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Despite using encryption protocols such as HTTPS, web page fingerprinting poses significant privacy risks,
even when traffic analysis is used to identify specific web pages visited by users. Adversaries can exploit
packet-level characteristics like packet length to gather information about user behaviour and preferences
without decrypting traffic. This paper uses encrypted traffic packet lengths to distinguish webpages based on
privacy-driven fingerprinting — FineWP class webpages based on packet length sequences in a bidirectional
client-server interaction. Our results demonstrate that FineWP outperforms traditional and deep learning-
based methods regarding runtime and accuracy. Based on our experimental results, FineWP demonstrates
robust and privacy-protected fingerprinting capabilities for fine-grained webpage identification, effectively
managing large-scale datasets consisting of numerous webpages and substantial background traffic. We
propose an innovative webpage fingerprinting method that exclusively utilizes encrypted packet length
information, achieving an impressive accuracy of 94.3% while rigorously preserving user privacy.
Additionally, our lightweight and efficient technique exhibits strong resistance against sophisticated traffic
analysis attacks, significantly outperforming existing deep learning-based fingerprinting approaches by
approximately 11.2% in terms of accuracy, computational efficiency, and resilience under realistic network
conditions. These findings highlight the potential of FineWP for secure, scalable, and practical webpage

fingerprinting applications.

1 INTRODUCTION

In addition, fine-grained webpage fingerprinting also
poses privacy risks by identifying specific webpages
on a website that are visited, enabling further
exploitation of personal data [1]. Unlike traditional
website fingerprinting, which identifies a domain's
name, fine-grained fingerprinting identifies the page
that was accessed within a domain. Users' interests,
preferences, and activities can be inferred with such
detail. A news website, for example, could show
which articles users have read, indicating their
interests or political beliefs. Similarly, an e-
commerce platform could reveal their purchasing
habits, preferences, and preferences for products.
Since the Internet and web-based services have
become more prevalent, it has become increasingly
important to ensure Privacy and security in online
communication. By analyzing traffic, adversaries are
capable of inferring sensitive information about users
and website interactions, such as their activities.
Attackers can determine which web pages are being

accessed even when communications are encrypted
through packet lengths, timings, and other metadata
provided by the traffic. It is called web page
fingerprinting because it uses encrypted traffic
patterns to identify websites [2].

In page fingerprinting, an adversary attempts to
identify a user's web pages, even when their contents
are encrypted, by analyzing their traffic. Web traffic
is encrypted with cryptographic protocols such as
HTTPS. Still, the size and patterns of packets
between a client and a server can reveal a lot about
what is being communicated. Even with encryption,
packet-level characteristics remain visible to
observers, creating vulnerabilities for attackers.
Through the combination of advanced machine
learning techniques and statistical analysis
techniques, we aim to develop a model that can
accurately fingerprint webpages using packet length
distributions. The purpose of this research is to
address the increasing privacy concerns surrounding
encrypted communication and explore possible
countermeasures against fingerprinting attacks.
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Despite the need for secure and efficient web
communication, this study balances Privacy with
Privacy. Increasingly, there are risks associated with
web page fingerprinting that need to be understood
and mitigated to enhance privacy protections for
users. A number of instances have arisen where
encryption mechanisms were not implemented
correctly (such as bugs) or where man-in-the-middle
attacks were conducted [3]. In addition to brute-force
attacks, there are plain text disclosures [4] and
backdoors [5], which can enable unauthorized access
to private data. Author [6] proposed quantum
cryptography as a way of enhancing data utility, but
it compromises data utility. As long as homomorphic
encryption is used, both data utility and Privacy can
be maintained [7]. Data can be encrypted and still be
used for calculations and computations using this
method, providing some data utility.

Additionally, it allows for secure database
searches, which can enhance Privacy in many cases.
Many approaches are available, such as those
proposed by [8], which use smaller keys and
ciphertext. In the case that uses simpler and faster
implementations [9], outsourced computing power
may improve performance, but there is still a
problem [10]. Improvements in this area are clearly
motivated. In spite of this, privacy metrics and
anonymization are the main focus of our article since
they are also expected to improve the utility of data
when compared to standard encryption.

It is frequently the case that PETs and Privacy
Metrics are associated with offline data, as well as the
transformation and publication processes involved.
As a result, even anonymized data may be vulnerable
to linkage attacks if they are not properly handled. It
was estimated that 97% of 54,805 registered voters
could be identified by their birthdate and zip code,
according to Sweeney [11]. We are increasingly
relying on cloud computing, along with its associated
services and applications. Considering the amount of
data generated and accumulated online each day, the
implications are significant. Data privacy should,
therefore, be a fundamental requirement of cloud
services and offline processing.

2 LITERATURE REVIEW

2.1 Basic Website Fingerprinting

A website fingerprinting attack analyses packet sizes
and directions to identify the content accessed by a
client, even if the traffic is encrypted [12]. There are
a variety of patterns of network traffic generated by

different websites and web pages, even if the content
of that traffic is encrypted. Even when encrypted
traffic is hidden, these attacks exploit the fact that
different websites generate distinctive network traffic
patterns. Users' Privacy is at risk since sensitive
information about their browsing habits and interests
can be revealed [13].

Despite anonymizing networks like Tor, which
are designed to protect user privacy, passive
eavesdroppers can perform these attacks [14], [15].
The term local passive eavesdropper refers to an
attacker who monitors traffic between a user and the
network’s first hop without actively interfering with
it. Local eavesdroppers can still observe traffic
patterns even though Tor is an anonymization
network that encrypts traffic between users and the
Tor network. Tor users can be anonymized by website
fingerprinting attacks because of this. As a first step
toward website fingerprinting, statistical features of
traffic traces were used to distinguish between
different websites [16] - [18]. The number and size of
average packets, as well as the time between packet
arrivals, were all considered in analyzing these
features. A website fingerprint can be created by
analyzing these statistical features to identify which
page a user is visiting by analyzing these
fingerprints [19]. It was surprising how effective
these early approaches were at anonymizing users
despite their simplicity.

2.2 Advanced Website Fingerprinting
Techniques

It has been shown that deep learning models,
specifically convolutional neural networks (CNNS),
are highly ~ accurate ~ for  fingerprinting
websites [20], [21]. Unlike other neural networks,
CNNs are particularly effective at analyzing
sequential data, such as network traffic patterns.
Attackers can create an algorithm that can accurately
identify which website a user is visiting, even when
the traffic is encrypted, by training a CNN on data
from different websites. In comparison to traditional
statistical ~ approaches, deep  learning-based
approaches are significantly more accurate.

The use of graph neural networks (GNNs)
improves fingerprinting accuracy by capturing
contextual relationships between flows in page
loading [22], [23]. In the load of a website, graph-
structured data is analyzed by GNNs, which are types
of neural networks. The graph representation of
traffic allows GNNs to capture complex
dependencies and interactions among different parts
of the traffic by representing them as nodes and
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edges. By doing so, traffic can be analyzed more
precisely, resulting in more accurate fingerprinting.

Transformers are used for fine-grained analysis
of webpages to extract semantic vectors from
raw traffic [24]. Transforms are a type of neural
network that is particularly adept at analyzing
sequential data, including network traffic patterns. A
transformer can be trained on a large dataset of traffic
traces from different websites in order to extract
semantic  vectors  representing the  unique
characteristics of each. Even when traffic is
encrypted, these semantic vectors can assist in
identifying which webpage a user is visiting. If the
objective is to distinguish between web pages on a
single website, fine-grained fingerprinting s
especially effective.

2.3 Importance of Packet Length

An important feature of traffic analysis is packet
length because it provides information about the
content being transmitted and the actions performed
by users [12]. Users may send a text message when
their packets are short, while they may download a
file when their packets are large. Inferring
information about user behaviour without decrypting
packets is possible through packet length analysis.

A website or webpage can be fingerprinted even
with encryption because packet-length information
can be seen by network observers [12]. Protocols such
as TLS encrypt network traffic but not packet headers
that indicate packet length; these are typically left
unencrypted. Even when packets are encrypted,
network observers can see the packet length. Using
packet length for website fingerprinting is a valuable
feature because it can be used to identify which
websites and web pages a user is visiting without
having to decrypt the traffic [25]. When attackers
analyze packet length sequences, they can determine
which websites and web pages users are visiting by
analyzing packet length sequences [26]. Network
traffic patterns vary among websites and web pages,
as do packet length patterns. These fingerprints can
identify a user's visit to a website by analyzing
patterns in packet lengths. An attacker can then use
these fingerprints to determine which website is being
visited by a user [27].

3 METHODOLOGY

The use of traffic analysis to interpret encrypted SSL
packets was first demonstrated [28]. There are three
main categories of work in this field: traffic analysis

for encrypted connections in general, website
fingerprinting  on  anonymization  networks
specifically, and countermeasures against these
attacks.

3.1 Traffic Analysis on Encrypted
Connections

In 1988, [29] described the first implementation of a
website fingerprinting attack. An analysis of file sizes
was performed in order to identify which particular
file was accessed on a known server over an SSL
connection. In his study [30], the author found that it
was difficult to identify individual websites when the
server was unknown, such as when using an
anonymization proxy. A metric for the similarity
between observed and pre-collected traffic patterns
was proposed by [31] to detect if a website from a
given blocklist had been accessed over an SSL-
protected connection so that websites of slightly
different sizes could be matched. This early work
indicates that website fingerprinting is generally
possible based on the size of the total resources.

3.2 WFP in Anonymization Networks

In addition to JAP and Tor, it has applied
fingerprinting to OpenSSH, OpenVPN, Stunnel, and
Cisco IPsec-VPN. In a study involving 775 index
pages and this classifier, their recognition rate for a
single-hop system was over 90%, but for JAP, only
20%, and Tor, only 2.45%. As a result, Tor was
regarded as secure against website fingerprinting
until 2011, when Herrman et al. increased Tor's
recognition rate to alarming levels using Support
Vector Machines (SVMs): in the dataset provided by
Herrman et al., more than 54% of URLs were
correctly recognized when accessed over Tor.
Further, the authors evaluated website fingerprinting
in an open-world situation. That is, they identified a
few (monitored) pages from thousands of unknown,
random pages that the classifier had never seen
before. In this case, 73% of the candidates were
recognized. These results spawned a significant
amount of interest in the research community.

3.3 Countermeasures Against WFP

It has been suggested that several countermeasures
can be taken to prevent website fingerprinting attacks.
The first study of padding as a countermeasure
involved. By using padding, Tor generates
indistinguishable cells of a fixed size. Padding
operates on a packet-by-packet basis, whereas traffic
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morphing adapts a complete packet trace into another
packet trace. A practical test of traffic morphing,
however, showed that it was ineffective as a defence
against WFP.

Data flow is created through a number of
countermeasures. By loading a random website
alongside the actual desired website, background
noise is created, obscuring the actual transmission. If
traffic overhead is to be kept reasonable, this
approach does not provide enough protection against
website fingerprinting. Due to BUFLOs (Buffered
Fixed-Length Obfuscation), adversaries cannot
collect as much information as before since packets
are sent at fixed intervals and are fixed in size.
BUuFLO has several disadvantages, including an
overhead in bandwidth and time, revealing the total
transmission size in certain conditions, and being
unable to adapt to congestion.

3.4 Building Webpage Fingerprinting

This section describes how to build webpage
fingerprints using modelling.

3.4.1 Traffic Preprocessing

A five-tuple representation of traffic is used in the
first step: (srcIP, dstIP, srcPort, dstPort, protocol
(TCP/UDP)), where srclP indicates the client's IP
address, dstlP indicates the server's IP address,
srcPort indicates the client's port number, dstPort
indicates the server's port number, and protocol
indicates the communication protocol. Following
that, only flows belonging to the same website are
saved. If the jd.com string appears in the Server Hello
message, we check the Service Name Indication
(SNI) field and then pass the flow on. In addition, we
consider only one flow for each webpage, which
represents client-server communication. A flow that
interacts with advertisers or another proxy server is
not considered.

After removing the TCP retransmission packets,
we test the network for retransmissions.

3.5 Feature Extraction

The cumulative sum of packet lengths represents the
loading process of a webpage.

In the following webpage flow F = (py, ..., by)»
p; > 0 represents the downlink packet, and p; =
O represents the uplink packet. Packets are
represented cumulatively as A(F) = (ay, ..., ay)
where

ifi=1;
ifi<i<n, D

A series of intervals is then created based on the
cumulative packet length.

R= {(7"1,7'1+m), R (T'n, T'n+m)}. (2)
A list of intervals is then created by hashing them

I =Wy, ., v), 3)

Di
a; =
¢ {ai—1 + D

where
v; = hash(ry, Ty 4)- “4)

Then, we determine how many packets fall within
each interval for the sequence A(F). When (r;,1; +
1) contains the highest number of packets. Its hash
value is v,,,, and k.4, Contains the highest number
of packets. Flow F's feature set is represented by
(Umax: kmax)-

In our approach to webpage fingerprinting, we
call it WPF.

Due to the less variable nature of objects, it's more
important to monitor an object's size rather than its
packet size. Multi-connection TCP and HTTP
pipelining results in the interleaving of data from
different objects. Objects and data blocks cannot be
associated easily. HTTP transmissions are not
random, fortunately. Most web servers typically
transfer data in chunks. All packets that transfer data
are sized according to the path MTU, with the
exception of the last packet that transfers the last
chunk of data. A data chunk's last packet size can be
used to estimate the size of an object since they are
specific to that object. A packet that changes its order
tends to be an intermediate packet of several other
packets. Inconsistencies in fingerprints are reduced
by filtering the intermediate packets.

The fingerprints of webpages can be differentiated
using k-nearest Neighbor (k-NN) as a classifier. We
can directly train k-NN classifiers with fingerprints
since the length and dimensions are fixed.

3.6 Traffic Path Construction

The classification of encrypted traffic follows a
structured client-server communication model that
unfolds across three distinct stages. Regardless of
how the encrypted traffic is generated, the primary
objective of classification is to accurately determine
its type — such as the specific application or domain it
pertains to. This process relies on a bidirectional
exchange between clients and servers, allowing for
the discriminative identification of different
encrypted traffic categories. Typically, the interaction
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begins with clients initiating connections by sending
requests to servers in order to access specific
resources. The entire classification mechanism is
built around this interactive exchange and consists of
three key phases that guide the recognition and
categorization of encrypted network flows:
= Handshake Stage. During this stage, packets
are transmitted alternately uplink and
downlink. In this stage, packet lengths,
numbers, and directions for packets generated
for the same transmission protocol are very
similar.
= Uplink-Dominant Stage. This stage is
primarily used for transmitting uplink packets.
Servers are normally invited to cooperatively
improve data transmission efficiency by
sending uplink packets containing control
instructions.
=  Downlink-Dominant Stage. During this stage,
packets from the downlink are transmitted.
Downlink packets carry client content.

Flow features for n packets of a session are
represented using a similar method. There are m flow
features in each. i", and x* denotes the number of
flows in each it". X1J is the ITH packet's JTH feature,
which is represented by the matrix X, where X
represents the flow features of a session.

X110 Xim
,xm]z[; ;],(5)

Xn1 " Xnm

X =[x, ..., x5 ...

Session interactions between the client and server
are shown in Figure 1.

dy d, d, Server

t
ta
d

d, s Client

Figure 1: Session interaction sequence between client and
server.

The handshake is followed by data transmission
between the two parties. Packets have incoming or
outgoing directions denoted by d;. There is one
direction in which the client sends packets and one
direction in which the client receives packets. During
a session, packets are directed as follows:

D = (dy,dy, ..., d,)", d;€ef{1,—-1}. (6)

An arrival timestamp is associated with each
packet, and the interval between packets is indicated
by t;_1 = timestamp; — timestamp;_,,i = 2.
Maintaining consistency in sequence length requires
setting the interval time feature of the first packet to
zero. In that case, a session's packet intervals are as
follows:

T =(0,ty,tp, ., tp_1)T, t; ER. @)

A packet's length is also expressed as [;.
Consequently, packet length sequences can be
obtained:

L=yl L), LELZ )

It can be seen from (5),(6),(7),(8) that the number of
flow features in a session is X = [D, T, L], which
implies that m flows three times in a session

A session is more accurately represented when
one uses more packets n. To achieve early
classification, it is therefore necessary to use a
minimal number of packets. The path signature
algorithm is applied to our method by treating the
feature matrix as a three-dimensional traffic path.

patl = (X}, X = [D,T,L]. 9)
3.7 Data Collection

The implementation of web page fingerprinting
requires the collection of real-world traffic on the
same website. Various commodities in Jingdong
(known in China as JD) have similar shopping
interfaces. As an experimental website, JD intends to
classify its pages (shopping interfaces) according to
commodities.

Wireshark was used on the Ali cloud ECS server
to capture all data. A major cloud provider in China,
ALI Cloud has infrastructure in every province. The
virtual traffic generated by real users accessing
webpages is simulated by a total of six Ali cloud ECS
servers running Windows. Among these eight
servers, four are located in North China (Northl,
North2, North3, North4) and two in East China
(Eastl, East2). Different cloud servers were used to
capture traffic on JD's website. Our experiment will
be conducted using Chrome version 67.0.3396.99.

YH represents Yahoo, one of the world's most
popular websites. Each webpage has been visited by
40 individuals randomly selected from 12 categories
(also called labels2).

Our selection of representative websites is based
on the following reasons: 1) they are highly visited
daily, and 2) their browsing behaviours can provide
an adversary with information about a victim's
preferences.
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4 RESULTS AND DISCUSSION

The five classifiers are illustrated in Figure 2
according to their accuracy and runtime under
different scales of web pages. During the training
phase, the runtime of the classifiers is the total
amount of time it took to train them. Experimental
results indicate that as the number of web pages
increases, all five methods become less accurate
while the processing time increases. The WFCNN
classifier has the lowest accuracy and longest runtime
of all the classifiers. Comparatively, FineWP shows
the least decline in accuracy among the three methods
(excluding WFCNN), as well as slower runtime
increases. A large number of web pages will have to
be classified in scenarios like these, and FineWP is
capable of handling them.

1.0

0s F\—‘\o_\'\‘\.—‘

0.8

Accuracy (%)

0.5

0.3 T T T T T T
50 100 150 200 250 300 350

Webpage Number

Figure 2: Accuracy and runtime versus webpage scale for
five classification methods.

As shown in Figures 3 and 4, each method
performs better with more background web pages. All
classifiers, except for WFCNN, exhibit decreasing
precisions and recalls as background web pages
increase, as shown in the figures. FineWP performs
better than the other three classification classifiers.
Furthermore, FineWP shows the lowest precision and
recall decline with more background web pages.

A comparison of the training and validation times
for the five methods on the JD and YH datasets is
shown in Figures 5 and 6. During the training phase,

a total amount of time is spent training the model and
extracting features. WFCNN is evidently the method
with the longest runtime. Because the convolution
and pooling layers of the CNN require extensive
computation during training, this results in a longer
training time. WFCNN's lengthy training time is
significantly shortened by FineWP, CUMUL, and
WPF, which have smaller feature dimensions and
simpler calculations.
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Figure 3: Precision comparison with varying background
traffic sizes.
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Figure 4: Recall comparison with varying background
traffic sizes.
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Figure 5: Runtime comparison during validation phase.
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Figure 6: Runtime comparison during training phase.

5 CONCLUSIONS

Using encrypted traffic packet lengths to fingerprint
webpages, FineWP has been found to be effective.
Despite heavy background traffic, FineWP is able to
classify webpages accurately and consistently by
focusing on bidirectional packet length sequences.
Based on the results, FineWP is more accurate and
faster than other methods, especially as more pages
are added to the site. Using this method, security risks
associated with fine-grained website fingerprinting
can be effectively mitigated in an efficient, reliable,
and scalable manner, even when handling extensive
data traffic. According to our empirical findings,
FineWP significantly enhances privacy protections in
modern web communications, particularly in
complex environments characterized by heavy

encrypted traffic and dynamic web content.
Furthermore, the proposed approach demonstrates
suitability for large-scale deployments, making it
valuable in practical, real-world contexts. In future
work, additional privacy-preserving techniques will
be integrated into the system, alongside optimizations
aimed at further improving performance,
adaptability, and robustness to facilitate seamless
adoption in real-life applications.
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