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Abstract: IoT devices have limited computing and security capabilities, making them vulnerable to cyberattacks. This 

rapid expansion of IoT has introduced unprecedented connectivity but also heightened security vulnerabilities. 

The security of IoT environments, therefore, depends on efficient and lightweight intrusion detection systems 

(IDS). Using advanced feature engineering and machine learning algorithms, this study develops high-

performance IDS designed for IoT networks. Data imbalance is addressed with preprocessing techniques, 

feature extraction, and synthetic minority oversampling techniques (SMOTE). Multi-dataset training and 

testing included K-nearest neighbour models, sequential minimalism optimization models, random forest 

models, and stacking ensembles. A transfer learning model such as VGG-16 and DenseNet was also 

incorporated to improve classification accuracy. It has been demonstrated that the proposed models, 

particularly the ensemble and RF-based approaches, are highly accurate, precise, and recallable. IoT 

environments with limited resources can benefit from the proposed IDS framework because it effectively 

identifies malicious traffic while maintaining computational efficiency. 

1 INTRODUCTION 

Internet-connected devices are called IoT devices. 

Things such as wireless sensors, smart cameras, and 

smart televisions are being connected to the IoT, 

which has undergone rapid changes [1], [2]. IoT 

devices are rapidly spreading across the Internet, with 

more than 2 billion connected in 2017. Data generated 

by Internet-of-things devices is projected to reach 

73.1 zettabytes by 2025, according to experts [3]. As 

the IoT grows in popularity and offers many benefits, 

their security can often be limited even though IoT 

generates vast amounts of data and is growing at an 

unprecedented rate. IoT has been rapidly adopted due 

to the huge amount of data generated by  

billions of connected devices. Even as IoT devices 

become increasingly popular, they lack strong 

security protections. 

IoT devices lack sufficient security capabilities, 

so it's essential to build NIDS that can detect and 

prevent attacks on IoT networks quickly and 

reliably [4]. As well as machine learning techniques, 

publicly available data on network traffic can also be 

used for intrusion detection in IoT [5], [6]. Machine 

learning models tend to be more complex and 

accurate when these datasets contain fewer redundant 

or irrelevant features [7]. Machine learning models 

are often developed through feature reduction in order 

to develop efficient NIDS. In addition to reducing 

computational costs and latency, model 

generalization is also increased. 

The problem of excessive features can be solved 

using several techniques, including feature selection 

and feature extraction. Feature selection selects the 

most informative features from an initial set of 

features [8]. The selected features remain 

semantically interpretable while the dimensionality is 

reduced. By mathematically projecting the original 

features into a low-dimensional space, feature 

extraction is performed [9], [10]. There is no intuitive 

meaning to the extracted features, which may reduce 

dimensionality, but they may reduce complexity. In 

the IoT, lightweight and efficient IDS can be easily 

created by carefully selecting original features that 

are relevant to the device in question. As an 

alternative, a feature extraction technique reduces the 

overall dimensions of the data while preserving 

critical information. The optimization of the 
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efficiency and interpretability of intrusion detection 

models, which are tailored to the limitations and 

complexity of IoT devices and networks, can help IoT 

ecosystems improve their cybersecurity posture. 

Many sectors are experiencing an increase in 

cyber threats, such as IoT, online banking, industrial 

systems, and healthcare. A smart home, a smart city, 

and even wearables are all made possible by the IoT. 

There are, however, some limitations to IoT devices 

operating over public networks, including limited 

computational power, storage, and bandwidth [11]. 

Since these limitations limit their attack potential, 

they are more vulnerable to attacks than traditional 

endpoint devices. There is room for improvement in 

intrusion detection techniques, especially when it 

comes to improving their accuracy and adaptability, 

regardless of the number of intrusion detection 

techniques proposed in the literature. 

Here are some contributions to the ongoing study 

that address these challenges: 

▪ A literature review is presented on the use of

machine learning and deep learning for intrusion

detection based on numerical and image-based

datasets.

▪ To correct for class imbalances, datasets are

preprocessed and balanced using the SMOTE.

▪ The combination of multiple feature extraction

techniques with stacked machine learning

methods, including KNN, SMO, and RF, is used

to identify malicious or benign network traffic.

▪ Performing experiments to validate the

proposed models' performance and reliability.

2 LITERATURE REVIEW 

IoT architectures refer to mechanisms for 

interconnecting addressable electronic gadgets using 

radio and telecommunication infrastructures in order 

to establish interconnection [12]. The communication 

infrastructure additionally includes living life, such as 

people, animals, and plants, where it is used for 

monitoring, improving the quality of life, and 

reducing resource utilization [13]. WSNs anchor IoT. 

In addition to collecting information, WSNs do a 

number of other things [14]. Currently, IoT security 

frameworks and sensor centres are lacking, and 

gadgets are not protected against attacks such as 

Denial of Service (DoS), Man-in-the-middle attacks, 

etc [15], [16]. IoT verification and access control 

conventions are currently undergoing a lot of activity, 

but additional mechanisms are needed according to 

requirements. Experts have expressed concerns about 

IoT, its network scheme, and safety concerns [17]. 

Within the network design architecture, IoT requires 

consistent data handling and communication. 

2.1 Machine Learning-Based Intrusion 
Detection Systems 

In this study, we attempted to determine what set of 

hyperparameters would be most appropriate for use in 

NIDS. Data from UNSW-NB15 was analyzed using 

DFF and LSTM architectures. As compared to DFF, 

LSTM performed slightly better, but the relu 

activation function outperformed them all. SGD 

performed less accurately than the majority of 

optimisers, except for the majority of them. In their 

opinion, the best settings for the hyperparameters 

were relu, adam, and nodes configuring input and 

output rules at 0.75. DFF had the best accuracy at 

98.8%, while LSTM had the best accuracy at 98%. 

This paper does not drop the flow identifier features, 

nor does it evaluate their best-claimed set of 

hyperparameters on a different dataset. As an FE 

tool, [18] proposed an LSTM-based AE neural 

architecture composed of dense layers and LSTMs. 

RF classifiers are applied after extraction to detect 

attacks. We evaluated the proposed methodology 

using several datasets, including UNSW-NB15, ToN-

IoT, and NSL-KDD [19]. This study indicates that the 

selected classifier is able to detect more objects 

without relying on compression to do so. The 

reduction of dimensions has significantly reduced 

training time. 

In the literature, researchers continue to develop 

new FR methods and ML models based on the 

negative habits discussed in [20]. Research in this 

domain is always able to find combinations or 

variations to achieve slightly better results 

numerically. If you are applying the algorithm to a 

specific dataset, you should modify all hyper-

parameters used. Almost all papers have used a single 

dataset, making it difficult to conclude that their 

proposed techniques are generalizable. Depending on 

which dataset you use, the information presented will 

vary. This means the results of these proposed 

techniques may vary depending on the dataset to 

which they are applied. Due to the above 

experimental issues, ML-based NIDS cannot be 

deployed in the operational arena despite extensive 

academic research. Despite this, machine learning 

tools have been applied successfully to commercial 

scenarios, compared with other applications. A 

suitable ML model is necessary before deployment 

because of NIDS' high error costs. Our best 

combination will be generalizable if we compare all 

datasets. Analyzing the extracted dimensions requires 
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calculating and comparing the variance and 

correlation between PCA and LDA. 

Several evaluation metrics were used in the 

evaluation of these algorithms, including KDD CUP 

99, NSL-KDD, CIDDS, and CICIDS2017. DBN, 

which enhanced detection accuracy from 5% to 10%, 

was found to be more effective in DL models than ML 

models. According to [21], heuristic intrusion 

detection can achieve an accuracy of 85.5% to 95.2%. 

Gradient decomposition algorithms are used to train 

IDSs beforehand, followed by retraining and testing 

using KDD20+ and KDDTest+ datasets. 

By combining NSL-KDD and UNSW-15 

datasets, [22] experiments with hybrid sampling-

based intrusion detection. With SMOTE and OSS 

combined, RF, CNN, BiLSTM, CNN-BiLSTM, 

AlexNet-5, and CNN-BiLSTM models are cross-

trained. For the datasets mentioned, CNN-BiLSTM 

had an accuracy of 83.58% and 77.16%, respectively, 

outperforming other algorithms. Using RNN and 

GRNN algorithms, the author investigated the 

effectiveness of bi-RNN intrusion detection [23]. In 

the evaluation, Bi-RNN was found to achieve the best 

accuracy with 99.04% when compared to other 

methods utilizing 10% KDD datasets [24]. 

2.2 IoT Threats 

As IoT networks are distributed, their architecture is 

layered, with each layer performing its tasks 

sequentially to maintain the platform's efficiency. 

Researchers have found that a variety of attacks can 

be carried out at every layer of the network for the 

purpose of breaching its security, including protocols 

and gateways [25]. There has been a lot of recent 

attention paid to encapsulated attacks that occur in the 

whole network, such as DoS, Probe, U2R, and 

R2L [26]. 

3 METHODOLOGY 

These sections describe the dataset, how it was 

preprocessed, how features were extracted, and how 

the dataset was evaluated. Modelling is primarily 

intended to identify regular traffic versus malicious 

traffic. This is accomplished by developing several 

models, representing them in image format, and 

comparing them. A set of datasets as described in the 

research paper "Detecting intrusions use network 

traffic profiling and machine learning for IoT 

applications using network traffic profiling". The first 

step is to provide the machine learning module with 

binary visualization data that is compressed. This 

repository also provides the packet capture images 

from each of the five attack scenarios, along with 

their associated PCAP files, in attackScenario.zip and 

attackSenarioImages.zip. 

3.1 Data Processing 

To improve the training process for machine learning 

models, it is essential to process data first. You can 

download all datasets for research purposes for free. 

To reduce storage size and eliminate redundant 

samples (flows), duplicate samples (flows) are 

removed. Source and destination IP addresses, ports, 

and timestamps are stripped from flow identifiers to 

prevent bias against attackers or victims. A numerical 

value is encoded for strings, non-numeric features, 

and other features. In the datasets, protocol and 

service characteristics are stored in string form, while 

ML models prefer numerical information. To encode 

features, one can use hot encoding, while the other 

can use label encoding. By adding X features to a 

feature, it becomes X categories. A category 

represents 1, and absence represents 0. Due to the 

increased number of dimensions in the dataset, ML 

models may struggle with performance and 

efficiency. Thus, each category is assigned a 

numerical value according to the label encoding 

technique. 

Our dataset consists only of numerical values, 

eliminating nan, dash, and infinity. A 1 is displayed 

when a boolean feature is true, while a 0 is displayed 

when a boolean feature is false. In an effort to reduce 

complexity, all feature values are scaled between 0 

and 1 based on the min-max feature scaling method. 

The ML model gives equal weight to all features, but 

since network traffic features tend to have large 

values, it may give them a heavier weight since they 

tend to have high values. The values of every feature 

are calculated by plugging in a new feature value 

from 0 to 1, the previous feature value, 𝑋*, and the 

maximum and minimum of the feature. Datasets for 

training and testing are separated according to the 

label features, which is necessary because there is a 

class imbalance between the two datasets: 

𝑋 ∗=
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
.  (1) 

3.2 Synthetic Minority Oversampling 
Technique (SMOTE) 

Using SMOTE [23], balanced datasets are generated 

by oversampling minority classes. Synthetic 

examples are included along with the neighbours 
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nearest to the minority class so that the minority class 

can be oversampled. If oversampling is necessary, the 

k-nearest neighbours may be selected at random. This

method is illustrated in Figure 1 by 𝑌𝑖 representing the

point in question, 𝑌𝑖1 through 𝑌𝑖4  representing nearest

neighbours, and W1 through W4 representing the

synthetic data generated by randomized interjection.

Using a feature vector (sample) based on the 

nearest neighbour, synthetic samples can be 

generated. The feature vector is calculated by 

multiplying the difference by a random number 

between 1 and 0. Using this method, two distinct 

characteristics are considered when selecting a 

random point on the line segment. The following is a 

detailed description of SMOTE: 

▪ Rank samples according to their k-nearest

neighbours.

▪ Samples are selected randomly using the KNN

algorithm.

▪ To calculate the new samples, add the original

samples to the difference and then add the gap

(0,1).

▪ Make the minority sample larger by adding

new samples. The final step is to create a new

dataset.

The oversampling of minority samples by 

SMOTE has some weaknesses since majority 

samples are not taken into account when creating 

minority samples. As a result, minority samples may 

be generated around the positive examples, escalating 

the problem of borderline and noisy examples in 

learning. 

3.3 Feature Extraction 

3.3.1 Overview of Feature Extraction 
Process 

When a character recognition system is preprocessed, 

features are extracted. An input pattern must be 

correctly assigned to one of the possible output 

classes in order for pattern recognition to succeed. In 

general, two general stages are involved in this 

process: Feature selection and classification. Poorly 

selected features cannot be recognized by the 

classifier, so feature selection is very important. 

According to Lippman, the following features should 

be selected: 

Feature information should be sufficient to 

generate discriminant functions efficiently and be 

insensitive to irrelevant variations in input, as well as 

limited in number in order to minimize training data 

requirements. To build a pattern classification, 

feature extraction is important for determining the 

relevant characteristics of each class. As part of this 

process, relevant features are extracted to form 

feature vectors using an object/alphabet. Input units 

and target output units can be recognized by 

classifiers when these feature vectors are combined. 

By considering these features, the classifier can 

differentiate between classes more easily, making it 

easier to classify. The process of extracting features 

from raw data involves retrieving the most relevant 

information. Identifying the parameters that define 

characters allows them to be accurately and uniquely 

defined. A feature vector represents a character's 

identity in a feature extraction process. When 

generating features for a variety of instances of a 

symbol, the goal is to maximize the recognition rate 

using the simplest elements possible. 

Figure 1: Generate data in the SMOTE algorithm. 

3.3.2 Deep Learning-Based Feature 
Extraction with Pre-Trained Models 

Pre-trained models are neural networks that have 

been trained using a lot of data. Pretrained models 

include the following. Models that were pre-trained 

and supervised. It is one of the most popular pre-

training datasets for supervised learning. As part of 

the ImageNet classification challenge, [27] used deep 

neural networks to outperform humans. 

InceptionNet [28] is another deep neural network that 

uses parallel convolutional filters. ResNet [29] 

introduces skip connections to ease training and 

becomes much deeper as performance improves. 

DenseNet [30] densely connected blocks [31] are 

carefully designed to be mobile-friendly, and the 

structure can be further optimized through network 

architecture searches [32]. DenseNet, ResNet_50, 

and VGG-16 were used. A visibility evaluation model 

was constructed using the extracted features, and the 

variables were input into a Support Vector Regression 

model, followed by a visibility evaluation of the 

effective area: 

▪ ImageNet was used to train the VGG-16

network [33], [34]. A large training set enables
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the VGG-16 to perform well even with small 

image data sets. There are 16 convolution 

layers in the VGG-16 network, along with a 

3x3 receptive field. The pooling layer, which 

has a size of 2x2, is one of five. Immediately 

following the last layer of Max pooling are 

three fully connected layers. There are three 

fully interconnected layers in the following 

layers. The Softmax classifier is the final layer 

of the algorithm. There are no hidden layers 

that are not activated by ReLu [35]. 

▪ The DenseNet is an artificial neural network

based on dense convolutions [36]. A DenseNet

architecture consists of interconnected layers.

The number of layers in a network is N(N+1)/2.

DenseNet comprises an initial layer of

convolutions and a layer of pooling. Pre-trained

models are neural networks that have been

trained using a lot of data.

3.4 Image Filter 

With an image filter (IF), high-quality images are 

removed from highly corrupted images by removing 

impulse noise from additive identical independent 

distributions (i.i.d.). To implement the proposed 

filter, fuzzy numbers need to be constructed, fuzzy 

filtering needs to be performed, and a genetic learning 

process needs to be applied. Fuzzy numbers are 

constructed by constructing the image knowledge 

base from sample images or noise-free images. 

Additionally, fuzzy decision processes, fuzzy means, 

and fuzzy inference mechanisms are all part of fuzzy 

filtering. The optimization of image knowledge bases 

through genetic algorithms is finalized by genetic 

learning. As a method of removing additive impulse 

noise from highly corrupted images, we will use the 

genetic learning method to tune the parameters of 

membership functions.  

3.4.1 Auto-Color Correlogram 

For optimal accuracy, a number of models were 

evaluated using a variety of filters, individual 

learning algorithms, and stacked models. 

Autocorrelograms were used to develop the first four 

models. A KNN model, an SMO model, an RF model, 

and other algorithms were used. Stacking KNN and 

SMO models was also created. 

3.4.2 Fuzzy Color and Texture Histogram 

Fuzzy Color and Texture Histogram (FCTH) is a 

quantitative histogram that includes information 

about colour and texture [8]. In this feature result, 

three fuzzy units have been combined. Segmenting 

the image into blocks is done initially. Every block 

passes through the fuzzy units. The first unit involves 

extracting the fuzzy linking histogram using fuzzy 

rules. Based on the HSV colour space, this histogram 

can be viewed. A fuzzy system with three inputs 

generates a 10-bin histogram using twenty rules; each 

bin corresponds to a colour. 

3.5 Performance Measures and 
Validation 

Evaluation of classifiers is typically based on 

calculating fundamental performance metrics. In this 

study, the classifier's effectiveness was measured 

using key statistical values including true positives, 

true negatives, false positives, and false negatives. 

From these, important performance indicators such as 

accuracy, precision, recall, and the F1-score were 

derived to comprehensively assess the model's 

predictive capabilities. These metrics provide insight 

into the classifier’s correctness, reliability, 

sensitivity, and balanced performance. The detailed 

methodology for calculating these metrics follows the 

framework established by [37]. 

4 RESULTS AND DISCUSSION 

As shown in Figure 2, four models are compared for 

accuracy, precision, recall, and F1-score. According 

to this example, the K-Nearest Neighbor (KNN) 

model with k = 1 provides the best accuracy (93%), 

precision (91.4%) and test coverage (91%). 

Figure 2: Performance comparison of classification models 

based on four methods using 10-fold cross-validation. 
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We evaluated five models, and Figure 3 shows 

their accuracy results. On the 90-10 dataset, the 

Random Forest (RF) model was 94.6% accurate and 

94% precise, whereas the stacked model was 94.6% 

accurate and 94% precise. However, Random Forests 

outperform stacked models when it comes to recall, 

achieving 100% as opposed to 94.7% for stacked 

models. The Random Forest model remains accurate 

with 95% accuracy even when data is split 70/30. 

As shown in Figure 4, the accuracy results of each 

model are summarized. As a result of 90% training 

and 10% testing, the RF model yielded the highest 

accuracy and precision, respectively, of 94.22% and 

91.02%. 

Figure 3: Performance comparison of classification models 

on FCTH features using 10-fold cross-validation. 

Figure 4: Comparison of four models with DenseNet 

transfer model. 

A comparison of the four models is presented in 

Figure 5. When 90% of the training data are 

combined with 10% of the testing data, a model's 

accuracy and precision are 94.22% and 92.42%, 

respectively. With 70/30 training data, the KNN 

model with k = 5 shows 95.8% accuracy and 95.1% 

precision.  

Figure 5: Comparison of four models with VGG-16 transfer 

model. 

5 CONCLUSIONS 

An IDS for the IoT is developed by integrating feature 

engineering techniques with traditional and advanced 

machine learning models. By effectively 

preprocessing data, performing thorough feature 

analysis, and utilizing SMOTE for handling class 

imbalance, the system significantly enhances the 

accuracy of intrusion detection across diverse attack 

scenarios in IoT networks. Multiple classifiers, such 

as Random Forest, K-Nearest Neighbors (KNN), 

Sequential Minimal Optimization (SMO), and 

various ensemble-based methods, exhibited 

commendable performance, with Random Forest and 

ensemble approaches consistently outperforming 

others in terms of accuracy, sensitivity, and precision 

metrics. The robustness and adaptability of the 

proposed system were further improved by 

incorporating image-based feature representations 

and employing advanced transfer learning techniques 

using pre-trained models like VGG-16 and DenseNet. 

These deep learning strategies effectively captured 

complex patterns within the data, providing superior 

generalization capabilities. Consequently, the 

proposed framework delivers a practical, reliable, and 

scalable solution suitable for real-time threat 
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detection in resource-constrained IoT environments. 

Future advancements in IDS applications can greatly 

benefit from extending this framework towards real-

time deployment scenarios and integrating federated 

learning methods to enhance data privacy, 

decentralization, and collaborative learning across 

distributed IoT devices. 
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