Revolutionizing Surveillance with Deep Learning-Powered Anomaly Detection and Real-Time Behavior Analysis

Shanmuga Shyam B.¹, Selva Jothi Murugan¹, Chairan Zibar L. Parisu², Sasmin Sasmin², Janani Vignesh³ and Ahmed Mohammed Abdukarem⁴

¹Department of Computer Science and Engineering, Chennai Institute of Technology, 600069 Chennai, Tamil Nadu, India
² Universitas Sulawesi Tenggara, 93121 Kendari, Indonesia

³Center for Advanced Multidisciplinary Research and Innovation, Chennai Institute of Technology, 600069 Chennai, Tamil Nadu, India

⁴Dijlah University College, 10021 Baghdad, Iraq

shanmugashyamb.cse2023@citchennai.net, selvajothii@gmail.com, chairanzibar@un-sultra.ac.id, sasmin@un-sultra.ac.id, jananiv.chem@citchennai.net, iahmed215@gmail.com

Keywords: Anomaly Detection, Real-Time Surveillance, CCTV Monitoring, Deep Learning, Convolutional Neural

Network (CNN), Recurrent Neural Network (RNN).

Abstract:

A novel approach for real-time anomaly detection within CCTV surveillance systems, taking the full power of advanced deep learning models to overcome the shortcomings of human-monitored surveillance. Traditional systems are largely dependent on human operators monitoring video feeds, often resulting in fatigue, distraction, and delayed responses. The use of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) in enhancing the automation of anomaly detection. CNNs have been specialized in extracting spatial features from video frames, identifying objects, scenes, and contextual patterns. RNNs, analyzing temporal dynamics, capture behaviors over time, hence detecting patterns that are indicative of abnormal activities. The fusion of these models allows the system to detect fights, accidents, or falls in real time. Moreover, the system provides a much lower rate of false positives, allowing the system to be much more accurate than traditional systems regarding anomaly detection. Real-time anomaly detection is crucial for applications in public safety, health care, traffic management, and retail, all allowing for faster response times and improving operational efficiency with a reduced reliance on human intervention. The discussion is about development, methodology, and potential applications and demonstrates the dramatic impact it had on public safety and operational efficiency.

1 INTRODUCTION

Surveillance in the interest of public safety is a matter that cannot be over emphasised, especially in places of high population density such as urban areas, hospitals, and transportation hubs. Traditional surveillance systems based on human operators are not very feasible. Human operators are prone to fatigue, distractions, and an inability to process large amounts of video data in real time [1]. Besides, human judgement sometimes makes mistakes in recognising unusual behaviours, especially when the environment is complicated or the volume of data is too large. As a response to these issues, there has been increased interest in the integration of more advanced technologies such as AI and deep learning to

automate the processes of anomaly detection. The capability to solve much of the problems of ordinary surveillance systems can be attained through the use of Convolutional Neural Networks and Recurrent Neural Networks of deep learning. This works well for processing visual information because they can automatically make features out of video frames of the frames, which can further allow the systems to recognize objects, scenes, and anomalous patterns [2]. RNNs are highly suitable for understanding the time evolution of video streams and excel in sequential data processing. Anomaly detection can therefore combine the best from both networks, offering a fully spatially and temporally aware system capable of capturing anomalies that play out over time, such as a fight suddenly erupting in a public area or a person collapsing in a health setting. Capacity for real-time anomaly detection significantly impacts public safety and operational efficiency [3]. Since automated surveillance systems can identify potential threats or anomalies in real time, human intervention is lessened while responses become faster and much more accurate. Such systems can also scale to different ranges of environments; hence they are adaptable and can be applied to use in the various sectors that include monitoring of the city, healthcare, traffic monitoring, and retail. The paper tries to establish a role that is given by automated surveillance on public safety issues, basing this discussion on the progresses that CNNs and RNNs technologies present.

2 DESIGNING STRONG ANOMALY DETECTION SYSTEMS

The designing of an anomaly detection system involves the integration of different technologies and methodologies to ensure both accuracy and efficiency. In the proposed system, the combination of CNNs and RNNs forms the foundation of a robust solution that is capable of performing spatial and temporal analysis of video data [4]. CNNs are very good at feature extraction from single frames, which is an important criterion for detecting objects, patterns, and activities within a frame. The network progressively captures more complex features that are essential in anomaly detection, such as human actions, movement patterns, and interactions between objects. CNNs also effectively reduce the amount of redundant data, hence leading to faster processing times [5]. RNNs are well designed for sequential data. That is why they are effective when analysing the temporal component of video data. Feeds of video surveillance consist of continuous frames wherein information from a scene given at one instant could be read at any instant. RNNs analyse sequences of frames and hence can pick up on abnormal patterns or behaviours evolved over time. For example, the RNN detects a person lingering in restricted areas or an unusual variation in driving pattern in that vehicle. By combining CNNs with RNNs, the system benefits from both spatial and temporal analysis, ensuring that both immediate and developing anomalies are detected [6]. Video data pre-processing is crucial to

increasing the model's accuracy. Optical flow, which is a method used in tracking objects and movements within the video, eliminates the noise background features and concentrates on key elements. It allows the system to concentrate on actions or movements or changes that might show anomalies, thus making it enhance its capability of detecting real threats instead of raising false positives. The system uses various optimisation techniques to ensure real- time performance. These include model pruning, which removes unnecessary weights and layers in the neural networks to simplify the models without losing their accuracy [7]. Then, quantisation, where floatingpoint weights are converted into lower precision formats, reduces computational costs. Finally, lightweight architectures are also explored with smaller and more efficient neural networks that have performance but operate on reduced computational resources. Additionally, the proposed system takes advantage of edge computing, bringing computation closer to the source of data, thereby minimizing latency and accelerating response time. Combining these methodologies, the proposed system for anomaly detection is designed to process video data in real time across different types of surveillance as shown in Figure 1.

The design of deep learning models for anomaly detection involves several essential components, beginning with the foundational concept of "Deep Learning Models for Anomaly Detection" and branching into diverse architectural paradigms such as Convolutional Neural Networks (CNNs), Faster Region-Based Convolutional Neural Networks (Faster R-CNNs), Recurrent Neural Networks (RNNs), and hybrid approaches — each representing a unique strategy within this domain.

Table 1 summarizes the key components and methodologies used in designing robust anomaly detection systems for surveillance.

It has significantly changed many sectors with the spreadof real-time anomaly detection systems. One of the most significant factors is knowing that anomalies quickly and correctly can improve public safety, enhance operational efficiency, and optimally allocate resources. Indeed, one of the leading applications of such systems has been in public areas, such as monitoring crowd behaviour at protest rallies, concerts, and sporting events. The system can detect signs of distress, aggression, or panic by analysing video feeds, allowing.

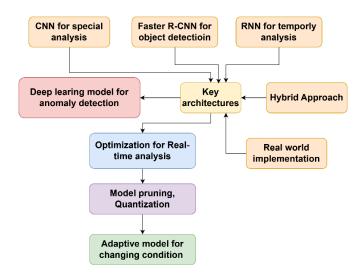


Figure 1: Flowchart of deep learning models for anomaly detection.

3 APPLICATIONS: TRANSFORMING PUBLIC SAFETY AND BEYOND

The system is designed to provide early warnings, enabling authorities to take action before situations escalate into full-blown emergencies [13]. For example, during a crowded concert, it can detect the early signs of a fight and instantly alert security personnel, allowing them to respond quickly and reduce the risk of harm. In a similar way, continuous monitoring of traffic patterns in urban environments can identify anomalies such as potential collisions, vehicles driving in the wrong direction, or sudden stops, enabling prompt interventions to prevent accidents and enhance public safety. Anomaly detection-based traffic management systems will offer instantaneous alerts to the authorities to respond in time if an accident takes place and hence optimise the flow of traffic. The tools may be integrated into traffic control systems in order to prevent congestion and minimise accidents while ensuring safe use of roads [14]. In other similarities, the systems have been used in transportation networks for monitoring the movement of vehicles and pedestrians with the intention of accident prevention, threat detection, and optimisation of flow. In the healthcare system, anomaly detection systems are a guarantee of safety to patients. A system installed in a hospital could monitor the patient movements in suchfacilities and send alerts to care providers in cases of falls, wandering, or entry into the restricted zones. Such alerting is timely and assists healthcare providers in taking interventions in time for better patient care and

outcomes. Nursing homes could utilise real-time monitoring for at-risk identification, including patients with dementia, for safety without constant human monitoring. This too benefits the retail environments at their peak. It can enhance customer service besides improving security by tracking what has been happening with customers so that shoplifting or unusual activities are caught. These systems also optimise the activities of stores by monitoring people flow and real-time changing of inventory or staff in a store [15]. In all these industries, the real-time features of anomaly detection systems make a big difference in terms of safety, efficiency, and resource allocation. Since anomalies are detected and responded to quickly, the threats are contained before they get out of hand, and these systems are necessary for modernsurveillance.

Figure 2 presents a systematic framework for anomaly detection in surveillance systems. It begins by categorizing anomalies into distinct groups, including suspicious individuals, crowd behavior anomalies, vehicle-related irregularities, environmental deviations. Each category serves as a foundation for identifying specific patterns requiring detection. The process progresses to applying deep learning methodologies, which enhance the anomaly detection system's accuracy and efficiency. Advanced preprocessing techniques are integrated, leveraging large-scale and diverse datasets to ensure robust feature extraction and model training. This structured approach emphasizes modularity, enabling scalability across different surveillance scenarios. By addressing unique anomaly types, the system adapts dynamically to evolving real-world challenges.

Table 2 outlines the key application areas for real-timeanomaly detection systems.

Table 1: Key components and methodologies in anomaly detection systems.

Component	Details	Benefits	References
Convolutional Neural Networks (CNNs)	Extract spatial features from video frames, identify objects, scenes, and patterns	Improved accuracy in object and scene detection, reduced redundant data	[8]
Recurrent Neural Networks (RNNs)	Analyze temporal dynamics and sequential data	Detect evolving patterns over time (e.g., lingering or unusual behaviour)	[9]
Video Preprocessing Techniques	Use optical flow and other methods to track movements and filter noise	Enhanced focus on key actions, reduced false positives	[10]
Model Optimization	Techniques like pruning, quantization, and lightweight architectures	Reduced computational costs, real- time performance on edge devices	[11]
Edge Computing	Perform computation closer to data sources	Lower latency, faster response times	[12]

Table 2: Applications of real-time anomaly detection in diverse sectors.

Sector	Application	Details	Benefits	References
PublicSafety	Crowd behaviour monitoring, fight detection	Identifyingdistress, panic, or aggression	Prevent escalation, improve response time	[16]
Traffic Management	Accident detection, wrong- way driving, congestion	Analysing traffic patterns for anomalies	Reduce accidents, optimize traffic flow	[17]
Health care	Monitoring patient falls, restricted area entry	Tracking patient movements	Ensure safety, enable timely interventions	[18]

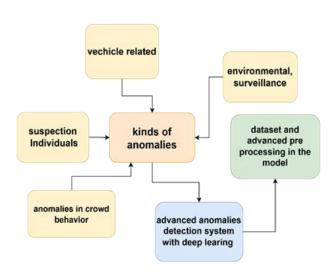


Figure 2: Structured approach for anomaly detection in surveillance.

4 CHALLENGES AND SOLUTIONS IN ANOMALY DETECTION

the real-time anomaly systemsprovide several benefits, several challenges need to be addressed in order to ensure that such systems operate to their full potential. The first of these challenges is the computational complexity in handling large video feeds in real time. Deep learning models, particularly CNNs and RNNs, are computationally expensive as they consume many resources for the analysis of video frames and temporal sequences. This can be challenging in the resource- constrained environment of, for example, edge devices or remote monitoring systems. To address this, different optimisation techniques such as pruning and quantisation are being used, which reduce model size and computational requirements with no loss in accuracy [19]. Edge computing is further utilised to process data at the local level, avoiding latency and minimising the amounts of data that have to be transferred to a server at a central location. Data scarcity and imbalance present another challenge. An anomaly is, by definition, not frequently occurring; training deep learning models on imbalanced datasets might sometimes result in poor performance of the model. The model may become biased to detect normal behaviour and ignore the rare but important anomaly [20]. Synthetic data generation techniques are used to create artificial anomalies, thus balancing the dataset and enhancing the ability of the model to detect rare events. Semisupervised learning approaches are also explored to leverage both labelled and unlabelled data, further enhancing the model's accuracy and robustness. There are ethical concerns in the deployment of anomaly detection systems, specifically those concerning privacy and surveillance misuse [21]. It is, therefore, essential that the collection of data will be used ethically and responsibly so that the system can gain the trust from the public and long- term acceptance. Additionally, anomaly detection systems have to balance accuracy with latency in critical applications such as health care and traffic management. It requires optimised models that should balance these factors so theresponses are correct and quick in real time.

Table 3 addresses the challenges in deploying anomaly detection systems and proposed solutions.

5 FUTURE DIRECTIONS: DEVELOPMENT OF SMARTER SURVEILLANCE SYSTEMS

Thus, future progress in anomaly detection in surveillance systems will depend on advancements in AI and deep learning technologies. For example, performance with sequential data analysis appears robust in more sophisticated models like transformers, which could be used to advance the state of anomaly detection. However, development of self-supervised learning methods, capable of learning based on unlabelled data, may bring some further benefits toward advancing anomaly detection without strong dependence on large labelled datasets. Multimodal data with video, audio, and sensor data can also integrate to enhance the accuracy in detection [25]. For instance, it can be a system with visual cues integrated with audio analysis, which can actually detect not only visual anomalies but also auditory cues, such as screams or sirens commonly associated with emergency situations. The fusion of these kinds of modalities would enable a more comprehensive analysis of the environment, thereby boosting overall detection capabilities [26]. As these systems advance further, their applications are going to spread even more, allowing for versatility and reliability across different fields. Automating anomaly detection helps reduce the necessity of always watching, hence more precise and timely intervention. There is tremendous potential in this transformation promising to bring about safer, more efficient, and responsive public space [27]. In conclusion, deep learning-based realtime anomaly detection powered by CNNs and RNNs represents a major shift in the development of automated surveillance.

Such systems can hence respond more quickly and powerfully to threats and anomalies to enhance safety and operationally efficient activity across divergent sectors. The prospects for the advancement of anomaly detection in surveillance systems, despite the serious challenges entailed by computation requirements, data imbalance, and other problems of data privacy, are bright.

Ί	able 3: Challenges and	d proposed sol	lutions for anon	naly detection sy	ystems.

Challenge	Details	ProposedSolution	References
Computational Complexity	Handling large videofeeds in real time	Optimization techniques likepruning, quantization, and edge computing	[22]
Data Scarcity and Imbalance	Lack of sufficient anomalies for training	Synthetic datageneration, semi- supervised learning	[23]
Privacy and Ethical Concerns	Risk of misuse in continuous monitoring systems	Transparent data policies,adherence to regulations (e.g., GDPR)	[24]
Advanced AI Models	Incorporating transformer models for sequential data analysis	Improved anomaly detection with higher accuracy	[28]
Self- Supervised Learning	Leveragingunlabelled data for anomaly detection	Reduced dependency onlabelled datasets	[29]
Multimodal Data Integration	Combining video, audio, and sensor data	Comprehensive anomaly detection (e.g., combining screams with visual cues)	[30]
Edge Computingand Local Processing	Processing closer to data sources	Reduced latency, faster response times	[31]

Table 4: Future advancements in smarter surveillance for anomaly detection.

Future Direction	Details	PotentialBenefits	References
Advanced AI Models	Incorporating transformer models for sequential data analysis	Improved anomaly detection with higher accuracy	[28]
Self- Supervised Learning	Leveraging unlabeled data for anomaly detection	Reduced dependency onlabelled datasets	[29]
Multimodal Data Integration	Combining video, audio,and sensor data	Comprehensive anomaly detection (e.g., combining screams with visual cues)	[30]
Edge Computingand Local Processing	Processing closer to data sources	Reduced latency, faster response times	[31]

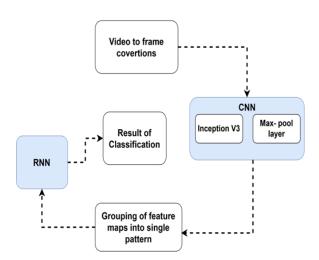


Figure 3: Workflow of video classification using CNN and RNN.

Figure 3 depicts the video classification pipeline. Video frames are processed through a CNN (Inception V3 with max-pooling layers) for feature

extraction, followed by an RNN for temporal analysis. The pipeline outputs the final classification based on spatial and sequential patterns

6 CONCLUSIONS

This paper proposes a deep learning-based framework for real-time anomaly detection, which overcomes the shortcomings of traditional surveillance systems. Traditional CCTV systems rely on human operators to monitor video feeds, which is inefficient and prone to errors. The proposed system combines CNNs for spatial feature extraction and RNNs for temporal sequence analysis, providing a comprehensive approach to anomaly detection. The use of CNNs allows the system to detect the spatial features in the video with high accuracy, like fights, accidents, or falls. On the other hand, RNNs enable the detection of temporal patterns and recognition of events changing over time, like escalating conflicts or continuous accidents. The system has been robust and scalable in experimental testing, showing its ability to detect anomalies in various real-time scenarios such as public safety, healthcare, and traffic management. The real-time capabilities of the system would ensure that alerts are set off at the right instance, which enables immediate action based on necessity. This would facilitate better security and resource utility since false alarms are minimal, and operators are alert only to actual threats. Despite its promising performance, the framework still has some limitations. Scalability and noise sensitivity are challenges, especially for large-scale data coming from multiple cameras in dynamic environments. Future research should be directed towards integrating multi-camera systems in order to improve the coverage and accuracy of the system. In addition, to achieve reduced dependency on labelled data and increased adaptability toward the new environment, it will be considered reducing unsupervised learning techniques. Furthermore, data processing would also be donecloser to the source, based on leveraging edge computing, to further enhance system performance and latency.

REFERENCES

- [1] L. Sharara et al., "A real-time automotive safety system based on advanced AI facial detection algorithms," IEEE Transactions on Intelligent Vehicles, May 2023.
- [2] T. F. Bukht, H. Rahman, M. Shaheen, A. Algarni, N. A. Almujally, and A. Jalal, "A review of videobased human activity recognition: Theory, methods and applications," Multimedia Tools and Applications, vol. 2024, pp. 1–47, Jul. 2024.
- [3] K. Rezaee, S. M. Rezakhani, M. R. Khosravi, and M. K. Moghimi, "A survey on deep learning-based real-time crowd anomaly detection for secure distributed video surveillance," Personal and Ubiquitous Computing, vol. 28, no. 1, pp. 135–151, Feb. 2024.
- [4] K. Alomar, H. I. Aysel, and X. Cai, "RNNs, CNNs and Transformers in human action recognition: A survey and a hybrid model," arXiv preprint arXiv:2407.06162, Jun. 2024.
- [5] A. Diro, S. Kaisar, A. V. Vasilakos, A. Anwar, A. Nasirian, and G. Olani, "Anomaly detection for space information networks: A survey of challenges, techniques, and future directions," Computers & Security, vol. 139, p. 103705, Apr. 2024.
- [6] A. A. Musa, A. Hussaini, W. Liao, F. Liang, and W. Yu, "Deep neural networks for spatial-temporal cyber-physical systems: A survey," Future Internet, vol. 15, no. 6, p. 199, May 2023.

- [7] Y. He and L. Xiao, "Structured pruning for deep convolutional neural networks: A survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Nov. 2023.
- [8] D. Chakraborty, W. Chiracharit, and K. Chamnongthai, "Semantic scene object-camera motion recognition for scene transition detection using dense spatial frame segments and temporal trajectory analysis," IEEE Access, Feb. 2024.
- [9] R. Khaldi, A. El Afia, R. Chiheb, and S. Tabik, "What is the best RNN-cell structure to forecast each time series behavior?," Expert Systems with Applications, vol. 215, p. 119140, Apr. 2023.
- [10] W. Qin, B. Zou, X. Li, W. Wang, and H. Ma, "Microexpression spotting with face alignment and optical flow," in Proc. 31st ACM Int. Conf. on Multimedia, Oct. 2023, pp. 9501–9505.
- [11] U. Bibi et al., "Advances in pruning and quantization for natural language processing," IEEE Access, Sep. 2024.
- [12] J. Rane, S. K. Mallick, O. Kaya, and N. L. Rane, "Artificial intelligence, machine learning, and deep learning in cloud, edge, and quantum computing: A review of trends, challenges, and future directions," Future Research Opportunities in Artificial Intelligence Industry, vol. 4, pp. 2–, 2024.
- [13] I. E. Nizza et al., "Examining change in the mental health of young people with epilepsy following a successful psychological intervention," Clinical Child Psychology and Psychiatry, vol. 29, no. 4, pp. 1400– 1416, Oct. 2024.
- [14] Y. Berhanu, E. Alemayehu, and D. Schröder, "Examining car accident prediction techniques and road traffic congestion: A comparative analysis of road safety and prevention of world challenges in lowincome and high-income countries," Journal of Advanced Transportation, vol. 2023, no. 1, p. 6643412, 2023.
- [15] R. S. Jebur, M. H. B. M. Zabil, L. K. Cheng, and D. A. Hammood, "Image denoising in deep learning: A comprehensive survey," EETJ, vol. 1, no. 1, pp. 1– 12, Jun. 2024.
- [16] G. A. Carlson et al., "Narrative review: Impairing emotional outbursts: What they are and what we should do about them," Journal of the American Academy of Child & Adolescent Psychiatry, vol. 62, no. 2, pp. 135–150, Feb. 2023.
- [17] W. Du, A. Dash, J. Li, H. Wei, and G. Wang, "Safety in traffic management systems: A comprehensive survey," Designs, vol. 7, no. 4, p. 100, Aug. 2023.
- [18] T. Shaik et al., "Remote patient monitoring using artificial intelligence: Current state, applications, and challenges," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, no. 2, p. e1485, Mar. 2023.
- [19] T. G. Mondal, J. Y. Chou, Y. Fu, and J. Mao, "A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems," Smart Structures and Systems, vol. 32, no. 3, pp. 179–193, Sep. 2023.

- [20] G. Pang, C. Shen, L. Cao, and A. van den Hengel, "Deep learning for anomaly detection: A review," ACM Computing Surveys, vol. 54, no. 2, pp. 1–38, Mar. 2021.
- [21] J. Madeira, "Ethical considerations in deploying IoT sensors for anomaly detection in autonomous vehicles," Journal of AI-Assisted Scientific Discovery, vol. 3, no. 2, pp. 1–3, Jun. 2023.
- [22] H. F. Jameel, "Real-time sitting correction using Arduino-based ultrasonic sensor at the workplace," JT, vol. 6, no. 4, pp. 19–26, Dec. 2024.
- [23] A. Hakami, "Strategies for overcoming data scarcity, imbalance, and feature selection challenges in machine learning models for predictive maintenance," Scientific Reports, vol. 14, no. 1, p. 9645, Apr. 2024.
- [24] V. R. Boppana, "Data ethics in CRM: Privacy and transparency issues," MZ Computer Journal, vol. 4, no. 2, Nov. 2023.
- [25] Z. Zhang, S. Zhang, D. Ni, Z. Wei, K. Yang, S. Jin, G. Huang, Z. Liang, L. Zhang, L. Li, and H. Ding, "Multimodal sensing for depression risk detection: Integrating audio, video, and text data," Sensors, vol. 24, no. 12, p. 3714, Jun. 7, 2024.
- [26] Q. Tang, J. Liang, and F. Zhu, "A comparative review on multi-modal sensors fusion based on deep learning," Signal Processing, p. 109165, Jul. 3, 2023.
- [27] A. Diro, S. Kaisar, A. V. Vasilakos, A. Anwar, A. Nasirian, and G. Olani, "Anomaly detection for space information networks: A survey of challenges, techniques, and future directions," Computers & Security, vol. 139, p. 103705, Apr. 1, 2024.
- [28] P. Yan, A. Abdulkadir, P. P. Luley, M. Rosenthal, G. A. Schatte, B. F. Grewe, and T. Stadelmann, "A comprehensive survey of deep transfer learning for anomaly detection in industrial time series: Methods, applications, and directions," IEEE Access, Jan. 2, 2024.
- [29] H. Taherdoost, "Beyond supervised: The rise of self-supervised learning in autonomous systems," Information, vol. 15, no. 8, p. 491, Aug. 16, 2024.
- [30] K. U. Duja, I. A. Khan, and M. Alsuhaibani, "Video surveillance anomaly detection: A review on deep learning benchmarks," IEEE Access, Nov. 5, 2024.
- [31] S. Nair, "Beyond the cloud-unraveling the benefits of edge computing in IoT," International Journal of Computer Engineering and Technology, vol. 14, pp. 91–97, 2023.