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Abstract: Despite using encryption protocols such as HTTPS, web page fingerprinting poses significant privacy risks, 

even when traffic analysis is used to identify specific web pages visited by users. Adversaries can exploit 

packet-level characteristics like packet length to gather information about user behaviour and preferences 

without decrypting traffic. This paper uses encrypted traffic packet lengths to distinguish webpages based on 

privacy-driven fingerprinting – FineWP class webpages based on packet length sequences in a bidirectional 

client-server interaction. Our results demonstrate that FineWP outperforms traditional and deep learning-

based methods regarding runtime and accuracy. Based on our experimental results, FineWP demonstrates 

robust and privacy-protected fingerprinting capabilities for fine-grained webpage identification, effectively 

managing large-scale datasets consisting of numerous webpages and substantial background traffic. We 

propose an innovative webpage fingerprinting method that exclusively utilizes encrypted packet length 

information, achieving an impressive accuracy of 94.3% while rigorously preserving user privacy. 

Additionally, our lightweight and efficient technique exhibits strong resistance against sophisticated traffic 

analysis attacks, significantly outperforming existing deep learning-based fingerprinting approaches by 

approximately 11.2% in terms of accuracy, computational efficiency, and resilience under realistic network 

conditions. These findings highlight the potential of FineWP for secure, scalable, and practical webpage 

fingerprinting applications.

1 INTRODUCTION 

In addition, fine-grained webpage fingerprinting also 

poses privacy risks by identifying specific webpages 

on a website that are visited, enabling further 

exploitation of personal data [1]. Unlike traditional 

website fingerprinting, which identifies a domain's 

name, fine-grained fingerprinting identifies the page 

that was accessed within a domain. Users' interests, 

preferences, and activities can be inferred with such 

detail. A news website, for example, could show 

which articles users have read, indicating their 

interests or political beliefs. Similarly, an e-

commerce platform could reveal their purchasing 

habits, preferences, and preferences for products. 

Since the Internet and web-based services have 

become more prevalent, it has become increasingly 

important to ensure Privacy and security in online 

communication. By analyzing traffic, adversaries are 

capable of inferring sensitive information about users 

and website interactions, such as their activities. 

Attackers can determine which web pages are being 

accessed even when communications are encrypted 

through packet lengths, timings, and other metadata 

provided by the traffic. It is called web page 

fingerprinting because it uses encrypted traffic 

patterns to identify websites [2]. 

In page fingerprinting, an adversary attempts to 

identify a user's web pages, even when their contents 

are encrypted, by analyzing their traffic. Web traffic 

is encrypted with cryptographic protocols such as 

HTTPS. Still, the size and patterns of packets 

between a client and a server can reveal a lot about 

what is being communicated. Even with encryption, 

packet-level characteristics remain visible to 

observers, creating vulnerabilities for attackers. 

Through the combination of advanced machine 

learning techniques and statistical analysis 

techniques, we aim to develop a model that can 

accurately fingerprint webpages using packet length 

distributions. The purpose of this research is to 

address the increasing privacy concerns surrounding 

encrypted communication and explore possible 

countermeasures against fingerprinting attacks. 
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Despite the need for secure and efficient web 

communication, this study balances Privacy with 

Privacy. Increasingly, there are risks associated with 

web page fingerprinting that need to be understood 

and mitigated to enhance privacy protections for 

users. A number of instances have arisen where 

encryption mechanisms were not implemented 

correctly (such as bugs) or where man-in-the-middle 

attacks were conducted [3]. In addition to brute-force 

attacks, there are plain text disclosures [4] and 

backdoors [5], which can enable unauthorized access 

to private data. Author [6] proposed quantum 

cryptography as a way of enhancing data utility, but 

it compromises data utility. As long as homomorphic 

encryption is used, both data utility and Privacy can 

be maintained [7]. Data can be encrypted and still be 

used for calculations and computations using this 

method, providing some data utility. 

Additionally, it allows for secure database 

searches, which can enhance Privacy in many cases. 

Many approaches are available, such as those 

proposed by [8], which use smaller keys and 

ciphertext. In the case that uses simpler and faster 

implementations  [9], outsourced computing power 

may improve performance, but there is still a 

 problem [10]. Improvements in this area are clearly 

motivated. In spite of this, privacy metrics and 

anonymization are the main focus of our article since 

they are also expected to improve the utility of data 

when compared to standard encryption. 

It is frequently the case that PETs and Privacy 

Metrics are associated with offline data, as well as the 

transformation and publication processes involved. 

As a result, even anonymized data may be vulnerable 

to linkage attacks if they are not properly handled. It 

was estimated that 97% of 54,805 registered voters 

could be identified by their birthdate and zip code, 

according to Sweeney [11]. We are increasingly 

relying on cloud computing, along with its associated 

services and applications. Considering the amount of 

data generated and accumulated online each day, the 

implications are significant. Data privacy should, 

therefore, be a fundamental requirement of cloud 

services and offline processing. 

2 LITERATURE REVIEW 

2.1 Basic Website Fingerprinting 

A website fingerprinting attack analyses packet sizes 

and directions to identify the content accessed by a 

client, even if the traffic is encrypted [12]. There are 

a variety of patterns of network traffic generated by 

different websites and web pages, even if the content 

of that traffic is encrypted. Even when encrypted 

traffic is hidden, these attacks exploit the fact that 

different websites generate distinctive network traffic 

patterns. Users' Privacy is at risk since sensitive 

information about their browsing habits and interests 

can be revealed [13]. 

Despite anonymizing networks like Tor, which 

are designed to protect user privacy, passive 

eavesdroppers can perform these attacks [14], [15]. 

The term local passive eavesdropper refers to an 

attacker who monitors traffic between a user and the 

network's first hop without actively interfering with 

it. Local eavesdroppers can still observe traffic 

patterns even though Tor is an anonymization 

network that encrypts traffic between users and the 

Tor network. Tor users can be anonymized by website 

fingerprinting attacks because of this. As a first step 

toward website fingerprinting, statistical features of 

traffic traces were used to distinguish between 

different websites [16] - [18]. The number and size of 

average packets, as well as the time between packet 

arrivals, were all considered in analyzing these 

features. A website fingerprint can be created by 

analyzing these statistical features to identify which 

page a user is visiting by analyzing these 

fingerprints [19]. It was surprising how effective 

these early approaches were at anonymizing users 

despite their simplicity. 

2.2 Advanced Website Fingerprinting 
Techniques 

It has been shown that deep learning models, 

specifically convolutional neural networks (CNNs), 

are highly accurate for fingerprinting 

websites [20], [21]. Unlike other neural networks, 

CNNs are particularly effective at analyzing 

sequential data, such as network traffic patterns. 

Attackers can create an algorithm that can accurately 

identify which website a user is visiting, even when 

the traffic is encrypted, by training a CNN on data 

from different websites. In comparison to traditional 

statistical approaches, deep learning-based 

approaches are significantly more accurate. 

The use of graph neural networks (GNNs) 

improves fingerprinting accuracy by capturing 

contextual relationships between flows in page 

loading [22], [23]. In the load of a website, graph-

structured data is analyzed by GNNs, which are types 

of neural networks. The graph representation of 

traffic allows GNNs to capture complex 

dependencies and interactions among different parts 

of the traffic by representing them as nodes and 
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edges. By doing so, traffic can be analyzed more 

precisely, resulting in more accurate fingerprinting. 

Transformers are used for fine-grained analysis 

of webpages to extract semantic vectors from 

raw traffic [24]. Transforms are a type of neural 

network that is particularly adept at analyzing 

sequential data, including network traffic patterns. A 

transformer can be trained on a large dataset of traffic 

traces from different websites in order to extract 

semantic vectors representing the unique 

characteristics of each. Even when traffic is 

encrypted, these semantic vectors can assist in 

identifying which webpage a user is visiting. If the 

objective is to distinguish between web pages on a 

single website, fine-grained fingerprinting is 

especially effective. 

2.3 Importance of Packet Length 

An important feature of traffic analysis is packet 

length because it provides information about the 

content being transmitted and the actions performed 

by users [12]. Users may send a text message when 

their packets are short, while they may download a 

file when their packets are large. Inferring 

information about user behaviour without decrypting 

packets is possible through packet length analysis. 

A website or webpage can be fingerprinted even 

with encryption because packet-length information 

can be seen by network observers [12]. Protocols such 

as TLS encrypt network traffic but not packet headers 

that indicate packet length; these are typically left 

unencrypted. Even when packets are encrypted, 

network observers can see the packet length. Using 

packet length for website fingerprinting is a valuable 

feature because it can be used to identify which 

websites and web pages a user is visiting without 

having to decrypt the traffic [25]. When attackers 

analyze packet length sequences, they can determine 

which websites and web pages users are visiting by 

analyzing packet length sequences [26]. Network 

traffic patterns vary among websites and web pages, 

as do packet length patterns. These fingerprints can 

identify a user's visit to a website by analyzing 

patterns in packet lengths. An attacker can then use 

these fingerprints to determine which website is being 

visited by a user [27]. 

3 METHODOLOGY 

The use of traffic analysis to interpret encrypted SSL 

packets was first demonstrated [28]. There are three 

main categories of work in this field: traffic analysis 

for encrypted connections in general, website 

fingerprinting on anonymization networks 

specifically, and countermeasures against these 

attacks. 

3.1 Traffic Analysis on Encrypted 
Connections 

In 1988, [29] described the first implementation of a 

website fingerprinting attack. An analysis of file sizes 

was performed in order to identify which particular 

file was accessed on a known server over an SSL 

connection. In his study [30], the author found that it 

was difficult to identify individual websites when the 

server was unknown, such as when using an 

anonymization proxy. A metric for the similarity 

between observed and pre-collected traffic patterns 

was proposed by [31] to detect if a website from a 

given blocklist had been accessed over an SSL-

protected connection so that websites of slightly 

different sizes could be matched. This early work 

indicates that website fingerprinting is generally 

possible based on the size of the total resources.  

3.2 WFP in Anonymization Networks 

In addition to JAP and Tor, it has applied 

fingerprinting to OpenSSH, OpenVPN, Stunnel, and 

Cisco IPsec-VPN. In a study involving 775 index 

pages and this classifier, their recognition rate for a 

single-hop system was over 90%, but for JAP, only 

20%, and Tor, only 2.45%. As a result, Tor was 

regarded as secure against website fingerprinting 

until 2011, when Herrman et al. increased Tor's 

recognition rate to alarming levels using Support 

Vector Machines (SVMs): in the dataset provided by 

Herrman et al., more than 54% of URLs were 

correctly recognized when accessed over Tor. 

Further, the authors evaluated website fingerprinting 

in an open-world situation. That is, they identified a 

few (monitored) pages from thousands of unknown, 

random pages that the classifier had never seen 

before. In this case, 73% of the candidates were 

recognized. These results spawned a significant 

amount of interest in the research community. 

3.3 Countermeasures Against WFP 

It has been suggested that several countermeasures 

can be taken to prevent website fingerprinting attacks. 

The first study of padding as a countermeasure 

involved. By using padding, Tor generates 

indistinguishable cells of a fixed size. Padding 

operates on a packet-by-packet basis, whereas traffic 
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morphing adapts a complete packet trace into another 

packet trace. A practical test of traffic morphing, 

however, showed that it was ineffective as a defence 

against WFP. 

Data flow is created through a number of 

countermeasures. By loading a random website 

alongside the actual desired website, background 

noise is created, obscuring the actual transmission. If 

traffic overhead is to be kept reasonable, this 

approach does not provide enough protection against 

website fingerprinting. Due to BuFLOs (Buffered 

Fixed-Length Obfuscation), adversaries cannot 

collect as much information as before since packets 

are sent at fixed intervals and are fixed in size. 

BuFLO has several disadvantages, including an 

overhead in bandwidth and time, revealing the total 

transmission size in certain conditions, and being 

unable to adapt to congestion.  

3.4 Building Webpage Fingerprinting 

This section describes how to build webpage 

fingerprints using modelling. 

3.4.1 Traffic Preprocessing 

A five-tuple representation of traffic is used in the 

first step: (srcIP, dstIP, srcPort, dstPort, protocol 

(TCP/UDP)), where srcIP indicates the client's IP 

address, dstIP indicates the server's IP address, 

srcPort indicates the client's port number, dstPort 

indicates the server's port number, and protocol 

indicates the communication protocol. Following 

that, only flows belonging to the same website are 

saved. If the jd.com string appears in the Server Hello 

message, we check the Service Name Indication 

(SNI) field and then pass the flow on. In addition, we 

consider only one flow for each webpage, which 

represents client-server communication. A flow that 

interacts with advertisers or another proxy server is 

not considered. 

After removing the TCP retransmission packets, 

we test the network for retransmissions. 

3.5 Feature Extraction 

The cumulative sum of packet lengths represents the 

loading process of a webpage.  

In the following webpage flow 𝐹 = (𝑝1, … . , 𝑝𝑁),,
𝑝𝑖 > 0 represents the downlink packet, and 𝑝𝑖 =
 0 represents the uplink packet. Packets are 

represented cumulatively as 𝐴(𝐹) = (𝑎1, … , 𝑎𝑁)
where 

𝑎𝑖 = {
𝑝𝑖 𝑖𝑓 𝑖 = 1;

𝑎𝑖−1 + 𝑝𝑖 𝑖𝑓 1 < 𝑖 ≤ 𝑁.
 (1) 

A series of intervals is then created based on the 

cumulative packet length. 

𝑅 = {(𝑟1, 𝑟1+𝑚), … , (𝑟𝑛, 𝑟𝑛+𝑚)}.     (2)

A list of intervals is then created by hashing them 

𝐼 = (𝑣1, … . , 𝑣𝑛),                          (3)

where 

𝑣𝑖 = ℎ𝑎𝑠ℎ(𝑟𝑖 , 𝑟𝑚+𝑖).  (4) 

Then, we determine how many packets fall within 

each interval for the sequence 𝐴(𝐹). When (𝑟𝑖 , 𝑟𝑖 +
1) contains the highest number of packets. Its hash

value is 𝑣𝑚𝑎𝑥 and 𝑘𝑚𝑎𝑥 Contains the highest number

of packets. Flow F's feature set is represented by

(𝑣𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥).

In our approach to webpage fingerprinting, we 

call it WPF. 

Due to the less variable nature of objects, it's more 

important to monitor an object's size rather than its 

packet size. Multi-connection TCP and HTTP 

pipelining results in the interleaving of data from 

different objects. Objects and data blocks cannot be 

associated easily. HTTP transmissions are not 

random, fortunately. Most web servers typically 

transfer data in chunks. All packets that transfer data 

are sized according to the path MTU, with the 

exception of the last packet that transfers the last 

chunk of data. A data chunk's last packet size can be 

used to estimate the size of an object since they are 

specific to that object. A packet that changes its order 

tends to be an intermediate packet of several other 

packets. Inconsistencies in fingerprints are reduced 

by filtering the intermediate packets. 

The fingerprints of webpages can be differentiated 

using k-nearest Neighbor (k-NN) as a classifier. We 

can directly train k-NN classifiers with fingerprints 

since the length and dimensions are fixed. 

3.6 Traffic Path Construction 

The classification of encrypted traffic follows a 

structured client-server communication model that 

unfolds across three distinct stages. Regardless of 

how the encrypted traffic is generated, the primary 

objective of classification is to accurately determine 

its type – such as the specific application or domain it 

pertains to. This process relies on a bidirectional 

exchange between clients and servers, allowing for 

the discriminative identification of different 

encrypted traffic categories. Typically, the interaction 
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begins with clients initiating connections by sending 

requests to servers in order to access specific 

resources. The entire classification mechanism is 

built around this interactive exchange and consists of 

three key phases that guide the recognition and 

categorization of encrypted network flows: 

▪ Handshake Stage. During this stage, packets

are transmitted alternately uplink and

downlink. In this stage, packet lengths,

numbers, and directions for packets generated

for the same transmission protocol are very

similar.

▪ Uplink-Dominant Stage. This stage is

primarily used for transmitting uplink packets.

Servers are normally invited to cooperatively

improve data transmission efficiency by

sending uplink packets containing control

instructions.

▪ Downlink-Dominant Stage. During this stage,

packets from the downlink are transmitted.

Downlink packets carry client content.

Flow features for n packets of a session are 

represented using a similar method. There are m flow 

features in each. 𝑖𝑡ℎ, and 𝑥𝑖 denotes the number of 

flows in each 𝑖𝑡ℎ. XIJ is the ITH packet's JTH feature, 

which is represented by the matrix X, where X 

represents the flow features of a session. 

𝑋 = [𝑥1, … , 𝑥𝑖 , … , 𝑥𝑚] = [

𝑥11 ⋯ 𝑥1𝑚

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

] .  (5) 

Session interactions between the client and server 

are shown in Figure 1. 

Figure 1: Session interaction sequence between client and 

server. 

The handshake is followed by data transmission 

between the two parties. Packets have incoming or 

outgoing directions denoted by 𝑑𝑖. There is one

direction in which the client sends packets and one 

direction in which the client receives packets. During 

a session, packets are directed as follows: 

𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑛)𝑇 ,    𝑑𝑖 ∈ {1, −1}.  (6) 

An arrival timestamp is associated with each 

packet, and the interval between packets is indicated 

by 𝑡𝑖−1 = 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖 − 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑖−1, 𝑖 ≥ 2.

Maintaining consistency in sequence length requires 

setting the interval time feature of the first packet to 

zero. In that case, a session's packet intervals are as 

follows: 

𝑇 = (0, 𝑡1, 𝑡2, … , 𝑡𝑛−1)𝑇,   𝑡𝑖 ∈ 𝑅.  (7) 

A packet's length is also expressed as 𝑙𝑖.

Consequently, packet length sequences can be 

obtained: 

𝐿 = (𝑙1, 𝑙2, … , 𝑙𝑛)𝑇,   𝑙𝑖 ∈ 𝑍,  (8) 

It can be seen from (5),(6),(7),(8) that the number of 

flow features in a session is 𝑋 = [𝐷, 𝑇, 𝐿], which 

implies that m flows three times in a session 

A session is more accurately represented when 

one uses more packets n. To achieve early 

classification, it is therefore necessary to use a 

minimal number of packets. The path signature 

algorithm is applied to our method by treating the 

feature matrix as a three-dimensional traffic path. 

𝑃𝑑,𝑡,𝑙 = {𝑋}, 𝑋 = [𝐷, 𝑇, 𝐿].  (9) 

3.7 Data Collection 

The implementation of web page fingerprinting 

requires the collection of real-world traffic on the 

same website. Various commodities in Jingdong 

(known in China as JD) have similar shopping 

interfaces. As an experimental website, JD intends to 

classify its pages (shopping interfaces) according to 

commodities. 

Wireshark was used on the Ali cloud ECS server 

to capture all data. A major cloud provider in China, 

ALI Cloud has infrastructure in every province. The 

virtual traffic generated by real users accessing 

webpages is simulated by a total of six Ali cloud ECS 

servers running Windows. Among these eight 

servers, four are located in North China (North1, 

North2, North3, North4) and two in East China 

(East1, East2). Different cloud servers were used to 

capture traffic on JD's website. Our experiment will 

be conducted using Chrome version 67.0.3396.99. 

YH represents Yahoo, one of the world's most 

popular websites. Each webpage has been visited by 

40 individuals randomly selected from 12 categories 

(also called labels2).  

Our selection of representative websites is based 

on the following reasons: 1) they are highly visited 

daily, and 2) their browsing behaviours can provide 

an adversary with information about a victim's 

preferences. 
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4 RESULTS AND DISCUSSION 

The five classifiers are illustrated in Figure 2 

according to their accuracy and runtime under 

different scales of web pages. During the training 

phase, the runtime of the classifiers is the total 

amount of time it took to train them. Experimental 

results indicate that as the number of web pages 

increases, all five methods become less accurate 

while the processing time increases. The WFCNN 

classifier has the lowest accuracy and longest runtime 

of all the classifiers. Comparatively, FineWP shows 

the least decline in accuracy among the three methods 

(excluding WFCNN), as well as slower runtime 

increases. A large number of web pages will have to 

be classified in scenarios like these, and FineWP is 

capable of handling them. 

Figure 2: Accuracy and runtime versus webpage scale for 

five classification methods. 

As shown in Figures 3 and 4, each method 

performs better with more background web pages. All 

classifiers, except for WFCNN, exhibit decreasing 

precisions and recalls as background web pages 

increase, as shown in the figures. FineWP performs 

better than the other three classification classifiers. 

Furthermore, FineWP shows the lowest precision and 

recall decline with more background web pages. 

A comparison of the training and validation times 

for the five methods on the JD and YH datasets is 

shown in Figures 5 and 6. During the training phase, 

a total amount of time is spent training the model and 

extracting features. WFCNN is evidently the method 

with the longest runtime. Because the convolution 

and pooling layers of the CNN require extensive 

computation during training, this results in a longer 

training time. WFCNN's lengthy training time is 

significantly shortened by FineWP, CUMUL, and 

WPF, which have smaller feature dimensions and 

simpler calculations. 

Figure 3: Precision comparison with varying background 

traffic sizes. 

Figure 4: Recall comparison with varying background 

traffic sizes. 
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Figure 5: Runtime comparison during validation phase. 

Figure 6: Runtime comparison during training phase. 

5 CONCLUSIONS 

Using encrypted traffic packet lengths to fingerprint 

webpages, FineWP has been found to be effective. 

Despite heavy background traffic, FineWP is able to 

classify webpages accurately and consistently by 

focusing on bidirectional packet length sequences. 

Based on the results, FineWP is more accurate and 

faster than other methods, especially as more pages 

are added to the site. Using this method, security risks 

associated with fine-grained website fingerprinting 

can be effectively mitigated in an efficient, reliable, 

and scalable manner, even when handling extensive 

data traffic. According to our empirical findings, 

FineWP significantly enhances privacy protections in 

modern web communications, particularly in 

complex environments characterized by heavy 

encrypted traffic and dynamic web content. 

Furthermore, the proposed approach demonstrates 

suitability for large-scale deployments, making it 

valuable in practical, real-world contexts. In future 

work, additional privacy-preserving techniques will 

be integrated into the system, alongside optimizations 

aimed at further improving performance, 

adaptability, and robustness to facilitate seamless 

adoption in real-life applications. 
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