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10T devices have limited computing and security capabilities, making them vulnerable to cyberattacks. This
rapid expansion of 10T has introduced unprecedented connectivity but also heightened security vulnerabilities.
The security of 10T environments, therefore, depends on efficient and lightweight intrusion detection systems
(IDS). Using advanced feature engineering and machine learning algorithms, this study develops high-
performance IDS designed for 10T networks. Data imbalance is addressed with preprocessing techniques,
feature extraction, and synthetic minority oversampling techniques (SMOTE). Multi-dataset training and
testing included K-nearest neighbour models, sequential minimalism optimization models, random forest
models, and stacking ensembles. A transfer learning model such as VGG-16 and DenseNet was also
incorporated to improve classification accuracy. It has been demonstrated that the proposed models,
particularly the ensemble and RF-based approaches, are highly accurate, precise, and recallable. 10T
environments with limited resources can benefit from the proposed IDS framework because it effectively

identifies malicious traffic while maintaining computational efficiency.

1 INTRODUCTION

Internet-connected devices are called 10T devices.
Things such as wireless sensors, smart cameras, and
smart televisions are being connected to the 1oT,
which has undergone rapid changes [1], [2]. loT
devices are rapidly spreading across the Internet, with
more than 2 billion connected in 2017. Data generated
by Internet-of-things devices is projected to reach
73.1 zettabytes by 2025, according to experts [3]. As
the 10T grows in popularity and offers many benefits,
their security can often be limited even though loT
generates vast amounts of data and is growing at an
unprecedented rate. 10T has been rapidly adopted due
to the huge amount of data generated by
billions of connected devices. Even as loT devices
become increasingly popular, they lack strong
security protections.

0T devices lack sufficient security capabilities,
so it's essential to build NIDS that can detect and
prevent attacks on 10T networks quickly and
reliably [4]. As well as machine learning techniques,
publicly available data on network traffic can also be
used for intrusion detection in 10T [5], [6]. Machine

learning models tend to be more complex and
accurate when these datasets contain fewer redundant
or irrelevant features [7]. Machine learning models
are often developed through feature reduction in order
to develop efficient NIDS. In addition to reducing
computational  costs and  latency,  model
generalization is also increased.

The problem of excessive features can be solved
using several techniques, including feature selection
and feature extraction. Feature selection selects the
most informative features from an initial set of
features [8]. The selected features remain
semantically interpretable while the dimensionality is
reduced. By mathematically projecting the original
features into a low-dimensional space, feature
extraction is performed [9], [10]. There is no intuitive
meaning to the extracted features, which may reduce
dimensionality, but they may reduce complexity. In
the loT, lightweight and efficient IDS can be easily
created by carefully selecting original features that
are relevant to the device in question. As an
alternative, a feature extraction technique reduces the
overall dimensions of the data while preserving
critical information. The optimization of the
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efficiency and interpretability of intrusion detection
models, which are tailored to the limitations and
complexity of 10T devices and networks, can help loT
ecosystems improve their cybersecurity posture.
Many sectors are experiencing an increase in
cyber threats, such as 10T, online banking, industrial
systems, and healthcare. A smart home, a smart city,
and even wearables are all made possible by the IoT.
There are, however, some limitations to 10T devices
operating over public networks, including limited
computational power, storage, and bandwidth [11].
Since these limitations limit their attack potential,
they are more vulnerable to attacks than traditional
endpoint devices. There is room for improvement in
intrusion detection techniques, especially when it
comes to improving their accuracy and adaptability,
regardless of the number of intrusion detection
techniques proposed in the literature.
Here are some contributions to the ongoing study
that address these challenges:
= A literature review is presented on the use of
machine learning and deep learning for intrusion
detection based on numerical and image-based
datasets.
» To correct for class imbalances, datasets are
preprocessed and balanced using the SMOTE.
=  The combination of multiple feature extraction
techniques with stacked machine learning
methods, including KNN, SMO, and RF, is used
to identify malicious or benign network traffic.
= Performing experiments to validate the
proposed models' performance and reliability.

2 LITERATURE REVIEW

loT architectures refer to mechanisms for
interconnecting addressable electronic gadgets using
radio and telecommunication infrastructures in order
to establish interconnection [12]. The communication
infrastructure additionally includes living life, such as
people, animals, and plants, where it is used for
monitoring, improving the quality of life, and
reducing resource utilization [13]. WSNs anchor loT.
In addition to collecting information, WSNs do a
number of other things [14]. Currently, 10T security
frameworks and sensor centres are lacking, and
gadgets are not protected against attacks such as
Denial of Service (DoS), Man-in-the-middle attacks,
etc [15], [16]. loT verification and access control
conventions are currently undergoing a lot of activity,
but additional mechanisms are needed according to
requirements. Experts have expressed concerns about
loT, its network scheme, and safety concerns [17].

Within the network design architecture, 10T requires
consistent data handling and communication.

2.1 Machine Learning-Based Intrusion
Detection Systems

In this study, we attempted to determine what set of
hyperparameters would be most appropriate for use in
NIDS. Data from UNSW-NB15 was analyzed using
DFF and LSTM architectures. As compared to DFF,
LSTM performed slightly better, but the relu
activation function outperformed them all. SGD
performed less accurately than the majority of
optimisers, except for the majority of them. In their
opinion, the best settings for the hyperparameters
were relu, adam, and nodes configuring input and
output rules at 0.75. DFF had the best accuracy at
98.8%, while LSTM had the best accuracy at 98%.
This paper does not drop the flow identifier features,
nor does it evaluate their best-claimed set of
hyperparameters on a different dataset. As an FE
tool, [18] proposed an LSTM-based AE neural
architecture composed of dense layers and LSTMs.
RF classifiers are applied after extraction to detect
attacks. We evaluated the proposed methodology
using several datasets, including UNSW-NB15, ToN-
10T, and NSL-KDD [19]. This study indicates that the
selected classifier is able to detect more objects
without relying on compression to do so. The
reduction of dimensions has significantly reduced
training time.

In the literature, researchers continue to develop
new FR methods and ML models based on the
negative habits discussed in [20]. Research in this
domain is always able to find combinations or
variations to achieve slightly better results
numerically. If you are applying the algorithm to a
specific dataset, you should modify all hyper-
parameters used. Almost all papers have used a single
dataset, making it difficult to conclude that their
proposed techniques are generalizable. Depending on
which dataset you use, the information presented will
vary. This means the results of these proposed
techniques may vary depending on the dataset to
which they are applied. Due to the above
experimental issues, ML-based NIDS cannot be
deployed in the operational arena despite extensive
academic research. Despite this, machine learning
tools have been applied successfully to commercial
scenarios, compared with other applications. A
suitable ML model is necessary before deployment
because of NIDS' high error costs. Our best
combination will be generalizable if we compare all
datasets. Analyzing the extracted dimensions requires
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calculating and comparing the variance and
correlation between PCA and LDA.

Several evaluation metrics were used in the
evaluation of these algorithms, including KDD CUP
99, NSL-KDD, CIDDS, and CICIDS2017. DBN,
which enhanced detection accuracy from 5% to 10%,
was found to be more effective in DL models than ML
models. According to [21], heuristic intrusion
detection can achieve an accuracy of 85.5% to 95.2%.
Gradient decomposition algorithms are used to train
IDSs beforehand, followed by retraining and testing
using KDD20+ and KDDTest+ datasets.

By combining NSL-KDD and UNSW-15
datasets, [22] experiments with hybrid sampling-
based intrusion detection. With SMOTE and OSS
combined, RF, CNN, BIiLSTM, CNN-BiLSTM,
AlexNet-5, and CNN-BIiLSTM models are cross-
trained. For the datasets mentioned, CNN-BIiLSTM
had an accuracy of 83.58% and 77.16%, respectively,
outperforming other algorithms. Using RNN and
GRNN algorithms, the author investigated the
effectiveness of bi-RNN intrusion detection [23]. In
the evaluation, Bi-RNN was found to achieve the best
accuracy with 99.04% when compared to other
methods utilizing 10% KDD datasets [24].

2.2 10T Threats

As loT networks are distributed, their architecture is
layered, with each layer performing its tasks
sequentially to maintain the platform's efficiency.
Researchers have found that a variety of attacks can
be carried out at every layer of the network for the
purpose of breaching its security, including protocols
and gateways [25]. There has been a lot of recent
attention paid to encapsulated attacks that occur in the
whole network, such as DoS, Probe, U2R, and
R2L [26].

3 METHODOLOGY

These sections describe the dataset, how it was
preprocessed, how features were extracted, and how
the dataset was evaluated. Modelling is primarily
intended to identify regular traffic versus malicious
traffic. This is accomplished by developing several
models, representing them in image format, and
comparing them. A set of datasets as described in the
research paper "Detecting intrusions use network
traffic profiling and machine learning for loT
applications using network traffic profiling". The first
step is to provide the machine learning module with
binary visualization data that is compressed. This

repository also provides the packet capture images
from each of the five attack scenarios, along with
their associated PCAP files, in attackScenario.zip and
attackSenariolmages.zip.

3.1 Data Processing

To improve the training process for machine learning
models, it is essential to process data first. You can
download all datasets for research purposes for free.
To reduce storage size and eliminate redundant
samples (flows), duplicate samples (flows) are
removed. Source and destination IP addresses, ports,
and timestamps are stripped from flow identifiers to
prevent bias against attackers or victims. A numerical
value is encoded for strings, non-numeric features,
and other features. In the datasets, protocol and
service characteristics are stored in string form, while
ML models prefer numerical information. To encode
features, one can use hot encoding, while the other
can use label encoding. By adding X features to a
feature, it becomes X categories. A category
represents 1, and absence represents 0. Due to the
increased number of dimensions in the dataset, ML
models may struggle with performance and
efficiency. Thus, each category is assigned a
numerical value according to the label encoding
technique.

Our dataset consists only of numerical values,
eliminating nan, dash, and infinity. A 1 is displayed
when a boolean feature is true, while a 0 is displayed
when a boolean feature is false. In an effort to reduce
complexity, all feature values are scaled between 0
and 1 based on the min-max feature scaling method.
The ML model gives equal weight to all features, but
since network traffic features tend to have large
values, it may give them a heavier weight since they
tend to have high values. The values of every feature
are calculated by plugging in a new feature value
from O to 1, the previous feature value, X*, and the
maximum and minimum of the feature. Datasets for
training and testing are separated according to the
label features, which is necessary because there is a
class imbalance between the two datasets:

X %= M (1)

Xmax - Xmin

3.2 Synthetic Minority Oversampling
Technique (SMOTE)

Using SMOTE [23], balanced datasets are generated
by oversampling minority classes. Synthetic
examples are included along with the neighbours
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nearest to the minority class so that the minority class
can be oversampled. If oversampling is necessary, the
k-nearest neighbours may be selected at random. This
method is illustrated in Figure 1 by Y; representing the
point in question, Y;; through Y;, representing nearest
neighbours, and W1 through W4 representing the
synthetic data generated by randomized interjection.
Using a feature vector (sample) based on the
nearest neighbour, synthetic samples can be
generated. The feature vector is calculated by
multiplying the difference by a random number
between 1 and 0. Using this method, two distinct
characteristics are considered when selecting a
random point on the line segment. The following is a
detailed description of SMOTE:
= Rank samples according to their Kk-nearest
neighbours.
= Samples are selected randomly using the KNN
algorithm.
= To calculate the new samples, add the original
samples to the difference and then add the gap
0,1).
= Make the minority sample larger by adding
new samples. The final step is to create a new
dataset.

The oversampling of minority samples by
SMOTE has some weaknesses since majority
samples are not taken into account when creating
minority samples. As a result, minority samples may
be generated around the positive examples, escalating
the problem of borderline and noisy examples in
learning.

3.3 Feature Extraction

3.3.1 Overview of Feature Extraction
Process

When a character recognition system is preprocessed,
features are extracted. An input pattern must be
correctly assigned to one of the possible output
classes in order for pattern recognition to succeed. In
general, two general stages are involved in this
process: Feature selection and classification. Poorly
selected features cannot be recognized by the
classifier, so feature selection is very important.
According to Lippman, the following features should
be selected:

Feature information should be sufficient to
generate discriminant functions efficiently and be
insensitive to irrelevant variations in input, as well as
limited in number in order to minimize training data
requirements. To build a pattern classification,
feature extraction is important for determining the

relevant characteristics of each class. As part of this
process, relevant features are extracted to form
feature vectors using an object/alphabet. Input units
and target output units can be recognized by
classifiers when these feature vectors are combined.
By considering these features, the classifier can
differentiate between classes more easily, making it
easier to classify. The process of extracting features
from raw data involves retrieving the most relevant
information. Identifying the parameters that define
characters allows them to be accurately and uniquely
defined. A feature vector represents a character's
identity in a feature extraction process. When
generating features for a variety of instances of a
symbol, the goal is to maximize the recognition rate
using the simplest elements possible.

Yiy

Figure 1: Generate data in the SMOTE algorithm.

3.3.2 Deep Learning-Based Feature
Extraction with Pre-Trained Models

Pre-trained models are neural networks that have
been trained using a lot of data. Pretrained models
include the following. Models that were pre-trained
and supervised. It is one of the most popular pre-
training datasets for supervised learning. As part of
the ImageNet classification challenge, [27] used deep
neural  networks to  outperform  humans.
InceptionNet [28] is another deep neural network that
uses parallel convolutional filters. ResNet [29]
introduces skip connections to ease training and
becomes much deeper as performance improves.
DenseNet [30] densely connected blocks [31] are
carefully designed to be mobile-friendly, and the
structure can be further optimized through network
architecture searches [32]. DenseNet, ResNet 50,
and VGG-16 were used. A visibility evaluation model
was constructed using the extracted features, and the
variables were input into a Support VVector Regression
model, followed by a visibility evaluation of the
effective area:
= |ImageNet was used to train the VGG-16
network [33], [34]. A large training set enables
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the VGG-16 to perform well even with small
image data sets. There are 16 convolution
layers in the VGG-16 network, along with a
3x3 receptive field. The pooling layer, which
has a size of 2x2, is one of five. Immediately
following the last layer of Max pooling are
three fully connected layers. There are three
fully interconnected layers in the following
layers. The Softmax classifier is the final layer
of the algorithm. There are no hidden layers
that are not activated by ReLu [35].

= The DenseNet is an artificial neural network
based on dense convolutions [36]. A DenseNet
architecture consists of interconnected layers.
The number of layers in a network is N(N+1)/2.
DenseNet comprises an initial layer of
convolutions and a layer of pooling. Pre-trained
models are neural networks that have been
trained using a lot of data.

3.4 Image Filter

With an image filter (IF), high-quality images are
removed from highly corrupted images by removing
impulse noise from additive identical independent
distributions (i.i.d.). To implement the proposed
filter, fuzzy numbers need to be constructed, fuzzy
filtering needs to be performed, and a genetic learning
process needs to be applied. Fuzzy numbers are
constructed by constructing the image knowledge
base from sample images or noise-free images.
Additionally, fuzzy decision processes, fuzzy means,
and fuzzy inference mechanisms are all part of fuzzy
filtering. The optimization of image knowledge bases
through genetic algorithms is finalized by genetic
learning. As a method of removing additive impulse
noise from highly corrupted images, we will use the
genetic learning method to tune the parameters of
membership functions.

3.4.1 Auto-Color Correlogram

For optimal accuracy, a number of models were
evaluated using a variety of filters, individual
learning  algorithms, and stacked models.
Autocorrelograms were used to develop the first four
models. A KNN model, an SMO model, an RF model,
and other algorithms were used. Stacking KNN and
SMO models was also created.

3.4.2 Fuzzy Color and Texture Histogram

Fuzzy Color and Texture Histogram (FCTH) is a
quantitative histogram that includes information
about colour and texture [8]. In this feature result,

three fuzzy units have been combined. Segmenting
the image into blocks is done initially. Every block
passes through the fuzzy units. The first unit involves
extracting the fuzzy linking histogram using fuzzy
rules. Based on the HSV colour space, this histogram
can be viewed. A fuzzy system with three inputs
generates a 10-bin histogram using twenty rules; each
bin corresponds to a colour.

3.5 Performance Measures and
Validation

Evaluation of classifiers is typically based on
calculating fundamental performance metrics. In this
study, the classifier's effectiveness was measured
using key statistical values including true positives,
true negatives, false positives, and false negatives.
From these, important performance indicators such as
accuracy, precision, recall, and the Fl-score were
derived to comprehensively assess the model's
predictive capabilities. These metrics provide insight
into the classifier’s correctness, reliability,
sensitivity, and balanced performance. The detailed
methodology for calculating these metrics follows the
framework established by [37].

4 RESULTS AND DISCUSSION

As shown in Figure 2, four models are compared for
accuracy, precision, recall, and F1-score. According
to this example, the K-Nearest Neighbor (KNN)
model with k = 1 provides the best accuracy (93%),
precision (91.4%) and test coverage (91%).

100

[ | Accuracylllll Precisionl ] Recallfiill F1-Score

90 +

@
=3
1

Auto-Color Correlogram (%)
~
=]
1

60

50 -

K-NN RF SMO
Cross Validation 10

KNN+SMO

Figure 2: Performance comparison of classification models
based on four methods using 10-fold cross-validation.
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We evaluated five models, and Figure 3 shows

their accuracy results. On the 90-10 dataset, the
Random Forest (RF) model was 94.6% accurate and
94% precise, whereas the stacked model was 94.6%
accurate and 94% precise. However, Random Forests
outperform stacked models when it comes to recall,
achieving 100% as opposed to 94.7% for stacked
models. The Random Forest model remains accurate
with 95% accuracy even when data is split 70/30.
As shown in Figure 4, the accuracy results of each
model are summarized. As a result of 90% training
and 10% testing, the RF model yielded the highest
accuracy and precision, respectively, of 94.22% and
91.02%.

100

[ Accuracyllllll Precision[ | Recallfiil]l F1-Score

90

80

70

Auto-Color Correlogramand FeTH (%)

RF SMO
Cross Validation 10

KNN+SMO

Figure 3: Performance comparison of classification models
on FCTH features using 10-fold cross-validation.

100

[ Accuracyllllll Precision ] Recallfil]l F1-Score|

DenseNet Transfer Model (%)

K-NN RF SMO
Cross Validation 10

KNN+SMO

Figure 4: Comparison of four models with DenseNet
transfer model.

A comparison of the four models is presented in
Figure 5. When 90% of the training data are
combined with 10% of the testing data, a model's
accuracy and precision are 94.22% and 92.42%,
respectively. With 70/30 training data, the KNN
model with k = 5 shows 95.8% accuracy and 95.1%
precision.

100

(1 Accuracyllll Precision{lll Recalilll F1-Score

VGG-16 Transfer Model (%)

K-NN RF SMO
Cross Validation 10

KNN+SMO

Figure 5: Comparison of four models with VGG-16 transfer
model.

5 CONCLUSIONS

An IDS for the 10T is developed by integrating feature
engineering techniques with traditional and advanced
machine  learning models. By effectively
preprocessing data, performing thorough feature
analysis, and utilizing SMOTE for handling class
imbalance, the system significantly enhances the
accuracy of intrusion detection across diverse attack
scenarios in 10T networks. Multiple classifiers, such
as Random Forest, K-Nearest Neighbors (KNN),
Sequential Minimal Optimization (SMO), and
various  ensemble-based  methods, exhibited
commendable performance, with Random Forest and
ensemble approaches consistently outperforming
others in terms of accuracy, sensitivity, and precision
metrics. The robustness and adaptability of the
proposed system were further improved by
incorporating image-based feature representations
and employing advanced transfer learning techniques
using pre-trained models like VGG-16 and DenseNet.
These deep learning strategies effectively captured
complex patterns within the data, providing superior
generalization capabilities.  Consequently, the
proposed framework delivers a practical, reliable, and
scalable solution suitable for real-time threat
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detection in resource-constrained 10T environments.
Future advancements in IDS applications can greatly
benefit from extending this framework towards real-
time deployment scenarios and integrating federated

learning methods to

enhance data privacy,

decentralization, and collaborative learning across
distributed IoT devices.
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