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Abstract: A wireless sensor network (WSN) is designed to monitor soil moisture in real-time in precision farming, as
demonstrated in this paper. This system enables farmers to make informed decisions regarding irrigation,
water usage, and crop yield through the integration of advanced sensors and communication protocols. WSN
architecture, design, and functionality, including node deployment, data transmission protocols, and sensor
integration, are examined. Based on the results, the proposed system offers an ideal solution for large-scale
agricultural monitoring, as it provides real-time soil moisture data with minimal power consumption. This
system significantly improves data accuracy, scalability, and network stability, as demonstrated through
extensive simulations and practical experiments conducted under various conditions. Our proposed system
effectively addresses several critical challenges prevalent in agricultural Wireless Sensor Networks (WSNs),
including enhanced energy efficiency, robust and reliable data transmission, and adaptive sampling techniques
specifically designed for dynamic and unpredictable field environments. The network incorporates advanced,
low-power capacitive soil moisture sensors integrated seamlessly with a novel hybrid routing protocol. This
innovative protocol strategically combines both cluster-based routing and direct node-to-sink transmission
approaches, thereby optimizing communication pathways, reducing overall power consumption, and
maintaining stable network operation under fluctuating agricultural conditions. This integrated solution
ensures accurate real-time monitoring, enabling improved decision-making and resource allocation in
precision agriculture applications.

1 INTRODUCTION systems provide constant, up-to-date information on
soil conditions.

In order to be effective, a system like this needs to
be reliable, scalable, and able to perform in real-time.
As environmental interference, signal loss, and sensor
failure can undermine data quality and accuracy, it is
crucial to create a network that is energy-efficient and

WSNs, for example, are transforming traditional
agricultural methods. Using these technologies,
farmers can monitor and manage environmental
variables with greater accuracy, enhancing crop
yields, optimizing resource use, and improving

overall farm management. As irrigation schedules, robust enought_o operate in agricultural env!ron_m ents
crop health, and water conservation efforts are all ~that are both diverse and harsh. An examination of
affected by soil moisture, precision farming has ~ SUch systems is provided, including sensor
become increasingly important. The management of deployment_strategles, data transmission prptocols,
soil moisture requires farmers to have accurate, real-  eneray efficiency, and system scalability. This paper

focuses on leveraging WSNs to enhance agricultural
practices, improve water efficiency, and promote
sustainable development through the use of

moisture levels continuously throughout farming WSNs [2]. Remote monitoring of environmental,

field and transmits data wirelessly to a central system crop, and soil conditions would be necessary for such

that analyses the data [1]. In addition to improving an undertaking. Sensor networks, also known as
crop performance and reducing water waste, such Wireless Sensor Networks (WSNs), enable this

time data they can rely upon. Having a robust network
of wireless sensors that can analyze soil moisture in
real-time is essential. A sensor network tracks soil
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process by establishing wireless communication
between a wide variety of sensors [3].
Microelectronic advances are expected to enable
wireless networks (WSNs) to play a significant role
in the Internet of Things (IoT) [4]

Scientifically, WSN applications in agricultural
applications are considered state-of-the-art and not
without reason. With the advent of accurate sensing
and mathematical models, precise agriculture has
taken on new horizons, enabling intelligent decision-
making and improving productivity, reducing costs,
and reducing environmental harm, all key enabling
factors of smart farming [5]. Smart farming [6] and
similar agricultural approaches not only deal with
sensing but also with (i) data mining and
visualization; (ii) a decision-support system, a
modelling tool, and a planning tool; and (iii)
Automated tools, monitoring robots, and online
applications are part of the action. Producing large
volumes of data within short periods can help
producers predict crop damage and prevent it, a
phenomenon that never ceases to decrease, possibly
due to climate change [7], [8]. In other words,
intelligent agriculture is more than a passing trend; it
is part of a multidisciplinary approach to agricultural
production described by [9], [10].

While these emerging technologies offer many
opportunities [11], there are also many challenges
since they are still in their infancy. An example of one
such challenge is synchronization, which is often
required in networking environments, but especially
in distributed environments [12], [13]. When remote
nodes are synchronized to provide time-correlated
measurements, the end-user or application will be
able to successfully interpret and use the latter to
make decisions when the individual data is processed
or fused to create a new set of information [14].
Depending on both the hardware and software
utilized, accurate synchronization can be challenging
due to multiple delays, which can accumulate over
time [15].

2 LITERATURE REVIEW

Over the past few years, the concept of utilizing
Wireless Sensor Networks (WSN) for precision
farming has gained considerable attention. Specific
applications include soil moisture monitoring, which
is crucial to optimizing irrigation systems and
improving water efficiency. In agriculture, robust
WSNs adapted to real-time soil moisture analysis
have been developed through a number of research
studies and technological advancements [16]. A
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review of key works related to real-time agriculture

applications and WSN-based soil moisture
monitoring is presented. Using an intelligent
humidity sensor and a low-power wireless

Transceiver, [17] proposes an irrigation management
system that collects data and records SWT to
facilitate irrigation [18]. In this paper, we used
laptops, computers, or personal digital assistants as
monitoring devices. SWT data processing enables
soil moisture trends to be determined, as well as
irrigation schedules to be predicted and modified to
improve crop production. The automatic irrigation
controller described in [19] is an open loop system,
which is automatic and adaptive. A soil moisture
measurement system determines how much water is
necessary to maintain the soil moisture so that just the
right amount of water is provided to the crop. A
microcontroller controls pumps and relay switches.

A wireless soil moisture sensor based on fringing
electric field (FEF) - capacitance mode will be
designed, manufactured, and tested for the purpose of
determining soil volumetric water
content (VWC) [20]. Permeability, signal strength,
sensitivity, and linearity are some of the performance
criteria used to evaluate a sensor's performance. By
using wireless multimedia sensor networks, Precision
Agriculture Sensing System (PASS) meets the needs
of modern precision agriculture. This system can
sense a large farmland without the need for human
intervention. With the sensor node, a wireless
multimedia sensor network can be built in a matter of
minutes. Using a bitmap index, a reliable data
transmission mechanism is proposed for bulky data
transmissions. Bulky data can be transmitted reliably
using an index bitmap mechanism. The sensor node
will be powered by a battery system that switches
between arrays. In a comprehensive experiment and a
large-scale deployment in the real world, PASS has
been evaluated for its effectiveness and
performance [21].

Wireless sensor networks (WSNs) or satellite
imagery are currently used to estimate soil moisture,
but these methods are expensive and
not very accurate [22]. Research has utilized all types
of sensors, both above-ground and underground, to
overcome these limitations while increasing the
reliability of analysis and predictions. A soil moisture
prediction system was developed by Author [23]
using ambient temperature, humidity, and soil
moisture sensors. After implementing a smart sensor
node, the authors used the Message Queue Telemetry
Transport (MQTT) protocol to connect it to the cloud
platform. Despite these limitations, the method is
economical, and multiple sensors improve the
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accuracy of measurements over a wide area of land.
The reason for these limitations can be attributed to
two factors: first, it is economically expensive to use
soil moisture sensors. As another restraint, there may
be sensor failures, most likely because of their greater
quantity and measurement errors as a result of hostile
environmental conditions and incorrect installation.

A support vector machine (SVM) can also be used
to predict soil moisture with digital photography [24].
However, hardware costs and size may make a
photography-based approach unfeasible in some
cases. This paper presents another method based on
soil pictures [25]. It is investigated how soil moisture
can be predicted using various machine-learning
methods. There is a remarkable overview of machine
learning approaches presented here, but RNNs and
their improvements, such as LSTMs, are not
discussed. In [26] compares multiple linear
regression, support vector regression, and random
forest algorithms, assessing their effectiveness for
soil moisture prediction [27].

3 METHODOLOGY

3.1 Network Architecture

The TelosB wireless sensor module connects soil
moisture sensors, soil temperature sensors, or soil
humidity sensors to the network nodes. During the
measurement cycle, each node collects data about soil
moisture, relative humidity, and soil temperature,
which is then sent to a sink node for analysis. The
following architecture is proposed to accomplish this
goal.

Sleeping and waking up periodically is essential
for the sensing motes to extend the network's life.
Network operations are ongoing. Most of the time,
the nodes are sleeping (the sleep period lasts 26
minutes, the wake-up period lasts 4 minutes, and the
time between two consecutive periods lasts 4 days).
There will be a lot of sleep among the sensor nodes
during the day. To initiate the transmission of a
message, the destination node must also become
active (wake up) when the source node becomes
active (wake up). A periodic synchronization of
nodes is necessary to coordinate this process, as
explained in section II-C. As data is relayed from
nodes further up the tree, nodes near the sink node
will drain their batteries more quickly. A lack of
precautions may lead to nodes near the sink node
dying much earlier than those in the bottom layers. To
make all the nodes' energy consumption consistent, a
new SPT should be calculated, considering that a
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greater number of energy-consuming nodes will be
chosen as parents with a larger number of children.

Sensor networks that monitor environmental
conditions, such as soil moisture, usually perform
convergence casting. Data is gathered from all sensor
nodes and stored at sink nodes with a tree-based
routing architecture [10]. There are two types of
convergent casts: aggregated data and raw data. At
each hop, aggregated convergence casting uses data
aggregation  techniques, whereas raw data
convergence casting relays sensor readings directly to
the sink. Whenever parameters are highly correlated,
an aggregated converge cast is used to detect them.

We designed our soil moisture sensor network not
to be densely deployed, so it covers a large area with
few nodes, making it an affordable solution to
monitor soil moisture. In this situation, it is assumed
that all sensor readings are shared equally between
the sink and source nodes.

Coordinated, comprehensive, and sustained Earth
observation strengthens the capacity of the
international community to achieve this.

In precision agriculture, environmental conditions
related to crop health can be monitored using ZigBee
wireless communication [28]. Wireless connectivity
is provided by IEEE 802.15.4. ZigBee was originally
developed for personal area networks under the
ZigBee alliance [29]. Besides its flexible network
structure, it comes with a long battery life, provides
mesh, star, and tree topologies, and supports multi-
hop data transmission.

A prominent 10T application that uses BLE is
agriculture, which is a suitable protocol for Bluetooth
smart technology [29]. The device was designed
specifically for loT applications requiring low
bandwidth, low latency, and short range. With BLE,
you can connect unlimited devices faster, use less
power, and setup is easier than with conventional
Bluetooth. In its original form, 6LoWPAN is an IP-
based communication protocol for 10T applications.
The low bandwidth and low power consumption of
6LOWPAN also make it a low-cost network.
6LOWPAN, including star and mesh topologies,
supports multiple topologies. A network adapter layer
is used between the network and the MAC layer to
ensure that IPv6 and IEEE 802.15.4 are
interoperable [29].

3.2 Soil Moisture Sensor Based on
Coils

Using the mutual inductance principle, this study
proposes a sensor consisting of sensors. According to
this principle, a magnetic field will be generated
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whenever an electric current (EC) is applied to a
powered coil (PC). Several parameters influence the
magnetic field of a coil, including the number of
spires (N), the diameter of the wire, and the diameter
of the powered coil (PC), as well as the signal used to
power the coil (including voltage and the ). An
electric coil's magnetic field is determined by a
variety of factors, such as the number of spires (N),
the diameter of the wire, and the signal used to power
the coil (voltage and frequency). The (1) depicts how
Ampére's circuital law determines a solenoid's
magnetic flux density B as a function of the
permeability of the core, N spikes, and I intensity.
Although (1) applies to a free space infinite solenoid,
in our case, we have a soil solenoid with relative
permeability p,. As shown in (2), the solenoid's
length [ should be considered. Our soil's w, is
modified when the moisture changes, which results in
a change in its magnetic field generated. Increasing
moisture will increase the soil's permeability. This
will increase the magnetic field. Solenoid cores are
generally placed in the centre, where the magnetic
field is greatest. As a result of the powered solenoid's
magnetic field being higher in the centre (with
different moisture levels in different tests), the soil
will be the core of our device.

B = uoNI,

M
B=M. ©)

An induced magnetic field will be created if
another coil is in close proximity to the PC. Mutual
inductance refers to this phenomenon. Magnetic flux
will be created by the lines going through the induced
coil (IC) from the PC's magnetic field. According to
the theory, mutual inductances are as follows to (3),
the mutual inductance of two solenoids is M. A coil
has an inductance L1 and, an inductance L2, and a
coupling coefficient k. Equation (4) shows that L1,
L2, N, and a depend on the core pgyu,. As before, the
result of mutual inductance is determined by the
medium acting as a core, the soil. A soil's
permeability affects its K. A perfect coupling causes
K to be maximum (1), while an absence of inductive
coupling causes it to be minimum (0). A value of k
indicates that 100% of the lines of flux in PC will cut
all the turns in the IC, so the soil is highly conductive,
and the coils are perfectly symmetrical. As part of our
experiments, we examined the core's permeability
(the characteristics of the core). Furthermore,
different prototypes (different N 1 and A) are tested
for various geometries to determine how they affect
performance. While coils are located in the same
place in each prototype, PC and IC distances, as well
as total coil lengths, differ.
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M = k1,12, (3)
NA
L1 = Holly ) (4)

l
3.3 Circuit Design

Figure 1 illustrates the circuit design for the soil
profile moisture sensor. Circuits for sensor
acquisition and control were essentially the same.
Moisture acquisition circuits include annular metal
electrodes, voltage-controlled oscillating circuits,
amplifiers, and frequency dividing and conditioning
circuits to measure soil moisture. An ATmega328p 8-
bit microcontroller (MCU) is integrated with the
sensor control circuit, as well as an NRF 24L01
wireless 2.4 GHz communication module and a time-
sharing power supply circuit in addition to the battery
powering the sensor, a solar panel supplied 7.4V
output from a lithium battery.

This means that signal processors divide,
condition, and shape frequency signals in order to be
measured directly by MCUs, that is, frequency
division and conditioning. Depending on the soil
moisture content, equivalent capacitance varies. In
the voltage-controlled oscillating circuit, output high
frequencies are measured between 100MHz and
150MHz. The frequency divider circuit, as well as the
circuit that converts high-frequency signals into low-
frequency signals, is required for the microprocessor
to read the measured output frequency. The original
frequency signals were divided by 64 using a dual-
mode pre-scaler and divided by 256 using an
SN74HC393D  digital chip. MB504 and
SN74HC393D are typical frequency-dividing circuits
that enable back-end processors to measure frequency
signals directly. Texas Instruments has developed a
dual four-bit binary counter with an SN74HC393D.
The number of counts can reach 256. When 256
signal pulses are input, the output will flip, and the
input frequency will become 256.

3.4 Network Design

During the Southern Sierra Critical Zone Observatory
(Cz0O) (374' N, 11911' W), a 1.5-kilometer transect
was surveyed along 23 locations to monitor water
balance variables. There is a transition zone between
rain and snow, with low elevations receiving more
precipitation in the form of rain. In this sub-catchment
of KREW, most precipitation falls, such as snow, in
the northern part. There are 76-99% mixed-conifer
forests in the catchment, mixed chaparral, and barren
areas in WSN-instrumented catchments.
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Figure 1: Principles behind the design of the soil profile moisture sensor.

As far as the network level is concerned, regular
WSNs have the same function for all nodes. After
measuring a parameter, each node processes it and
then sends its findings to its neighbours. By sending
sensed information to its neighbours, the base station
or sink will be able to receive it. As opposed to passive
WSNSs, passive WSNs receive data from their
environment and send it to a sink without any further
processing. An active WSN will notify the sink and/or
the management centre whenever an event occurs. It
is then the responsibility of a few nodes to take action
(send the information to other nodes, sense more
variable information, etc.) as a result of the
notification (or selection) of a few nodes.

There is a need for intelligent WSNs in many
environments since passive WSNSs are not useful. An
event may require certain actions to be taken within a
WSN to respond appropriately. A WSN used to detect
fire, for example, should be able to measure a variety
of variables to verify and even monitor the fire's
progress. Once these variables are collected, a sensor
may transmit the information to a node with a higher
processing capacity to activate fire fighting
mechanisms.

4 RESULTS AND DISCUSSION

Based on a 0.5 m emitter height, various deployment
configurations were tested with a receiver at various
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heights. X-axis numbers indicate tree positions. For all
distances tested, the receiver positioned closest to the
ground consistently produced higher RSSI values,
proving to be the most stable configuration (Fig. 2).
Trees 1 and 4 showed minor fluctuations, while trees
2 and 4 showed more significant fluctuations due to
the density of foliage there. The multipath effect is
likely to be responsible for these fluctuations.
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Figure 2: RSSI (dBm) versus distance (m) at 0.5 high
emitter.

This Figure 3 shows the resonance frequencies (in
kHz) and induced coil voltages (in mV) of the
prototypes developed.
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Figure 3: Moisture measurement prototypes.

Figure 4 shows the results of Prototype 1, showing
93 kHz working frequency and 1.82% maximum
output voltage. As soon as the best sensor has been
chosen, it is tested on several soil types to assess its
versatility, aiming for maximum linearity. In the
previous figure, linear behaviour is observed up to a
humidity level of 18.75%, which corresponds to 750
mL of water for 4000g of sand. Sand on a beach is less
sensitive than soil on a farm, so this needs to be
considered when processing real-world results.

Figure 5 shows the results for a 1-meter-high
emitter. A near-ground receiver best achieves
performance. There is a reduction in signal quality
between trees 2 and 4 in this scenario. However, after
passing through a densely forested area, the near-
ground receiver recovers its signal quality. There is no
difference between the above-ground and below-
ground deployment in areas with dense foliage, but
there is a significant difference in signal quality in
other areas. In addition, the on-ground receiver
configuration performs poorly.
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Figure 4: Various soil types and prototype 1's behaviour.
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Figure 5: RSSI (dBm) versus distance (m) at emitter at
height of 1 m.

Using a 1.5 m emitter height, Figure 6 illustrates the
results. Almost all measurement points provide the
highest level of signal quality, although there are some
fluctuations between trees 2 and 3. This configuration
maintains superior signal quality despite these
fluctuations. In addition to near-ground receivers,
above-ground receivers offer a more stable signal, but
their quality still falls short. As a result of the on-
ground deployment, the results were the poorest and
fluctuated the most. A higher emitter height yielded a
lower average signal quality than a lower emitter
height, also worth mentioning.
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Figure 6: RSSI (dBm) versus distance (m) at 1.5-meter-high
emitter.

The result at 2 meters is shown in Figure 7. All other
emitter heights yield poorer signal quality than this
one. Near-ground deployments deliver the best
results, as with previous cases. At this emitter height,
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however, all receiver configurations display similar
performance. The on-ground configuration continues
to be the least effective option in all scenarios.
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Figure 7: RSSI (dBm) versus distance (m) at emitter at
height of 2 m.

5 CONCLUSIONS

As a reliable method for optimizing water use and
improving agricultural productivity, WSNs have been
integrated into precision farming to monitor soil
moisture. The proposed system introduced in this
paper, which integrates an energy-efficient
architecture with periodic sleep-wake scheduling
strategies and effective communication protocols,
demonstrates significantly enhanced performance
compared to existing agricultural monitoring systems.
By deploying low-cost, highly responsive soil
moisture sensors coupled with optimized routing
techniques, the system achieves robust performance in
large-scale agricultural environments, while ensuring
minimal energy consumption and extended
operational lifetimes. Future advancements should
focus on scaling the system to handle more complex,
heterogeneous agricultural scenarios, including
diverse crop types, varied field topologies, and
unpredictable environmental conditions.
Additionally, enhancing sensor node reliability and
durability would further ensure consistent and
uninterrupted data collection. Integration of emerging
technologies, such as cloud computing platforms for
comprehensive data storage, analytics, and artificial
intelligence for sophisticated predictive modeling,
could greatly enhance real-time data interpretation,
streamline decision-making processes, and ultimately
improve agricultural productivity and resource
efficiency in farming applications.
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