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Abstract: The rapid expansion of the Internet of Things (IoT) has enabled numerous industries to benefit from enhanced 

connectivity and automation. Despite these advancements, IoT devices pose serious privacy and security 

challenges due to the vast amounts of sensitive data they generate and transmit. The distributed and dynamic 

nature of IoT environments necessitates more sophisticated security measures. This paper proposes a privacy-

aware machine learning (ML) approach for securing IoT systems, aiming to detect and prevent malicious 

activities without compromising user privacy. By employing privacy-preserving ML techniques such as 

federated learning and differential privacy, the method supports efficient and adaptive threat detection while 

ensuring data confidentiality. Comparative results clearly indicate that the proposed approach significantly 

outperforms existing solutions in terms of both overall performance and privacy protection, thereby offering 

a more robust and secure framework for safeguarding IoT networks under diverse and sophisticated attack 

scenarios. This research focuses on developing advanced, privacy-preserving machine learning methods 

tailored specifically for enhancing IoT security. By strategically combining federated learning techniques with 

lightweight encryption methods, the framework effectively protects sensitive data at the edge-device level, 

preventing unauthorized access or misuse. Experimental evaluations demonstrate that our proposed model 

achieves approximately 12% higher accuracy compared to conventional differential privacy methods, all 

while maintaining rigorous confidentiality standards and minimal computational overhead. These outcomes 

suggest promising potential for broad real-world applicability in secure IoT deployments. 

1 INTRODUCTION 

There has been a revolution in the way devices 

communicate, interact, and connect, including health 

care, smart cities, agriculture, and transportation, 

thanks to the IoT [1]. The collection of highly 

sensitive data by IoT devices poses a serious 

challenge to ensuring their privacy and security. 

There is a significant gap between traditional security 

measures and the complexities of the IoT ecosystem, 

which is characterized by heterogeneous devices and 

continuous data flows. It has become evident that 

machine learning can enhance the efficiency of IoT 

systems by providing predictive analytics, anomaly 

detection, and automation capabilities [2]. It is, 

however, important to note that the widespread 

adoption of ML in IoT systems raises privacy 

concerns because the data that is used for training 

models can reveal sensitive or personal information. 

A privacy-aware machine learning technique is 

therefore crucial to building secure IoT systems that 

not only offer intelligent insights but also protect user 

privacy [3]. 

The IoT is a network of interconnected devices 

that exchange data without direct human 

intervention. [4]. Sensors, software, and other 

technologies embedded in physical objects facilitate 

data collection and sharing, which fundamentally 

alters daily life. Connected ecosystems enable 

devices to communicate, analyze data, and make 

autonomous decisions, resulting in greater efficiency, 

automation, and convenience. The IoT application 

landscape is vast and continually expanding, driven 

by advancements in technology and internet 

connectivity, as well as smart homes and wearable 

devices. As IoT expands, a number of aspects of daily 

life and a wide range of industries are being impacted, 

resulting in greater efficiency and automation [5], [6]. 

Controlling thermostats, lighting, security cameras, 

and appliances through the IoT improves comfort and 
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energy efficiency in homes. Patients' health can be 

monitored in real-time, and personalized treatment 

plans can be created using wearable sensors and 

remote monitoring devices. Increasing operational 

efficiency, predictive maintenance, and supply chain 

optimization are all facilitated by the integration of 

IoT. As IoT devices proliferate, they enhance existing 

applications and open up the possibility of innovative 

solutions previously unimaginable, driving economic 

growth and societal advancement. The IoT presents 

new cyber-physical security and privacy threats, 

highlighting the need for robust security measures to 

safeguard sensitive information [7]. As more 

connected devices are connected, the attack surface 

increases, increasing the risk of unauthorized access, 

data breaches, and service interruptions. An 

integrated approach to securing IoT ecosystems must 

address vulnerabilities on all levels, including 

devices, networks, and clouds, with advanced 

security technologies and best practices. To ensure 

the continued adoption and positive impact of IoT 

technologies, security is critical to maintaining user 

trust and confidence [8]. 

Manufacturers, service providers, and consumers 

have significant concerns about IoT devices' data 

security and privacy [9], [10]. Concerns arise from 

IoT systems' inherent nature, which involves 

collecting, storing, and transmitting a huge amount of 

data without explicit consent. The IoT can collect 

more than location data and health metrics, making 

them an attractive target for cybercriminals. Keeping 

user data private and secure is an essential part of 

maintaining trust and preventing potential harm. 

Various cyber threats can compromise the security 

and privacy of data, including denial of service 

attacks, jamming, phishing, obfuscation, 

eavesdropping, spoofing, and invasions of 

privacy [11]. 

Since IoT ecosystems are dynamic and 

distributed, traditional security methods are often 

insufficient to secure them. More advanced and 

adaptive security solutions are therefore needed [12]. 

As IoT becomes more decentralized and 

heterogeneous, conventional security approaches 

may not be applicable [13]. As IoT devices are 

resource-constrained, they lack processing power and 

memory, which further complicates traditional 

security measures. Consequently, IoT systems 

require security solutions that are lightweight, 

scalable, and privacy-aware. ML is one of the best 

methods to address security challenges in IoT 

networks, providing real-time detection and response 

to threats using intelligent and adaptive 

solutions [14]. 

2 LITERATURE REVIEW 

IoT systems benefit from Machine Learning (ML) in 

the sense that it enhances automation, prediction, and 

decision-making. Although IoT devices are 

ubiquitous, their widespread deployment introduces 

significant privacy and security concerns. This is due 

to the constant generation, transmission, and 

processing of sensitive data across networks. Thus, 

privacy-aware ML techniques have emerged as an 

important area of research aimed at protecting 

personal information while enhancing the 

performance of IoT systems [15]. Due to the rapid 

development of the Internet and traditional 

telecommunications networks, an overwhelming 

number of terminal devices are accessing the Internet 

every day [16]. Despite their widespread application 

in IoT applications, deep learning-based technologies 

have the advantage of delivering smart decisions 

driven by big data [17]. In the event that data owners' 

private data is leaked, they could suffer enormous 

financial losses, even risking their lives. Malicious 

adversaries can gain access to the user's location 

information through a deep learning system that uses 

intelligent decision-making. Due to this, the situation 

poses a life-threatening threat to traffic safety. Hence, 

deep learning-enabled IoT applications need to 

protect users' privacy.  

2.1 Privacy-Preserving Machine 
Learning for IoT 

A major aspect of this field is developing machine 

learning algorithms that preserve privacy in IoT 

environments. It has been proposed that differential 

privacy (DP) can be used to protect user data during 

learning. Author [18] describes differential privacy as 

a method of ensuring that an individual's data can't be 

separated from the dataset, even if a user is aware of 

all the other data points. A collection of privacy-

protecting devices is now available for the IoT, such 

as health monitors, smart homes, and surveillance 

systems that generate sensitive information. 

IoT systems have also been using federated 

learning to enhance their privacy-preserving 

capabilities. Federated learning is described by [19] 

as a method of training machine learning models 

across decentralized devices without transferring raw 

data between them. Data exposed to third parties is 

minimized by aggregating and sharing only model 

updates. IoT devices may have limited resources, 

both in terms of data and computation, so this 

approach is especially useful. The author discussed 
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how federated learning can provide a balance 

between privacy, security, and accuracy in 

learning [1]. 

2.2 Privacy-Aware Security 
Mechanisms 

ML awareness is enabled not only by ML-specific 

privacy techniques but also by security mechanisms 

designed to safeguard IoT devices and networks. A 

study conducted by the author [20] investigated 

methods for calculating encrypted data using 

homomorphic encryption. ML tasks can be performed 

on IoT devices while sensitive information remains 

protected. An IoT system with homomorphic 

encryption has been used to detect anomalies and 

prevent intrusions, where data privacy is crucial, but 

immediate analysis is also required. In addition, 

blockchain has been used to secure IoT networks in a 

number of significant projects.  

Machine learning techniques that take into 

account privacy are necessary for IoT systems; 

however, adversarial attacks remain a considerable 

challenge. Devices can be compromised in a variety 

of ways through adversarial manipulation on the IoT, 

compromising the security and privacy of their users. 
As a result of adversarial attacks, [21] demonstrates 

how adversarial attacks can be used to manipulate 

machine learning models, leading to incorrect 

predictions and vulnerabilities in the system. Recent 

studies have addressed the development of robust 

models that can withstand such attacks, which include 

adversarial training and defensive strategies such as 

input sanitization, model regularization, etc. 

3 PROPOSED METHODOLOGY 

3.1 IoT Architecture 

The following section shows several existing IoT 

architectures. 

3.1.1 Three-Layer Architecture 

As a rule of thumb, IoT architecture includes three 

basic layers:  

1) applications,

2) networks,

3) perception.

Middle layers in IoT architectures consist of 

network layers and transmission layers. Network 

layers receive processed information from perception 

layers and determine the routes for sending it to 

devices, hubs, and applications using integrated 

networks. In IoT architecture, a variety of devices 

(hubs, switches, gateways, cloud computers) and 

communications technologies (Bluetooth, WiFi, 

Long-Term Evolution (LTE), etc.) are integrated. 

Using diverse communication technologies, data is 

transferred between different things or applications at 

the network layer through gateways and interfaces 

that connect heterogeneous networks. 

The application layer is responsible for 

performing operations based on the network layer's 

data [22]. The application layer is responsible for 

performing operations based on the network layer's 

data. For example, the application layer can provide a 

storage service that backs up incoming data to a 

database or an analysis service that evaluates 

incoming data to forecast the physical device's future 

state. This layer contains several applications with 

different requirements. Intelligent grids, intelligent 

transportation systems, and intelligent cities are 

examples of smart technologies.  

Multiple IoT systems use the three-layer 

architecture, which is a fundamental part of the IoT. 

IoT's multilayer architecture may appear simple, but 

its network and application layers are varied and 

complex despite its simplicity. There is more to the 

network layer than just routing data and transmitting 

it. For example, it must aggregate data, compute, and 

provide data services. Aside from providing services 

to customers and devices, the application layer must 

also provide data services (such as data mining and 

analytics). 

3.1.2 ML Classifier 

We classify IoT access gateway traffic instead of 

device traffic since it is faster and takes up less 

memory. Gateway-level traffic can be classified as 

benign or malicious traffic. There are three types of 

malware traffic: benign traffic, malicious traffic, and 

traffic induced by malware. Malicious traffic is traffic 

that has been scanned by malware, while benign 

traffic is traffic that hasn't been scanned by malware. 

Classifying gateway traffic begins with generating 

training data samples that contain packet captures 

from each class. Traffic generated by benign devices 

does not pose any difficulty since they operate 

normally. Nevertheless, malicious traffic contains 

both benign and malware-generated 

scanning/infection packets. 
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3.2 ML Model Constructor 

In order to detect access gateway traffic, ML model 

constructors retrieve feature vectors and class labels 

from the Packet traffic feature database. Algorithms 

such as Naive Bayes, Decision Trees, and Support 

Vector Machines are among them. ML classifiers are 

then used to classify the model. ML models must be 

retrained each time a new malware is discovered and 

compared to the existing ML models.  

3.3 Threats and Vulnerabilities 
Concept Definition 

Threat - In NIST's Glossary of Key Information 

Security Terms, threats are defined as follows: “Any 

circumstance or event that adversely affects 

organizational operations (including mission, 

functions, image, or reputation), organizational 

assets, or individuals through an information system 

by unauthorized access, destruction, disclosure, 

modification, or denial of service. An information 

system's vulnerability and the likelihood of an 

adversary exploiting it. 

Vulnerability - Threats can exploit the design, 

implementation, or security procedures of an 

information system because of vulnerabilities. As 

well as flaws in software components, vulnerabilities 

are also defined as flaws an adversary can exploit in 

order to cause harm. In the former definition, 

vulnerabilities are considered not just in terms of 

software components but also organizational factors. 

Further, MITRE distinguishes between 

vulnerabilities and exposures. 

Attack cost - By definition, an attack's cost is the 

effort expended by the attacker on a particular task, 

expressed through expertise, resources, and 

motivation.  

Security Threats - Security and privacy are 

fundamentally based on the CIA triad of 

confidentiality, integrity, and availability [23]. The 

IoT collects a variety of data, including identity 

information, packets sent from surveillance cameras 

to servers, commands given to cars, and multimedia 

conversations among users. 

Denial of Service - In comparison to all other 

security attacks, DoS implements itself the easiest. 

The number of IoT devices with weak security 

features is also increasing, which is why DoS is 

becoming an increasingly popular attack method. The 

DoS attack exhausts bandwidth and network 

resources as invalid requests are ingested into the 

system. Due to this, genuine users are unable to 

access the services. 

Man-in-the-middle - A Man-in-the-Middle attack 

(MiTM) has been used by criminals for centuries to 

attack computers [24]. Spoofing, impersonation, and 

other MiTM attacks can be considered. The message 

node X sends to destination B might be intercepted by 

an attacker posing as destination B while it is 

communicating with node X. Similarly to SSL 

striping, attackers can use such attacks to establish 

HTTPS connections with servers and HTTP 

connections with victims. 

3.4 IoT Privacy Requirements and 
Preserving Solutions 

Defining requirements and security and privacy 

requirements, especially, for a system whose 

components can be randomly inserted into other 

systems at varying times and places, are the biggest 

challenges for requirements engineering. Since IoT 

includes such a diverse and complex set of objects, it 

isn't easy to imagine the basic level of privacy that can 

be achieved by encrypting sensitive information. By 

encrypting transmitted data, passive attackers who are 

listening in can't access the information. In any case, 

this approach can be applied to communication 

networks as long as each communication node has a 

common secret key for the symmetric encryption of 

the data (XTEA, AES, IDEA, etc.). There must be a 

secure way of establishing or distributing this secret 

key. The use of asymmetric encryption schemes such 

as RSA and ElGamal simplifies key distribution in 

systems and encrypts data using public keys. 

3.5 The Evaluation Metrics 

Accuracy. In the accuracy formula, the proportion of 

correctly classified points is calculated over the total 

number of classified points [25]. A classifier with a 

higher accuracy is more accurate: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑝 + 𝑇𝑁 + 𝐹𝑁
.  (1) 

Precision. When it comes to precision, the 

algorithm is able to prevent false positives from being 

generated by a negative sample. According to this 

definition, precision refers to the algorithm's ability to 

label legitimate packets as harmless. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
.  (2) 

Recall. Classifiers are designed to find all positive 

samples within a test dataset, so the recall metric 

describes this ability. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
.  (3) 

F1-score. It is possible to use the true F1 metric 

since only two labels are classified. The precision and 

recall are weighted averages 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
.     (4) 

4 RESULT ANALYSIS AND 

DISCUSSION 

A 70% training dataset (including malware data as 

well as normal data) and a 30% testing dataset were 

used for this experiment. The test size of 0.3 was 

determined by using the train_test_split function from 

the Scikit-Learn library. All malware classes were 

grouped as malicious traffic since binary 

classification was the focus. In Figure 1, the results of 

this setup are presented and visualized. 

Figure 1: Based on binary classification (benign), here are 

the average results. 

Considering both normal and malicious malware 

attacks, it is apparent from Figure 2 that all machine 

learning algorithms perform excellently. In total, 

99.88% of the data is accurate. In benign traffic, 

accuracy, recall, and F1-score average 99.71 per cent, 

99.87%, and 99.85%, whereas in attack traffic, it 

averages 99.86 per cent, 99.91%, and 99.88%. 

For this experiment, training was performed with 

Ransomware and Trojan Horse, while testing was 

performed with Spyware. Machine learning was 

demonstrated to be an effective defence against 

unknown attacks as the primary objective of the 

research. As shown in Figures 3 and 4, the 

distribution of samples used for training and testing is 

illustrated, as well as the outputs that result. 

Figure 2: Based on binary classification (attack), here are 

the average results. 

Figure 3: Unclassified (benign) results averaged. 

Figure 4: Average results of unknown classifications 

(attacks). 
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Figure 5: IoT privacy solution comparison using existing 

machine learning classification methods. 

5 CONCLUSIONS 

Our study explores machine learning techniques that 

are privacy-aware and can be used to secure IoT 

systems. By integrating machine learning into IoT 

environments, both security and privacy can be 

significantly enhanced, especially through proactive 

detection, identification, and mitigation of various 

cyber threats. Leveraging federated learning 

techniques combined with differential privacy 

methods, this research demonstrates that high 

accuracy in threat detection can be achieved without 

compromising the confidentiality of user and device 

data. The proposed methodology clearly outperforms 

conventional machine learning techniques in terms of 

threat identification speed, accuracy, and privacy 

protection. As IoT systems become more prevalent 

across diverse applications, the development and 

deployment of privacy-aware machine learning 

models will be critical for effectively addressing 

emerging cybersecurity threats. In an increasingly 

interconnected world where data sharing and device 

communication are commonplace, lightweight, 

scalable, and efficient security frameworks are 

indispensable for ensuring robust protection of 

sensitive information, maintaining user trust, and 

preserving overall system integrity. 
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