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Abstract: It presents both opportunities for intelligent transportation systems and challenges for ensuring privacy during 

the data analysis process that VSNs (Vehicular Social Networks) generate. Our paper proposes a threshold 

Paillier cryptosystem and consortium blockchain for training Support Vector Machines (SVMs) on vertically 

partitioned datasets. Traditional approaches that rely on trusted third parties are insecure compared to 

blockchain-based collaboration. Most computations are performed locally and intermediate values are only 

shared if they are encrypted. This ensures high levels of privacy and efficiency. This model (PP-SVM) offers 

classification accuracy comparable to standard SVMs, resulting in privacy-preserving learning environments 

in virtual social networks. As a result of this approach, sensitive user data is effectively protected, and a robust 

sense of trust among network members is fostered. In addition to ensuring data integrity, consortium 

blockchain technology promotes collaborative learning by leveraging its inherently decentralized nature, 

facilitating secure interactions and shared decision-making processes. With the rapid evolution and increasing 

adoption of vehicular social networks, preserving user privacy has become increasingly crucial, demanding 

scalable and reliable security mechanisms. 

1 INTRODUCTION 

Vehicular Social Networks (VSNs) are a significant 
advancement in intelligent transportation systems, 
enabling vehicle-to-vehicle and infrastructure-to-
network data exchange. As a result of these networks, 
traffic management, safety, and user experience can 
be improved [1]. A critical challenge remains, 
however: securing sensitive data and enabling 
collaborative, decentralized decision-making while 
protecting privacy. The increasing amount of real-
time, location-based, and personal data being shared 
in VSNs makes privacy preservation essential. 
Blockchain-based machine learning (ML) is one 
promising solution for addressing privacy concerns 
while allowing intelligent data processing. In 
particular, consortium blockchains provide a secure 
and transparent platform for managing data and 
facilitating collaborative learning, as they are 
permissioned blockchains where trusted parties 
collaborate. A similar setup would allow vehicles to 
contribute data for training machine learning models 
without exposing their sensitive information to 
others. 

Several scenarios have benefited from cloud and 
edge computing, including mobile 
social networks (VSNs) [2], [3]. VSNs can be 
optimized in terms of safety, convenience, amenity, 
and entertainment with the use of 
efficient methods [4], [5]. The application of machine 
learning and deep learning has captured the interest 
of researchers across a wide range of 
disciplines [6], [7]. Data analysis of VSNs is 
gradually advancing with the application of related 
technologies, including machine learning and deep 
learning. In many scenarios, support vector machines 
(SVMs) are frequently used due to their efficiency 
and robustness. Negative communication conditions 
can be detected using SVM, for example.VSNs 
collect data from multiple sources, including vehicle 
manufacturers, vehicle management agencies, and 
social networking application developers [8], [9]. 

Data sources differ between these entities, so their 
attributes are different. A VSN rarely has a 
comprehensive training dataset due to the limited 
number of sources available. Vehicle network service 
platforms control the majority of vehicle location and 
mobility trace attributes, and social network 
applications may control user preferences. As you 
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might expect, the performance of SVM classifiers is 
determined by datasets [10]. A VSN application 
trains SVM classifiers by combining datasets with 
sufficient attributes before reaching a more efficient 
model. An alternative approach is to segment the 
merged dataset vertically based on the datasets owned 
by the entities. SVM training presents several serious 
security challenges, however. VSNs contain 
extensive private information (e.g., vehicle location, 
user preferences), so companies are prohibited from 
using and sharing this information across borders due 
to constantly enacted regulations. VSN data, 
however, contain high-value information that makes 
data providers hesitant to share their original data. 
The value of shared data is lost if a privacy-preserving 
mechanism is not in place. Several security 
challenges are associated with intelligent and 
connected vehicles [9], [11], [12]. Data sharing 
between entities is also a problem that should be well-
researched. 

2 LITERATURE REVIEW 

Several methods of machine learning have been 
investigated that preserve privacy, including linear 
regression, SVMs, naive Bayes classifiers, and logic 
regressions. In recent years, deep learning [13] has 
also gained attention. The author [14] trains a linear 
regression classifier using a hybrid approach based on 
vertically partitioned datasets. Two parties compute 
using garbled circuits in this protocol. Two parties 
require a crypto service provider, and multiple parties 
require an evaluator and crypto service provider 
simultaneously.  

In [15], the author developed an algorithm using 
heteromorphic encryption, and Yao garbled circuits 
were separated. Crypto service providers and 
evaluators are essential for realizing 
the algorithm [16]. Several machine learning 
algorithms, such as linear regression, logistic 
regression, and neural networks, are 
supported [17], [18]. With the use of two-party 
computation, data is collected from data providers, 
and a model is trained securely. Neither server can 
work simultaneously with the other. An author [19] 
developed a framework using three servers to train 
linear regression models, logistic regression models, 
and neural networks.  

2.1 Machine Learning in Vehicular 
Social Networks (VSNs) 

Vehicular social networks (VSNs) are adopting 

machine learning (ML) techniques for a variety of 

applications [20]. Transport and communication can 

be enhanced through these techniques by leveraging 

data collected from vehicles and their surroundings. 

Intelligent and adaptive services can be provided by 

VSNs with ML algorithms, addressing the increasing 

demands of modern transportation systems. A 

growing volume of vehicle data necessitates machine 

learning to extract valuable insights and optimize 

network performance. As a consequence of these 

applications, road safety is enhanced, vehicular 

services are improved, and intelligent transportation 

systems are promoted [21]. With ML algorithms, 

drivers can be warned of potential hazards in real time 

and reduce the risk of accidents by predicting 

potential hazards. Additionally, machine learning 

helps optimize traffic flow through the dynamic 

adjustment of traffic signals and efficient routing of 

vehicles, which in turn reduces congestion and 

increases travel time. Additionally, the use of 

machine learning in VSNs facilitates customized 

services, such as navigation and entertainment 

options, which enhances the driving experience. 

2.2 Blockchain Technology in 
Vehicular Social Networks 

VSNs can benefit from blockchain technology in 
terms of security and efficiency [22]. As a result of its 
inherent properties, such as immutability and 
transparency, blockchains are ideally suited to 
address the security and efficiency challenges facing 
VSNs. In addition to ensuring data integrity and 
authenticity, blockchain enables VSNs to streamline 
data sharing and access control processes. Secure 
transactions are enhanced by blockchain's 
decentralization, anonymity, and trust properties. By 
eliminating a central authority, the network will be 
less prone to failures and will become more resilient. 
In addition to protecting participants' identities, 
anonymity also prevents tracking and profiling by 
unauthorized parties. Participants in the blockchain 
network benefit from the tamper-proof and verifiable 
properties of blockchain, resulting in a high level of 
trust. Combined, these features improve VSN 
security and efficiency. 

3 PROPOSED METHODOLOGY 

3.1 SVM Overview 

SVM is explained first by describing the notation. 
When a prime superscript is applied to a vector, it 
converts it to a row vector. A matrix containing two 
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vectors 𝑥 and 𝑦 is denoted by the scalar product. 𝑥′𝑦, 

and a matrix containing ||𝑥|| 2-norm is called 𝑥. 
Taking an n-dimensional input space and using 𝑚 ∗ 𝑛 

matrix a to represent 𝑚 data points. Data points A are 

labelled +1 or -1 using a 𝑚 ∗ 𝑛 diagonal matrix D. 𝑥𝑖

is represented by the class label 𝐷𝑖𝑖 or 𝑑𝑖 in short. In

mathematics, 𝑒 denotes a column vector of ones of 
any dimension. A matrix with arbitrary dimensions is 
called an identity matrix. 

Here is an example of a linear binary classification 
task. This problem can be solved with SVM by 
identifying the separating hyperplane (𝑤 ·  𝑥 =  𝛾)  
that maximizes the margin between the hyperplane 
and the closest data points. When a boundary is 
located at a different distance from each support 
vector, we use the "soft" margin. A "hard" margin is 

expressed as 
1

||𝑤||
, as illustrated below. Following is a 

primal program that combines the standard SVM 
solution with the objective of maximizing margin 
while minimizing error [23], [24]: 

min
𝑤,𝑦

1

2
𝑤′𝑤 + 𝑣𝑒′𝑦,   (1) 

𝑠. 𝑡. 𝐷(𝐴𝑤 − 𝑒𝑦) + 𝑦 ≥ 𝑒 𝑎𝑛𝑑 𝑦 ≥ 0 .  (2) 

The method minimizes both the margin and error (𝑤′ 
and 𝑒′𝑦). SVM allows soft margins or error by 
including the slack variable 𝑦 in constraint (2). As the 
objective function (1) minimizes the slack or error, it 
will be larger than zero if the point lies within the 
margins. This parameter (a user parameter) balances 
the margin size with the error. With the help of this 
optimization problem, we will be able to calculate the 
vector of weights w and the bias 𝑏. As soon as w and 
y are calculated, we can identify the class of a new 
data object 𝑥 using 𝑓(𝑥)  =  𝑤′ 𝑥 −  𝛾, where 

𝑓(𝑥)  >  0 indicates a positive class, otherwise a 
negative class. 

3.2 Threshold Cryptosystems of 
Paillier 

Typically, threshold cryptosystems have two 
components:  

1) the public key is distributed, and the secret key
is shared;

2) the secret key is decrypted and signed based on
the shared representation.

When there should be no knowledge of the secret 
key of an individual, threshold schemes are vital. We 
have previously proposed threshold RSA encryption 
and decryption [20], DSS encryption and decryption 
[20] and Paillier in multiparty 
settings [19]. 

We have previously proposed threshold RSA 
encryption and decryption systems [25], SS 
encryption and decryption [26], DSS [26] and Paillier 
in multiparty settings. There are some cases (e.g., 
ElGamal) where multiparty techniques can easily be 
applied to two-party settings. However, there is still 
no solution to the problem of anti-malicious two-
party threshold Paillier encryption. 

3.3 System Model 

According to Figure 1, a system such as ours is 
composed of three components: DD, DP, and BSP 
(Blockchain Service Platform). 

Data Device. Sensors, mobile devices, and other 
data-generating devices are examples of this. Using 
these devices, valuable data can be collected and 
analyzed. 

Data Provider: It is the responsibility of data 
providers to generate, collect, store, and analyze data 
from a variety of sources. The equipment and 
methods used by these participants resulted in varying 
data sets. As far as attributes are concerned, these 
diverse data sets complement one another. The 
participants in this collaborative machine-learning 
effort also serve as model trainers and provide data. 
This paper's scheme involves participants performing 
most training tasks locally. 

Blockchain Service Platform. This platform uses 
blockchain technology. The BSP provides 
participants with a transparent platform for sharing 
data, allowing them access to all the data stored there. 
Moreover, the BSP protects data records from 
unauthorized alteration by maintaining their integrity. 
Additionally, it provides robust security measures 
that prevent data from leaving the participants' 
domain from being accessed. Participants and BSPs 
communicate using encrypted communications to 
ensure data confidentiality and prevent leakage. 

Threat Model. A single role is assigned to the data 
provider in our scheme. In the security model, we 
view participants as honest but curious, implying that 
while they are curious about others' data, they will 
abide by the rules. In addition, as participants interact 
with the BSP extensively, potential threats during this 
interaction process are also considered. 

3.4  The Construction of Secure SVM 

3.4.1 Overview of Secure SVM Training 
with IoT Data 

SVM models are trained using data collected from 

multiple IoT data providers in this method. A 

provider of IoT data preprocesses IoT data instances, 
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encrypts them locally with their private keys, and 

generates transactions to record them on a 

blockchain. In the global ledger, encrypted data can 

be accessed by data analysts who are training the 

SVM model. Interaction with each data provider is a 

necessary part of the training process. 

3.4.2 Blockchain-Based Encryption of Data 
Sharing 

Our blockchain transaction structure enables the 

storage of encrypted IoT data. Inputs and outputs are 

the two main fields of a transaction. There are three 

fields in the input form: the data provider's address, 

the type of IoT device, and the encrypted data. Output 

fields include the data analyst's address, encrypted 

data, and IoT device type. Address fields contain 

32-byte hash values. Using the homomorphic

encryption Paillier, the encrypted data was generated.

The Bitcoin blockchain stores encrypted data

instances that are 128 bytes long, assuming the

private key is 128 bytes long. IoT device type

segments are 4 bytes long.

3.5 Building Blocks 

Gradient Descent. It is possible to optimize the 

parameters of an SVM using several methods. 

Sequential minimum optimization algorithms (SMO) 

and gradient descent algorithms (GD) are examples 

of these algorithms. It is a method for optimizing 

biquadratic SVM programs. Also, linear SVM and 

sparse data are well handled. There are many 

comparisons, dots, and divisions involved in SMO, 

which makes it complex. As a result of applying SMO 

cryptographically, there is a great deal of cost 

associated with computing and communication. 

Based on GD, SVM optimization is a simple and 

efficient algorithm that involves only a few 

comparisons and multiplications of vectors. For this 

reason, we selected GD as the optimization algorithm 

for optimizing SVM model parameters. 

In the GD method, the primary SVM is converted 

into an empirical loss minimization problem by using 

a penalty factor. 

min
𝑤,𝑏

1

2
||𝑤||

2
+ 𝐶 ∑ 𝐿(𝑤, 𝑏, (𝑥𝑖 , 𝑦𝑖))

𝑚

𝑖=1

.      (3) 

In this equation, the hinge-loss function appears 

on the right side 

𝐶 ∑ 𝐿(𝑤, 𝑏, (𝑥𝑖 , 𝑦𝑖))

𝑚

𝑖=1

= 𝐶 ∑ max{0,1 − 𝑦𝑖(𝑤𝑥𝑖 − 𝑏)} .

𝑚

𝑖=1

 (4) 

In most cases, 
1

𝑚
 is the misclassification penalty, 

and 𝐶 is the penalty. 

GD consists of the following forms: 

𝑥𝑛+1 = 𝑥𝑛 − 𝜆Δ𝐺𝑟𝑎𝑑(𝑥𝑛).  (5) 

Secure Polynomial Multiplication. A secure 

addition can be described as a homomorphic addition 

based on Paillier's homomorphic property 

[[𝑚1 + 𝑚2]] = [[𝑚1]] ∗ [[𝑚2]](𝑚𝑜𝑑𝑁2).     (6)

As an example of secure subtraction, consider the 

following: 

[[𝑚1 − 𝑚2]] = [[𝑚1]] ∗ [[𝑚2]]
−1

(𝑚𝑜𝑑𝑁2).  (7)

The modular multiplicative inverse is [[𝑚]]
−1

,

which performs the operation 

[[𝑚]] ∗ [𝑚]]^ − 1 𝑚𝑜𝑑 𝑁2 = 1.        (8) 

Functions can be used to compute [[𝑚]]
−1

𝜙(𝑁), [[𝑚]]
−1

= [[𝑚]]
𝜙(𝑁)−1

.  (9) 

The manipulation of ciphertext can be used to 

obtain polynomial multiplication, 

[[𝑎𝑚1 + 𝑏𝑚2]] = [[𝑚1
𝑏]] (𝑚𝑜𝑑𝑁2).     (10)

During the training model, the calculated median 

value must be shared between all three participants. 

A threshold homomorphic encryption scheme is used 

as the solution to protect the shared data, ensuring its 

security and ensuring gradient calculation accuracy. 

As a basis for judging the manner in which the 

gradients should be updated, we construct equations 

(11), (12), and (7) using additive homomorphic 

encryption. 

[[𝑎]] = [[∑ 𝑎𝑖

𝑛

𝑖=1

]] = ∏ [[𝑎𝑖]]

𝑛

𝑖=1

,    (11) 

[[𝑟2]] = [[∑ 𝑟2
𝑖

𝑛

𝑖=1

]] = ∏ [[𝑟2
𝑖]]

𝑛

𝑖=1

,   (12) 

[[𝑎𝑟1 + 𝑟2]] = [[𝑎𝑟1]][[𝑟2]] = [[∏[[𝑎]][[𝑟2]] = [[𝑎]]
𝑟1

[[𝑟2]].

𝑟1

𝑖=1

 

This solution determined the gradient update 

method by comparing the encoded calculation result 

with the constant 1.  

(13) 
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3.6 Data Sharing on BSP and Security 
Analysis 

The BSP simplifies point-to-point communications 

by securely computing intermediate values. On-chain 

data is managed, and smart contracts execute queries. 

During the iteration process, every participant 

uploads data twice: once for calculating the 

intermediate values (IVs) and once for calculating the 

decrypted values (DVs). 

3.7 The Format of IVs 

Iteration Round. Data exchange round, managed by 

smart contracts, during collaborative model training.  

DP ID: At the time of data upload, the data owner 

is automatically identified.  

Training Intermediate Value. When training the 

model, the encrypted state's intermediate value is 

used. The encrypted state sums each participant's 

values and compares them to 1. This comparison uses 

three cryptographic parameters: 

▪ r1: Comparative integer that is unencrypted.

▪ r2: For comparison, a positive integer is

encrypted.

▪ r3: A positive integer that has not been

encrypted is used for comparison.

3.8 Random Positive Integer 

In the next iteration, the data instances will be 

determined by a random generator for each 

participant. 

3.9 The Format of DVs 

Iteration Round. Identifies the round of data 

exchange, similar to IVs.  

DP ID. Provides information about who owns the 

data.  

Decrypted Value. Decrypting the result based on 

each participant's private key allows participants to 

obtain the final decryption result collectively. 

4 RESULT ANALYSIS AND 

DISCUSSION 

Figures 1 and 2 illustrates the PP-SVM's 

classification accuracy, showing no observable 

performance degradation compared to the standard 

SVM. In spite of the threshold Paillier encryption, the 

encryption and decryption processes maintain 

computational precision, ensuring that the classifier 

remains effective. 

Figure 1: Performance of classifier accuracy. 

Figure 2: Recall comparison of SVM and PP-SVM on 

BCWD and ACAD. 

In Figure 2, both the standard SVM and PP-SVM 

models are compared using BCWD and ACAD 

datasets. There is little difference in recall scores 

between the two models, which indicates that PP-

SVM is not affected by the privacy-preserving 

mechanism. Data privacy is protected while 

maintaining effectiveness in the proposed model. 

In this study, the standard SVM model is 

compared with the proposed PP-SVM model on two 

datasets: BCWD and ACAD. BCWD dataset has two 

yellow bars, one representing performance on the 

ACAD dataset and one representing performance on 

the BCWD dataset. Only slight differences occur in 

accuracy between the two models across the datasets. 

The proposed privacy-preserving PP-SVM model 

performs as well as a standard SVM without 

sacrificing performance, proving its efficiency in 

secure data processing. 
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Figure 3: Accuracy with different numbers of VDPs. 

Both datasets are represented in Figure 4. In 

general, the time spent in computation remains 

relatively low, with communications overhead taking 

up the majority of the time. Communication time 

remains elevated even as the training phase is 

completed quickly. Data sharing on consortium 

blockchains is often delayed due to consensus 

mechanisms among participating nodes, which 

require unavoidable delays. 

Figure 4: Performance of classifier efficiency. 

5 CONCLUSIONS 

SVM classifiers can be trained in VSNs using a 

privacy-preserving technique based on consortium 

blockchains and threshold Paillier encryption. As a 

result of the proposed model, data providers will no 

longer have to depend on trusted third parties to train 

accurate classifiers, thereby significantly enhancing 

user autonomy, reducing privacy risks, and 

effectively safeguarding data confidentiality. This 

novel system strategically minimizes communication 

overheads and costs while ensuring high computing 

precision by encrypting only intermediate 

computation values, subsequently optimizing them 

through gradient descent algorithms. A thorough 

evaluation of the PP-SVM model demonstrates that 

its classification accuracy is consistently comparable 

to traditional SVM methods, and confirms its 

robustness and adaptability under diverse operational 

configurations and settings. Furthermore, consortium 

blockchain technology enhances data sharing 

processes by improving transparency, enforcing 

stringent security protocols, and maintaining strong 

access control mechanisms. Consequently, this 

framework represents a practical, scalable, and robust 

solution for securing machine learning processes in 

decentralized networks where privacy preservation 

and secure collaboration are critical. 
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