
depend on regression models to forecast performance
instead of fine-grained system modeling [5]. These
models  figure out how different system
configurations affect how well they handle different
kinds of workloads. Included in SPEC CPU2017 are
suites of widely used compute-intensive benchmarks
that primarily evaluate compilers, memory
subsystems, and processor characteristics. There are
four different benchmark suites that SPEC offers,
each with its own set of practical, portable programs
that address problems of varying magnitude [6]:

First, the floating point rate, FP_rate; second, the
integer rate, Int_rate; and lastly, the integer speed,
Int_speed. We construct supervised learning models
based on software and hardware characteristics
extracted from the SPEC CPU2017 public dataset,
which contains benchmarks of systems used for
computer analysis. This document contains the results
of the benchmarking procedure. The Multitask
Elastic-Net (MT_EN), Decision Tree (DT), Random
Forest (RF), and Multi-layer Perceptron (MLP)
estimators have formed the basis of our models.

Prediction accuracy of the SPEC benchmarks has
been the subject of prior research, with a focus on
neural networks. Conversely, the features'
significance in relation to the prediction models'
contributions has been disregarded or ignored. The
primary objective of our research is to establish a
machine learning pipeline that can rapidly and
accurately predict SPEC CPU2017 performance
using regression models, and to give a simplified
method for thorough evaluation. The significance of
numerous software and hardware features is
highlighted in this paper, which also evaluates several
models' latency and prediction error using both the
full and selected feature sets. Researchers are also
looking at the possibility of using historical data from
current systems to foretell how those systems will
perform in the future. The scikit-learn [7] ML
package is utilized in the Python-written open-source
code. For example, engineers may be able to narrow
the design space with the help of the presented ML
pipeline and analysis, and consumers may be able to
give more weight to crucial aspects when making
purchases.

The benchmark performance ratios are the goal
variables (outputs) for our regression models. Ratings

and rankings on performance ratios for speed and rate
standards as shown in Figure 1.
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Figure 1: Fake news flowchart diagram.
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Speed patio = tres/tsur
ratepatio = N X (tres/tsur)

Where tRef is the time spent on a reference computer
with one thread (for speed benchmarks) or one copy
of the benchmark (for rate benchmarks), tSUT is the
time spent on the machine being tested with multiple
threads or copies, and n is the number of benchmark
copies.

2 LITERATURE REVIEW

2.1 Computer Architecture and
Systems Machine Learning Surveys

Computer systems and architecture have long been
fine-tuned to run machine learning (ML) models
efficiently. Rethink the relationship among ML and
systems to transform computer architecture and
system design. Both the completion of the virtuous
cycle and an increase in designers' productivity are
embraced by this. Our goal in this article is to provide
a thorough overview of the literature on machine
learning (ML) in relation to computer system design
and architecture. Our first step is to create a taxonomy
at a high level by thinking about the two most
common uses of ML techniques in the field of
architecture and system design: rapid predictive
modeling and design process. Following that, we
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provide a brief overview of the most popular ML
strategies used to address the most prevalent issues in
computer architecture and system design, as well as
the problems themselves. We focus on computer
architecture narrowly and assume data centers are
gigantic computer warehouses. We also give some
cursory attention to nearby computer systems like
code generation as well as compiler, and they focus
on how ML can transform design automation. We
also see excellent future courses and prospects, and
we think the community would benefit much from
using ML to computer architecture and systems.

2.2 Specnet Predicts SPEC Scores
Utilizing Deep Learning

The SPECnet is a deep neural network (DNN) that we
demonstrate how to construct for the purpose of
predicting SPEC® results. The SPEC CPU2006 suite
has been around for over a decade (it was
decommissioned in January 2018), and there are still
thousands of submissions for its integer and floating
point benchmarks. In order to train on the matching
reported SPEC scores, we construct a DNN that takes
hardware and software information from these
submissions.

Then, for future machine configurations, we
forecast scores using the learned DNN. With training
and development/test errors ranging from 5% to 7%,
we attain very high prediction accuracy rates of 93%
to 95%. By meticulously modeling the performance
of both the essential and non-essential parts of the
system, it is possible to obtain an accuracy level of
97% to 98%, which is extremely close to what
humans are anticipated to achieve. Applying
SPECnet to SPEComp2012 and SPECjbb2015 is an
additional step beyond the CPU2006 suite.

We demonstrate that such a DNN can also
reasonably forecast (~85% accuracy) for these
benchmarks, even though there are only hundreds of
reported submissions for these suites. Our SPECnet
solution is highly adaptable and expandable, built on
top of the cutting-edge Tensor flow framework.

2.3 Using Public Datasets to Predict
Workload or CPU Performance

Many different versions of general-purpose
microprocessors are available on the market, all with
identical ~ functionality but different  power
consumption, frequency CPU cores, cache size, and
memory bandwidth. Both the microarchitecture and
the workloads being executed have an impact on their
performance. The customer can't make an informed

purchase decision without knowing the performance
and pricing details, given a set of expected workloads.
There are a plethora of benchmark suites available for
use in evaluating CPU performance, and the
outcomes for extensive sets of CPUs are frequently
made public. Consumers seeking processor or
workload efficiency statistics may locate repositories
of benchmark results to be unhelpful at times. In
addition, benchmark suites that aim to cover a wide
variety of workloads could provide deceptive
aggregate scores. then built a DNN model to
understand the correlation between Intel CPU specs
and Geekbench 3 and SPEC CPU 2006 performance,
and then applied it to these issues. We demonstrate
the ability to produce practical forecasts for novel
processors and workloads. The two benchmark suites'
performance scores are also compared and cross-
predicted. This is the first literature to quantify such
suites' self-similarity by results. This work aims to
dissuade buyers from relying just on Geekbench 3,
while simultaneously motivating researchers to
assess their work using a wider range of workloads
rather than just the SPEC CPU suites.

2.4 Machine Learning to Anticipate
Computer System Design
Performance Options

Computer companies invest a lot of time, energy, and
capital into developing new systems and
configurations; the success of these systems
determines how much they can cut costs, how much
they can charge, and how much market share they can
win. Our primary focus in this effort is to streamline
the architectural design and system design phases of
parallel computers. Our approach uses neural network
and linear regression models to predict the
performance of any machine in the design space by
extracting the performance levels of a tiny percentage
of machines. We demonstrate that in the context of
architectural design, a 3.4% error rate may be
achieved by utilizing a small percentage of the design
space (cycle-accurate simulations) to predict its
performance completely.

We use Standard Performance Evaluation
Corporation benchmark data to predict future system
design performance. Focusing on systems with many
processors, we demonstrate that our models can, on
average, forecast future system performance to within
2.2% of the true value.

We are confident that these tools can greatly
accelerate the exploration of the design space while
also helping to reduce the associated research and
development costs and time-to-market.

217



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), July 2025

2.5 A Survey on Multi-Output
Regression

A multitude of methods have been put forward in the
past few years to tackle the ever-increasingly difficult
undertaking of multi-output regression. Modern
multi-output regression techniques, including those
for issue transformation and algorithm adaptation, are
reviewed in this article. Additionally, we showcase
open-source software frameworks Public data sets for
multi-output regression real-world challenges and the
most prevalent performance evaluation methods.

3 METHODOLOGY

The reliability of neural network predictions on the
SPEC benchmark has been the subject of earlier
research. In addition, features' significance in
contributing to the models has been disregarded or
ignored. Our research aims to construct a machine
learning pipeline that can rapidly and accurately
predict SPEC CPU2017 performance using
regression models, and then we will evaluate these
models thoroughly. Finding which software and

hardware features are most important and Evaluating
prediction error and delay of various models on
complete and decreased feature sets are two
significant contributions of this work as shown in
Figure 2.

Here, we forecast SPEC benchmark performance
using supervised learning. SPEC is the Performance
Evaluation Corporation. The public SPEC CPU2017
dataset contains 43 standardized performance tests
from diverse system settings. These tests are
organized into 4 suites. The following questions are
intended to be answered by this paper's analysis of the
dataset: 1) Is it necessary to run the benchmarks in
order to provide an accurate prediction of the SPEC
results using the dataset's configurations? 1) Which
software and hardware features are most crucial?

In regards to prediction error and time, which
hyperparameters and models provide the greatest
results? and (V) is it possible to use historical data to
forecast how future systems will perform? We walk
you through data preparation, feature selection,
hyperparameter tuning, and regression model
evaluation employing Multi-Task Elastic-Net,
Decision Tree, Random Forest, and Multi-Layer
Perceptron neural network estimators [8].
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Figure 2: System architecture.
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3.1 Modules

We designed the following modules for the project:

= Use the data exploration module to load data
into the system.

= The module will be used to read and process
data.

= Data would be separated into train and test
using this module.

= Constructed models using ElasticNet, Decision
Tree, Random Forest, NLP, and Voting
Stacking. Algorithm accuracy calculated

= The user signup and login module allows for
registration and login.

= User input: This modules provides prediction

input.

=  Prediction: final prediction showed.

Table 1: Feature set extracted from the publicly available

SPEC CPU 2017 database.

Raw Feature

Description

arch

Architecture from Iscpu

Nominal_mhz Processing unit nominal clock
frequency

max_mhz Central processing unit maximum
clock frequency

cpus Number of CPU(s) from Iscpu

threads_per_core

Thread(s) per core from Iscpu

cores_per_socket

Core(s) per socket from Iscpu

sockets

Scoket(s) from Iscpu

numas NUMA node(s) from Iscpu
11d_cache_kb L1 data cache in KB

I11i_cache_kb L1 instruction cache in KB
12_cache_kb L2 cache in KB

I3_cache_kb L3 cache in KB

mem_kb Main mem in KB (get it from the

Memory field, if there is no

/proc/meminf o)

mem_channels

Number of memory channels

channel_kb

Memory channel’s capacity

mem_data_rate

Memory transfer rate in MT/s

0s

Operating System

Table 1 lists all twenty-one raw features. Data
related to the hardware includes the design,
processor(s), and memory subsystem. Software

specifics include the operating system, compiler, file
system, parallel flag, and thread/copy count. To make
them numeric, the operating system, compiler, and
file system variables are categorical. Input variables
might affect output depending on other input factors.
For simplicity, this is the interaction effect. The
equation cpus = sockets x cores_per_sockets x
threads_per_core illustrates a three-way
relationship [9].

4 IMPLEMENTATION
4.1 Algorithms

4.1.1 Multitask ElasticNet

Regularizing regression models with lasso and ridge
penalties is elastic net linear regression. By learning
from lasso and ridge regression's flaws, the method
improves statistical model regularization [10].

4.1.2 Decision Tree

Decision trees are non-parametric supervised
learning algorithms for classification and regression.
Its tree structure contains a root node, branches,
internal nodes, and leaf nodes.

4.1.3 Random Forest

The popular supervised machine learning technique
Random Forest technique is used for classification
and regression. The more trees a forest has, the
stronger it is.

4.1.4 NLP

NLP algorithms are usually machine learning-based.
NLP may use machine learning to automatically learn
huge sets of rules by studying a corpus (like a book)
and generating a statistical conclusion.

4.1.5 Voting Stacking

How votes are aggregated is the main distinction from
stacking. Voting aggregates classifiers using user-
specified weights, while stacking uses a blender/meta
classifier as shown in Figure 3.
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Figure 3. Comparison of forecasting time (in seconds) and mean cross-validation error (MAE) for the evaluated models.
Lower values on both metrics indicate better predictive performance and computational efficiency.

5 EXPERIMENTAL RESULTS

To evaluate the developed system, a set of user
interface screens and prediction workflows were
tested. The system begins with a home screen that
introduces the prediction tool and serves as the entry
point for the user (Fig. 4). Following this, users are
directed to a registration interface that supports the
creation of user accounts and secure logins (Fig. 5).
Once registered, users access the main interface

where  model selection, data upload, and
configuration options are provided (Fig. 6). Here,
users can upload their input feature values — these
include system configuration details such as CPU
parameters, memory details, and software-related
metadata (Fig. 7). Upon submission, the system
processes the input through the pre-trained models
and generates performance predictions for the SPEC
CPU2017 benchmark, which are then displayed
clearly in the prediction output screen (Fig. 8).
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The prediction results demonstrate the feasibility and
accuracy of our regression models in estimating
benchmark performance without executing the full
test suite. Tree-based models like Decision Trees and
Random Forests consistently outperformed others in
terms of both prediction accuracy and execution time.
Importantly, the experimental interface enabled
seamless interaction with the pipeline and
visualization of results, validating both the backend
model's performance and the usability of the
developed platform.

6 CONCLUSIONS

This research looks at the possibility that supervised
learning can forecast how well parallel systems will
do on the SPEC benchmarks without actually running
the benchmarks themselves. Extensive testing has
proven that SPEC CPU2017 parallel and concurrent
performance predictions are feasible. We have used
grid search to discover the top ten most accurate
models after investigating how changing the
hyperparameters of the aforementioned four
estimators affected their performance. Then, we
compared the models' prediction delay and error
rates. The most effective models have been those
based on trees. They also find that smaller feature sets
yield better results when using RFECV for feature
selection. Additionally, in order to assess the
accuracy of our data-driven performance predictions,
we have examined learning curves of top tree-based
models. With just 10% of the historical data used as
the training set, we were able to demonstrate that this
dataset is sufficiently predictive, but with 70% or
more data, we were able to reduce 2-3 times the mean
error. This dataset is four years old. It would be
interesting to see how the dataset and fresh system
generations affect the figures. As the final stage, we

compared the final models' average goodness-of-fit
(R2) and MAPE on the put-aside test set. Tree-based
models (DT and RF) fared better overall and for
specific benchmarks in R2 and MAPE. An
explanation that stands out from the linear models is
that they fail to account for some non-linear
correlations (MT_EN). The fact that tree-based
models typically perform better when many types of
features are present is a probable reason, especially
when contrasted with the neural networks MLPs.
However, with thousands of samples or more, neural
networks may do better. Once again, it will be
fascinating to watch as the dataset grows and how
these results evolve. With just 29 attributes, Decision
trees and random forests may have MAPEs sub 4%.
Models with fewer features benefit from random
forests, which perform better with 10 features (1.5%
< MAPE < 4.5% over four suites). On the other hand,
decision trees are the way to go if interpretability is
your top priority. Our regression models are more
interpretable, have a better track record of properly
predicting the SPEC CPU benchmarks, and provide
more light on which software and hardware features
are most important than in earlier research. By
applying the RFE technique, we were able to
determine that just a small subset of the available
software and hardware attributes (less than five) are
crucial to our models, and that a mere ten features are
sufficient to produce very accurate predictions on this
dataset. Our study provides an effective performance
prediction, evaluation, and design space exploration
pipeline.
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