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It presents both opportunities for intelligent transportation systems and challenges for ensuring privacy during
the data analysis process that VSNs (Vehicular Social Networks) generate. Our paper proposes a threshold
Paillier cryptosystem and consortium blockchain for training Support Vector Machines (SVMs) on vertically
partitioned datasets. Traditional approaches that rely on trusted third parties are insecure compared to
blockchain-based collaboration. Most computations are performed locally and intermediate values are only
shared if they are encrypted. This ensures high levels of privacy and efficiency. This model (PP-SVM) offers
classification accuracy comparable to standard SVMs, resulting in privacy-preserving learning environments
in virtual social networks. As a result of this approach, sensitive user data is effectively protected, and a robust
sense of trust among network members is fostered. In addition to ensuring data integrity, consortium
blockchain technology promotes collaborative learning by leveraging its inherently decentralized nature,
facilitating secure interactions and shared decision-making processes. With the rapid evolution and increasing
adoption of vehicular social networks, preserving user privacy has become increasingly crucial, demanding

scalable and reliable security mechanisms.

1 INTRODUCTION

Vehicular Social Networks (VSNs) are a significant
advancement in intelligent transportation systems,
enabling vehicle-to-vehicle and infrastructure-to-
network data exchange. As a result of these networks,
traffic management, safety, and user experience can
be improved [1]. A critical challenge remains,
however: securing sensitive data and enabling
collaborative, decentralized decision-making while
protecting privacy. The increasing amount of real-
time, location-based, and personal data being shared
in VSNs makes privacy preservation essential.
Blockchain-based machine learning (ML) is one
promising solution for addressing privacy concerns
while allowing intelligent data processing. In
particular, consortium blockchains provide a secure
and transparent platform for managing data and
facilitating collaborative learning, as they are
permissioned blockchains where trusted parties
collaborate. A similar setup would allow vehicles to
contribute data for training machine learning models
without exposing their sensitive information to
others.

Several scenarios have benefited from cloud and
edge computing, including mobile
social networks (VSNs) [2], [3]. VSNs can be
optimized in terms of safety, convenience, amenity,
and entertainment ~ with  the use  of
efficient methods [4], [5]. The application of machine
learning and deep learning has captured the interest
of researchers across a wide range of
disciplines [6], [7]. Data analysis of VSNs is
gradually advancing with the application of related
technologies, including machine learning and deep
learning. In many scenarios, support vector machines
(SVMs) are frequently used due to their efficiency
and robustness. Negative communication conditions
can be detected using SVM, for example.VSNs
collect data from multiple sources, including vehicle
manufacturers, vehicle management agencies, and
social networking application developers [8], [9].

Data sources differ between these entities, so their
attributes are different. A VSN rarely has a
comprehensive training dataset due to the limited
number of sources available. Vehicle network service
platforms control the majority of vehicle location and
mobility trace attributes, and social network
applications may control user preferences. As you
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might expect, the performance of SVM classifiers is
determined by datasets [10]. A VSN application
trains SVM classifiers by combining datasets with
sufficient attributes before reaching a more efficient
model. An alternative approach is to segment the
merged dataset vertically based on the datasets owned
by the entities. SVM training presents several serious
security challenges, however. VSNs contain
extensive private information (e.g., vehicle location,
user preferences), so companies are prohibited from
using and sharing this information across borders due
to constantly enacted regulations. VSN data,
however, contain high-value information that makes
data providers hesitant to share their original data.
The value of shared data is lost if a privacy-preserving
mechanism is not in place. Several security
challenges are associated with intelligent and
connected vehicles [9], [11], [12]. Data sharing
between entities is also a problem that should be well-
researched.

2 LITERATURE REVIEW

Several methods of machine learning have been
investigated that preserve privacy, including linear
regression, SVMs, naive Bayes classifiers, and logic
regressions. In recent years, deep learning [13] has
also gained attention. The author [14] trains a linear
regression classifier using a hybrid approach based on
vertically partitioned datasets. Two parties compute
using garbled circuits in this protocol. Two parties
require a crypto service provider, and multiple parties
require an evaluator and crypto service provider
simultaneously.

In [15], the author developed an algorithm using
heteromorphic encryption, and Yao garbled circuits
were separated. Crypto service providers and
evaluators are essential for realizing
the algorithm [16]. Several machine learning
algorithms, such as linear regression, logistic
regression, and neural networks, are
supported [17], [18]. With the use of two-party
computation, data is collected from data providers,
and a model is trained securely. Neither server can
work simultaneously with the other. An author [19]
developed a framework using three servers to train
linear regression models, logistic regression models,
and neural networks.

2.1 Machine Learning in Vehicular
Social Networks (VSNs)

Vehicular social networks (VSNs) are adopting
machine learning (ML) techniques for a variety of

applications [20]. Transport and communication can
be enhanced through these techniques by leveraging
data collected from vehicles and their surroundings.
Intelligent and adaptive services can be provided by
VSNs with ML algorithms, addressing the increasing
demands of modern transportation systems. A
growing volume of vehicle data necessitates machine
learning to extract valuable insights and optimize
network performance. As a consequence of these
applications, road safety is enhanced, vehicular
services are improved, and intelligent transportation
systems are promoted [21]. With ML algorithms,
drivers can be warned of potential hazards in real time
and reduce the risk of accidents by predicting
potential hazards. Additionally, machine learning
helps optimize traffic flow through the dynamic
adjustment of traffic signals and efficient routing of
vehicles, which in turn reduces congestion and
increases travel time. Additionally, the use of
machine learning in VSNs facilitates customized
services, such as navigation and entertainment
options, which enhances the driving experience.

2.2 Blockchain Technology in
Vehicular Social Networks

VSNs can benefit from blockchain technology in
terms of security and efficiency [22]. As a result of its
inherent properties, such as immutability and
transparency, blockchains are ideally suited to
address the security and efficiency challenges facing
VSNs. In addition to ensuring data integrity and
authenticity, blockchain enables VSNs to streamline
data sharing and access control processes. Secure
transactions are enhanced by blockchain's
decentralization, anonymity, and trust properties. By
eliminating a central authority, the network will be
less prone to failures and will become more resilient.
In addition to protecting participants' identities,
anonymity also prevents tracking and profiling by
unauthorized parties. Participants in the blockchain
network benefit from the tamper-proof and verifiable
properties of blockchain, resulting in a high level of
trust. Combined, these features improve VSN
security and efficiency.

3 PROPOSED METHODOLOGY

3.1 SVM Overview

SVM is explained first by describing the notation.
When a prime superscript is applied to a vector, it
converts it to a row vector. A matrix containing two
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vectors x and y is denoted by the scalar product. x'y,
and a matrix containing ||x|| 2-norm is called x.
Taking an n-dimensional input space and using m * n
matrix a to represent m data points. Data points A are
labelled +1 or -1 using a m * n diagonal matrix D. x;
is represented by the class label D;; or d; in short. In
mathematics, e denotes a column vector of ones of
any dimension. A matrix with arbitrary dimensions is
called an identity matrix.

Here is an example of a linear binary classification
task. This problem can be solved with SVM by
identifying the separating hyperplane (w - x = y)
that maximizes the margin between the hyperplane
and the closest data points. When a boundary is
located at a different distance from each support
vector, we use the "soft" margin. A "hard" margin is

1 - . .
expressed as T as illustrated below. Following is a

primal program that combines the standard SVM
solution with the objective of maximizing margin
while minimizing error [23], [24]:

1

min-w'w + ve'y, @)
wy 2

s.t. D(Aw —ey) +y=eandy=0. (2)

The method minimizes both the margin and error (w'
and e'y). SVM allows soft margins or error by
including the slack variable y in constraint (2). As the
objective function (1) minimizes the slack or error, it
will be larger than zero if the point lies within the
margins. This parameter (a user parameter) balances
the margin size with the error. With the help of this
optimization problem, we will be able to calculate the
vector of weights w and the bias b. As soon as w and
y are calculated, we can identify the class of a new
data object x using f(x) = w'x — y, where
f(x) > 0 indicates a positive class, otherwise a
negative class.

3.2 Threshold Cryptosystems of

Paillier
Typically, threshold cryptosystems have two
components:
1) the public key is distributed, and the secret key
is shared;

2) the secret key is decrypted and signed based on
the shared representation.

When there should be no knowledge of the secret
key of an individual, threshold schemes are vital. We
have previously proposed threshold RSA encryption
and decryption [20], DSS encryption and decryption
[20] and Paillier in multiparty
settings [19].

We have previously proposed threshold RSA
encryption and decryption systems [25], SS
encryption and decryption [26], DSS [26] and Paillier
in multiparty settings. There are some cases (e.g.,
ElGamal) where multiparty techniques can easily be
applied to two-party settings. However, there is still
no solution to the problem of anti-malicious two-
party threshold Paillier encryption.

3.3 System Model

According to Figure 1, a system such as ours is
composed of three components: DD, DP, and BSP
(Blockchain Service Platform).

Data Device. Sensors, mobile devices, and other
data-generating devices are examples of this. Using
these devices, valuable data can be collected and
analyzed.

Data Provider: It is the responsibility of data
providers to generate, collect, store, and analyze data
from a variety of sources. The equipment and
methods used by these participants resulted in varying
data sets. As far as attributes are concerned, these
diverse data sets complement one another. The
participants in this collaborative machine-learning
effort also serve as model trainers and provide data.
This paper’s scheme involves participants performing
most training tasks locally.

Blockchain Service Platform. This platform uses
blockchain  technology. The BSP provides
participants with a transparent platform for sharing
data, allowing them access to all the data stored there.
Moreover, the BSP protects data records from
unauthorized alteration by maintaining their integrity.
Additionally, it provides robust security measures
that prevent data from leaving the participants'
domain from being accessed. Participants and BSPs
communicate using encrypted communications to
ensure data confidentiality and prevent leakage.

Threat Model. A single role is assigned to the data
provider in our scheme. In the security model, we
view participants as honest but curious, implying that
while they are curious about others' data, they will
abide by the rules. In addition, as participants interact
with the BSP extensively, potential threats during this
interaction process are also considered.

3.4 The Construction of Secure SVM

3.4.1 Overview of Secure SVM Training
with l1oT Data

SVM models are trained using data collected from
multiple 10T data providers in this method. A
provider of 10T data preprocesses loT data instances,
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encrypts them locally with their private keys, and
generates transactions to record them on a
blockchain. In the global ledger, encrypted data can
be accessed by data analysts who are training the
SVM model. Interaction with each data provider is a
necessary part of the training process.

3.4.2 Blockchain-Based Encryption of Data
Sharing

Our blockchain transaction structure enables the
storage of encrypted IoT data. Inputs and outputs are
the two main fields of a transaction. There are three
fields in the input form: the data provider's address,
the type of l0T device, and the encrypted data. Output
fields include the data analyst's address, encrypted
data, and IoT device type. Address fields contain
32-byte hash values. Using the homomorphic
encryption Paillier, the encrypted data was generated.
The Bitcoin blockchain stores encrypted data
instances that are 128 bytes long, assuming the
private key is 128 bytes long. 10T device type
segments are 4 bytes long.

3.5 Building Blocks

Gradient Descent. It is possible to optimize the
parameters of an SVM using several methods.
Sequential minimum optimization algorithms (SMO)
and gradient descent algorithms (GD) are examples
of these algorithms. It is a method for optimizing
biquadratic SVM programs. Also, linear SVM and
sparse data are well handled. There are many
comparisons, dots, and divisions involved in SMO,
which makes it complex. As a result of applying SMO
cryptographically, there is a great deal of cost
associated with computing and communication.
Based on GD, SVM optimization is a simple and
efficient algorithm that involves only a few
comparisons and multiplications of vectors. For this
reason, we selected GD as the optimization algorithm
for optimizing SVM model parameters.

In the GD method, the primary SVM is converted
into an empirical loss minimization problem by using
a penalty factor.

m
1 2
min= [ lwl* + € ) L0w,b, o y0). ()
w,b 2 L

i=1

In this equation, the hinge-loss function appears
on the right side

C; L(w, b, (x, ) = C; max{0,1 — y;(wx; — b)}. (4)

In most cases, % is the misclassification penalty,
and C is the penalty.
GD consists of the following forms:
Xpe1 = X — AAGrad(x,). ©)

Secure Polynomial Multiplication. A secure
addition can be described as a homomorphic addition
based on Paillier's homomorphic property

[[m1 + mz]] = [[m1]] * [[mz]](mOsz)- (6)

As an example of secure subtraction, consider the
following:

[[m1 - mz]] = [[m1]] * [[mz]]_l(mosz). (7

The modular multiplicative inverse is [[m]] ",
which performs the operation

[[m]] * [m]]* — 1 mod N? = 1. ®)
Functions can be used to compute [[m]]_l

— (N)_
o, [m]] " = [m]]"7. @
The manipulation of ciphertext can be used to
obtain polynomial multiplication,

[[am, + bm,]] = [[m{’]] (modN?). (10)

During the training model, the calculated median
value must be shared between all three participants.
A threshold homomorphic encryption scheme is used
as the solution to protect the shared data, ensuring its
security and ensuring gradient calculation accuracy.
As a basis for judging the manner in which the
gradients should be updated, we construct equations
(11), (12), and (7) using additive homomorphic

encryption.
[fa] = Zal’”ﬂ_[[[af]]. (a

[[r2]] = [Z rzi” = 1_1[ 1], a2

[lary +151] = [lan]][[r2]] = [[ﬂ[[a]}[[rzll =[la]"[=]].  (13)

This solution determined the gradient update
method by comparing the encoded calculation result
with the constant 1.
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3.6 Data Sharing on BSP and Security
Analysis

The BSP simplifies point-to-point communications
by securely computing intermediate values. On-chain
data is managed, and smart contracts execute queries.
During the iteration process, every participant
uploads data twice: once for calculating the
intermediate values (IVs) and once for calculating the
decrypted values (DVs).

3.7 The Format of IVs

Iteration Round. Data exchange round, managed by
smart contracts, during collaborative model training.

DP ID: At the time of data upload, the data owner
is automatically identified.

Training Intermediate Value. When training the
model, the encrypted state's intermediate value is
used. The encrypted state sums each participant's
values and compares them to 1. This comparison uses
three cryptographic parameters:

= rl: Comparative integer that is unencrypted.

= r2: For comparison, a positive integer is
encrypted.

= r3: A positive integer that has not been
encrypted is used for comparison.

3.8 Random Positive Integer

In the next iteration, the data instances will be
determined by a random generator for each
participant.

3.9 The Format of DVs

Iteration Round. Identifies the round of data
exchange, similar to I1Vs.

DP ID. Provides information about who owns the
data.

Decrypted Value. Decrypting the result based on
each participant's private key allows participants to
obtain the final decryption result collectively.

4 RESULT ANALYSIS AND
DISCUSSION

Figures 1 and 2 illustrates the PP-SVM's
classification accuracy, showing no observable
performance degradation compared to the standard
SVM. In spite of the threshold Paillier encryption, the
encryption and decryption processes maintain

computational precision, ensuring that the classifier
remains effective.
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Figure 1: Performance of classifier accuracy.
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Figure 2: Recall comparison of SVM and PP-SVM on
BCWD and ACAD.

In Figure 2, both the standard SVM and PP-SVM
models are compared using BCWD and ACAD
datasets. There is little difference in recall scores
between the two models, which indicates that PP-
SVM is not affected by the privacy-preserving
mechanism. Data privacy is protected while
maintaining effectiveness in the proposed model.

In this study, the standard SVM model is
compared with the proposed PP-SVM model on two
datasets: BCWD and ACAD. BCWD dataset has two
yellow bars, one representing performance on the
ACAD dataset and one representing performance on
the BCWD dataset. Only slight differences occur in
accuracy between the two models across the datasets.
The proposed privacy-preserving PP-SVM model
performs as well as a standard SVM without
sacrificing performance, proving its efficiency in
secure data processing.
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Figure 3: Accuracy with different numbers of VDPs.

Both datasets are represented in Figure 4. In
general, the time spent in computation remains
relatively low, with communications overhead taking
up the majority of the time. Communication time
remains elevated even as the training phase is
completed quickly. Data sharing on consortium
blockchains is often delayed due to consensus
mechanisms among participating nodes, which
require unavoidable delays.
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Figure 4: Performance of classifier efficiency.

5 CONCLUSIONS

SVM classifiers can be trained in VSNs using a
privacy-preserving technique based on consortium
blockchains and threshold Paillier encryption. As a
result of the proposed model, data providers will no
longer have to depend on trusted third parties to train

accurate classifiers, thereby significantly enhancing
user autonomy, reducing privacy risks, and
effectively safeguarding data confidentiality. This
novel system strategically minimizes communication
overheads and costs while ensuring high computing
precision by encrypting only intermediate
computation values, subsequently optimizing them
through gradient descent algorithms. A thorough
evaluation of the PP-SVM model demonstrates that
its classification accuracy is consistently comparable
to traditional SVM methods, and confirms its
robustness and adaptability under diverse operational
configurations and settings. Furthermore, consortium
blockchain technology enhances data sharing
processes by improving transparency, enforcing
stringent security protocols, and maintaining strong
access control mechanisms. Consequently, this
framework represents a practical, scalable, and robust
solution for securing machine learning processes in
decentralized networks where privacy preservation
and secure collaboration are critical.
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