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The rapid expansion of the Internet of Things (10T) has enabled numerous industries to benefit from enhanced
connectivity and automation. Despite these advancements, 10T devices pose serious privacy and security
challenges due to the vast amounts of sensitive data they generate and transmit. The distributed and dynamic
nature of 10T environments necessitates more sophisticated security measures. This paper proposes a privacy-
aware machine learning (ML) approach for securing loT systems, aiming to detect and prevent malicious
activities without compromising user privacy. By employing privacy-preserving ML techniques such as
federated learning and differential privacy, the method supports efficient and adaptive threat detection while
ensuring data confidentiality. Comparative results clearly indicate that the proposed approach significantly
outperforms existing solutions in terms of both overall performance and privacy protection, thereby offering
a more robust and secure framework for safeguarding 10T networks under diverse and sophisticated attack
scenarios. This research focuses on developing advanced, privacy-preserving machine learning methods
tailored specifically for enhancing 10T security. By strategically combining federated learning techniques with
lightweight encryption methods, the framework effectively protects sensitive data at the edge-device level,
preventing unauthorized access or misuse. Experimental evaluations demonstrate that our proposed model
achieves approximately 12% higher accuracy compared to conventional differential privacy methods, all
while maintaining rigorous confidentiality standards and minimal computational overhead. These outcomes
suggest promising potential for broad real-world applicability in secure 10T deployments.

1 INTRODUCTION

There has been a revolution in the way devices
communicate, interact, and connect, including health
care, smart cities, agriculture, and transportation,
thanks to the 10T [1]. The collection of highly
sensitive data by loT devices poses a serious
challenge to ensuring their privacy and security.
There is a significant gap between traditional security
measures and the complexities of the 10T ecosystem,
which is characterized by heterogeneous devices and
continuous data flows. It has become evident that
machine learning can enhance the efficiency of loT
systems by providing predictive analytics, anomaly
detection, and automation capabilities [2]. It is,
however, important to note that the widespread
adoption of ML in loT systems raises privacy
concerns because the data that is used for training
models can reveal sensitive or personal information.
A privacy-aware machine learning technique is
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therefore crucial to building secure 10T systems that
not only offer intelligent insights but also protect user
privacy [3].

The 10T is a network of interconnected devices
that exchange data without direct human
intervention. [4]. Sensors, software, and other
technologies embedded in physical objects facilitate
data collection and sharing, which fundamentally
alters daily life. Connected ecosystems enable
devices to communicate, analyze data, and make
autonomous decisions, resulting in greater efficiency,
automation, and convenience. The 10T application
landscape is vast and continually expanding, driven
by advancements in technology and internet
connectivity, as well as smart homes and wearable
devices. As loT expands, a number of aspects of daily
life and a wide range of industries are being impacted,
resulting in greater efficiency and automation [5], [6].
Controlling thermostats, lighting, security cameras,
and appliances through the 10T improves comfort and
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energy efficiency in homes. Patients' health can be
monitored in real-time, and personalized treatment
plans can be created using wearable sensors and
remote monitoring devices. Increasing operational
efficiency, predictive maintenance, and supply chain
optimization are all facilitated by the integration of
loT. As 10T devices proliferate, they enhance existing
applications and open up the possibility of innovative
solutions previously unimaginable, driving economic
growth and societal advancement. The 10T presents
new cyber-physical security and privacy threats,
highlighting the need for robust security measures to
safeguard sensitive information [7]. As more
connected devices are connected, the attack surface
increases, increasing the risk of unauthorized access,
data breaches, and service interruptions. An
integrated approach to securing loT ecosystems must
address vulnerabilities on all levels, including
devices, networks, and clouds, with advanced
security technologies and best practices. To ensure
the continued adoption and positive impact of lIoT
technologies, security is critical to maintaining user
trust and confidence [8].

Manufacturers, service providers, and consumers
have significant concerns about loT devices' data
security and privacy [9], [10]. Concerns arise from
IoT systems' inherent nature, which involves
collecting, storing, and transmitting a huge amount of
data without explicit consent. The loT can collect
more than location data and health metrics, making
them an attractive target for cybercriminals. Keeping
user data private and secure is an essential part of
maintaining trust and preventing potential harm.
Various cyber threats can compromise the security
and privacy of data, including denial of service

attacks, jamming, phishing, obfuscation,
eavesdropping, spoofing, and invasions of
privacy [11].

Since loT ecosystems are dynamic and

distributed, traditional security methods are often
insufficient to secure them. More advanced and
adaptive security solutions are therefore needed [12].
As loT becomes more decentralized and
heterogeneous, conventional security approaches
may not be applicable [13]. As loT devices are
resource-constrained, they lack processing power and
memory, which further complicates traditional
security measures. Consequently, 10T systems
require security solutions that are lightweight,
scalable, and privacy-aware. ML is one of the best
methods to address security challenges in loT
networks, providing real-time detection and response
to threats using intelligent and adaptive
solutions [14].
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2 LITERATURE REVIEW

10T systems benefit from Machine Learning (ML) in
the sense that it enhances automation, prediction, and
decision-making.  Although loT devices are
ubiquitous, their widespread deployment introduces
significant privacy and security concerns. This is due
to the constant generation, transmission, and
processing of sensitive data across networks. Thus,
privacy-aware ML techniques have emerged as an
important area of research aimed at protecting
personal  information while enhancing the
performance of 10T systems [15]. Due to the rapid
development of the Internet and traditional
telecommunications networks, an overwhelming
number of terminal devices are accessing the Internet
every day [16]. Despite their widespread application
in 10T applications, deep learning-based technologies
have the advantage of delivering smart decisions
driven by big data [17]. In the event that data owners'
private data is leaked, they could suffer enormous
financial losses, even risking their lives. Malicious
adversaries can gain access to the user's location
information through a deep learning system that uses
intelligent decision-making. Due to this, the situation
poses a life-threatening threat to traffic safety. Hence,
deep learning-enabled 10T applications need to
protect users' privacy.

2.1 Privacy-Preserving Machine
Learning for loT

A major aspect of this field is developing machine
learning algorithms that preserve privacy in loT
environments. It has been proposed that differential
privacy (DP) can be used to protect user data during
learning. Author [18] describes differential privacy as
a method of ensuring that an individual's data can't be
separated from the dataset, even if a user is aware of
all the other data points. A collection of privacy-
protecting devices is now available for the 10T, such
as health monitors, smart homes, and surveillance
systems that generate sensitive information.

IoT systems have also been using federated
learning to enhance their privacy-preserving
capabilities. Federated learning is described by [19]
as a method of training machine learning models
across decentralized devices without transferring raw
data between them. Data exposed to third parties is
minimized by aggregating and sharing only model
updates. 10T devices may have limited resources,
both in terms of data and computation, so this
approach is especially useful. The author discussed
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how federated learning can provide a balance
between privacy, security, and accuracy in
learning [1].

2.2 Privacy-Aware Security
Mechanisms

ML awareness is enabled not only by ML-specific
privacy techniques but also by security mechanisms
designed to safeguard 0T devices and networks. A
study conducted by the author [20] investigated
methods for calculating encrypted data using
homomorphic encryption. ML tasks can be performed
on loT devices while sensitive information remains
protected. An loT system with homomorphic
encryption has been used to detect anomalies and
prevent intrusions, where data privacy is crucial, but
immediate analysis is also required. In addition,
blockchain has been used to secure 10T networks in a
number of significant projects.

Machine learning techniques that take into
account privacy are necessary for 0T systems;
however, adversarial attacks remain a considerable
challenge. Devices can be compromised in a variety
of ways through adversarial manipulation on the IoT,
compromising the security and privacy of their users.
As a result of adversarial attacks, [21] demonstrates
how adversarial attacks can be used to manipulate
machine learning models, leading to incorrect
predictions and vulnerabilities in the system. Recent
studies have addressed the development of robust
models that can withstand such attacks, which include
adversarial training and defensive strategies such as
input sanitization, model regularization, etc.

3 PROPOSED METHODOLOGY

3.1 10T Architecture
The following section shows several existing loT
architectures.

3.1.1 Three-Layer Architecture

As a rule of thumb, 10T architecture includes three
basic layers:

1) applications,

2) networks,

3) perception.

Middle layers in IoT architectures consist of
network layers and transmission layers. Network
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layers receive processed information from perception
layers and determine the routes for sending it to
devices, hubs, and applications using integrated
networks. In 10T architecture, a variety of devices
(hubs, switches, gateways, cloud computers) and
communications technologies (Bluetooth, WiFi,
Long-Term Evolution (LTE), etc.) are integrated.
Using diverse communication technologies, data is
transferred between different things or applications at
the network layer through gateways and interfaces
that connect heterogeneous networks.

The application layer is responsible for
performing operations based on the network layer's
data [22]. The application layer is responsible for
performing operations based on the network layer's
data. For example, the application layer can provide a
storage service that backs up incoming data to a
database or an analysis service that evaluates
incoming data to forecast the physical device's future
state. This layer contains several applications with
different requirements. Intelligent grids, intelligent
transportation systems, and intelligent cities are
examples of smart technologies.

Multiple 1oT systems use the three-layer
architecture, which is a fundamental part of the IoT.
loT's multilayer architecture may appear simple, but
its network and application layers are varied and
complex despite its simplicity. There is more to the
network layer than just routing data and transmitting
it. For example, it must aggregate data, compute, and
provide data services. Aside from providing services
to customers and devices, the application layer must
also provide data services (such as data mining and
analytics).

3.1.2 ML Classifier

We classify 10T access gateway traffic instead of
device traffic since it is faster and takes up less
memory. Gateway-level traffic can be classified as
benign or malicious traffic. There are three types of
malware traffic: benign traffic, malicious traffic, and
traffic induced by malware. Malicious traffic is traffic
that has been scanned by malware, while benign
traffic is traffic that hasn't been scanned by malware.
Classifying gateway traffic begins with generating
training data samples that contain packet captures
from each class. Traffic generated by benign devices
does not pose any difficulty since they operate
normally. Nevertheless, malicious traffic contains
both benign and malware-generated
scanning/infection packets.
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3.2 ML Model Constructor

In order to detect access gateway traffic, ML model
constructors retrieve feature vectors and class labels
from the Packet traffic feature database. Algorithms
such as Naive Bayes, Decision Trees, and Support
Vector Machines are among them. ML classifiers are
then used to classify the model. ML models must be
retrained each time a new malware is discovered and
compared to the existing ML models.

3.3 Threats and Vulnerabilities
Concept Definition

Threat - In NIST's Glossary of Key Information
Security Terms, threats are defined as follows: “Any
circumstance or event that adversely affects
organizational  operations (including  mission,
functions, image, or reputation), organizational
assets, or individuals through an information system
by unauthorized access, destruction, disclosure,
modification, or denial of service. An information
system's vulnerability and the likelihood of an
adversary exploiting it.

Vulnerability - Threats can exploit the design,
implementation, or security procedures of an
information system because of vulnerabilities. As
well as flaws in software components, vulnerabilities
are also defined as flaws an adversary can exploit in
order to cause harm. In the former definition,
vulnerabilities are considered not just in terms of
software components but also organizational factors.
Further, MITRE distinguishes between
vulnerabilities and exposures.

Attack cost - By definition, an attack's cost is the
effort expended by the attacker on a particular task,
expressed through expertise, resources, and
motivation.

Security Threats - Security and privacy are
fundamentally based on the CIA triad of
confidentiality, integrity, and availability [23]. The
0T collects a variety of data, including identity
information, packets sent from surveillance cameras
to servers, commands given to cars, and multimedia
conversations among users.

Denial of Service - In comparison to all other
security attacks, DoS implements itself the easiest.
The number of loT devices with weak security
features is also increasing, which is why DoS is
becoming an increasingly popular attack method. The
DoS attack exhausts bandwidth and network
resources as invalid requests are ingested into the
system. Due to this, genuine users are unable to
access the services.
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Man-in-the-middle - A Man-in-the-Middle attack
(MiTM) has been used by criminals for centuries to
attack computers [24]. Spoofing, impersonation, and
other MiTM attacks can be considered. The message
node X sends to destination B might be intercepted by
an attacker posing as destination B while it is
communicating with node X. Similarly to SSL
striping, attackers can use such attacks to establish
HTTPS connections with servers and HTTP
connections with victims.

3.4 10T Privacy Requirements and

Preserving Solutions

Defining requirements and security and privacy
requirements, especially, for a system whose
components can be randomly inserted into other
systems at varying times and places, are the biggest
challenges for requirements engineering. Since loT
includes such a diverse and complex set of objects, it
isn't easy to imagine the basic level of privacy that can
be achieved by encrypting sensitive information. By
encrypting transmitted data, passive attackers who are
listening in can't access the information. In any case,
this approach can be applied to communication
networks as long as each communication node has a
common secret key for the symmetric encryption of
the data (XTEA, AES, IDEA, etc.). There must be a
secure way of establishing or distributing this secret
key. The use of asymmetric encryption schemes such
as RSA and ElGamal simplifies key distribution in
systems and encrypts data using public keys.

3.5 The Evaluation Metrics

Accuracy. In the accuracy formula, the proportion of
correctly classified points is calculated over the total
number of classified points [25]. A classifier with a
higher accuracy is more accurate:

| ~ TP + TN
WA = P Y Fp+ TN + FN

(1)

Precision. When it comes to precision, the
algorithm is able to prevent false positives from being
generated by a negative sample. According to this
definition, precision refers to the algorithm'’s ability to
label legitimate packets as harmless.

TP 5
TP + FP’ @
Recall. Classifiers are designed to find all positive

samples within a test dataset, so the recall metric
describes this ability.

Precision =
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TP 3
TP+ FN’ )
F1-score. It is possible to use the true F1 metric

since only two labels are classified. The precision and
recall are weighted averages

Recall =

Precision * recall

F1 — Score = 2 % @)

precision + recall”

4 RESULT ANALYSIS AND
DISCUSSION

A 70% training dataset (including malware data as
well as normal data) and a 30% testing dataset were
used for this experiment. The test size of 0.3 was
determined by using the train_test_split function from
the Scikit-Learn library. All malware classes were
grouped as malicious traffic since binary
classification was the focus. In Figure 1, the results of
this setup are presented and visualized.

1.005 Binary Class (Benign)

I Accuracy
[ 1Precision
I Recall
__JF1-Score

1.000 —

0.995 —

0.990 —

0.985 —

0.980 —

LR AB GB GNB KNN DT RF SVM

Figure 1: Based on hinary classification (benign), here are
the average results.

Considering both normal and malicious malware
attacks, it is apparent from Figure 2 that all machine
learning algorithms perform excellently. In total,
99.88% of the data is accurate. In benign traffic,
accuracy, recall, and F1-score average 99.71 per cent,
99.87%, and 99.85%, whereas in attack traffic, it
averages 99.86 per cent, 99.91%, and 99.88%.

For this experiment, training was performed with
Ransomware and Trojan Horse, while testing was
performed with Spyware. Machine learning was
demonstrated to be an effective defence against
unknown attacks as the primary objective of the
research. As shown in Figures 3 and 4, the
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distribution of samples used for training and testing is
illustrated, as well as the outputs that result.

1008 Binary Class (Attack)

I Accuracy
[ Precision
I Recall

[_IF1-Score

|

Figure 2: Based on binary classification (attack), here are
the average results.
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0.985
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1.005
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I Recall
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Figure 3: Unclassified (benign) results averaged.
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[ Precision
[ Recall
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0.985 +
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LR AB GB GNB KNN DT RF SVM

Figure 4: Average results of unknown classifications
(attacks).
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Figure 5: 10T privacy solution comparison using existing
machine learning classification methods.

5 CONCLUSIONS

Our study explores machine learning techniques that
are privacy-aware and can be used to secure loT
systems. By integrating machine learning into loT
environments, both security and privacy can be
significantly enhanced, especially through proactive
detection, identification, and mitigation of various
cyber threats. Leveraging federated learning
techniques combined with differential privacy
methods, this research demonstrates that high
accuracy in threat detection can be achieved without
compromising the confidentiality of user and device
data. The proposed methodology clearly outperforms
conventional machine learning techniques in terms of
threat identification speed, accuracy, and privacy
protection. As loT systems become more prevalent
across diverse applications, the development and
deployment of privacy-aware machine learning
models will be critical for effectively addressing
emerging cybersecurity threats. In an increasingly
interconnected world where data sharing and device
communication are commonplace, lightweight,
scalable, and efficient security frameworks are
indispensable for ensuring robust protection of
sensitive information, maintaining user trust, and
preserving overall system integrity.
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