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Abstract: A wireless sensor network (WSN) is designed to monitor soil moisture in real-time in precision farming, as 

demonstrated in this paper. This system enables farmers to make informed decisions regarding irrigation, 

water usage, and crop yield through the integration of advanced sensors and communication protocols. WSN 

architecture, design, and functionality, including node deployment, data transmission protocols, and sensor 

integration, are examined. Based on the results, the proposed system offers an ideal solution for large-scale 

agricultural monitoring, as it provides real-time soil moisture data with minimal power consumption. This 

system significantly improves data accuracy, scalability, and network stability, as demonstrated through 

extensive simulations and practical experiments conducted under various conditions. Our proposed system 

effectively addresses several critical challenges prevalent in agricultural Wireless Sensor Networks (WSNs), 

including enhanced energy efficiency, robust and reliable data transmission, and adaptive sampling techniques 

specifically designed for dynamic and unpredictable field environments. The network incorporates advanced, 

low-power capacitive soil moisture sensors integrated seamlessly with a novel hybrid routing protocol. This 

innovative protocol strategically combines both cluster-based routing and direct node-to-sink transmission 

approaches, thereby optimizing communication pathways, reducing overall power consumption, and 

maintaining stable network operation under fluctuating agricultural conditions. This integrated solution 

ensures accurate real-time monitoring, enabling improved decision-making and resource allocation in 

precision agriculture applications. 

1 INTRODUCTION 

WSNs, for example, are transforming traditional 

agricultural methods. Using these technologies, 

farmers can monitor and manage environmental 

variables with greater accuracy, enhancing crop 

yields, optimizing resource use, and improving 

overall farm management. As irrigation schedules, 

crop health, and water conservation efforts are all 

affected by soil moisture, precision farming has 

become increasingly important. The management of 

soil moisture requires farmers to have accurate, real-

time data they can rely upon. Having a robust network 

of wireless sensors that can analyze soil moisture in 

real-time is essential. A sensor network tracks soil 

moisture levels continuously throughout farming 

field and transmits data wirelessly to a central system 

that analyses the data [1]. In addition to improving 

crop performance and reducing water waste, such 

systems provide constant, up-to-date information on 

soil conditions. 

In order to be effective, a system like this needs to 

be reliable, scalable, and able to perform in real-time. 

As environmental interference, signal loss, and sensor 

failure can undermine data quality and accuracy, it is 

crucial to create a network that is energy-efficient and 

robust enough to operate in agricultural environments 

that are both diverse and harsh. An examination of 

such systems is provided, including sensor 

deployment strategies, data transmission protocols, 

energy efficiency, and system scalability. This paper 

focuses on leveraging WSNs to enhance agricultural 

practices, improve water efficiency, and promote 

sustainable development through the use of 

WSNs [2]. Remote monitoring of environmental, 

crop, and soil conditions would be necessary for such 

an undertaking. Sensor networks, also known as 

Wireless Sensor Networks (WSNs), enable this 
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process by establishing wireless communication 

between a wide variety of sensors [3]. 

Microelectronic advances are expected to enable 

wireless networks (WSNs) to play a significant role 

in the Internet of Things (IoT) [4]  

Scientifically, WSN applications in agricultural 

applications are considered state-of-the-art and not 

without reason. With the advent of accurate sensing 

and mathematical models, precise agriculture has 

taken on new horizons, enabling intelligent decision-

making and improving productivity, reducing costs, 

and reducing environmental harm, all key enabling 

factors of smart farming [5]. Smart farming [6] and 

similar agricultural approaches not only deal with 

sensing but also with (i) data mining and 

visualization; (ii) a decision-support system, a 

modelling tool, and a planning tool; and (iii) 

Automated tools, monitoring robots, and online 

applications are part of the action. Producing large 

volumes of data within short periods can help 

producers predict crop damage and prevent it, a 

phenomenon that never ceases to decrease, possibly 

due to climate change [7], [8]. In other words, 

intelligent agriculture is more than a passing trend; it 

is part of a multidisciplinary approach to agricultural 

production described by [9], [10]. 

While these emerging technologies offer many 

opportunities [11], there are also many challenges 

since they are still in their infancy. An example of one 

such challenge is synchronization, which is often 

required in networking environments, but especially 

in distributed environments [12], [13]. When remote 

nodes are synchronized to provide time-correlated 

measurements, the end-user or application will be 

able to successfully interpret and use the latter to 

make decisions when the individual data is processed 

or fused to create a new set of information [14]. 

Depending on both the hardware and software 

utilized, accurate synchronization can be challenging 

due to multiple delays, which can accumulate over 

time [15]. 

2 LITERATURE REVIEW 

Over the past few years, the concept of utilizing 

Wireless Sensor Networks (WSN) for precision 

farming has gained considerable attention. Specific 

applications include soil moisture monitoring, which 

is crucial to optimizing irrigation systems and 

improving water efficiency. In agriculture, robust 

WSNs adapted to real-time soil moisture analysis 

have been developed through a number of research 

studies and technological advancements [16]. A 

review of key works related to real-time agriculture 

applications and WSN-based soil moisture 

monitoring is presented. Using an intelligent 

humidity sensor and a low-power wireless 

Transceiver, [17] proposes an irrigation management 

system that collects data and records SWT to 

facilitate irrigation [18]. In this paper, we used 

laptops, computers, or personal digital assistants as 

monitoring devices. SWT data processing enables 

soil moisture trends to be determined, as well as 

irrigation schedules to be predicted and modified to 

improve crop production. The automatic irrigation 

controller described in [19] is an open loop system, 

which is automatic and adaptive. A soil moisture 

measurement system determines how much water is 

necessary to maintain the soil moisture so that just the 

right amount of water is provided to the crop. A 

microcontroller controls pumps and relay switches. 

A wireless soil moisture sensor based on fringing 

electric field (FEF) - capacitance mode will be 

designed, manufactured, and tested for the purpose of 

determining soil volumetric water 

content (VWC) [20]. Permeability, signal strength, 

sensitivity, and linearity are some of the performance 

criteria used to evaluate a sensor's performance. By 

using wireless multimedia sensor networks, Precision 

Agriculture Sensing System (PASS) meets the needs 

of modern precision agriculture. This system can 

sense a large farmland without the need for human 

intervention. With the sensor node, a wireless 

multimedia sensor network can be built in a matter of 

minutes. Using a bitmap index, a reliable data 

transmission mechanism is proposed for bulky data 

transmissions. Bulky data can be transmitted reliably 

using an index bitmap mechanism. The sensor node 

will be powered by a battery system that switches 

between arrays. In a comprehensive experiment and a 

large-scale deployment in the real world, PASS has 

been evaluated for its effectiveness and 

performance [21]. 

Wireless sensor networks (WSNs) or satellite 

imagery are currently used to estimate soil moisture, 

but these methods are expensive and 

not very accurate [22]. Research has utilized all types 

of sensors, both above-ground and underground, to 

overcome these limitations while increasing the 

reliability of analysis and predictions. A soil moisture 

prediction system was developed by Author [23] 

using ambient temperature, humidity, and soil 

moisture sensors. After implementing a smart sensor 

node, the authors used the Message Queue Telemetry 

Transport (MQTT) protocol to connect it to the cloud 

platform. Despite these limitations, the method is 

economical, and multiple sensors improve the 
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accuracy of measurements over a wide area of land. 

The reason for these limitations can be attributed to 

two factors: first, it is economically expensive to use 

soil moisture sensors. As another restraint, there may 

be sensor failures, most likely because of their greater 

quantity and measurement errors as a result of hostile 

environmental conditions and incorrect installation. 

A support vector machine (SVM) can also be used 

to predict soil moisture with digital photography [24]. 

However, hardware costs and size may make a 

photography-based approach unfeasible in some 

cases. This paper presents another method based on 

soil pictures [25]. It is investigated how soil moisture 

can be predicted using various machine-learning 

methods. There is a remarkable overview of machine 

learning approaches presented here, but RNNs and 

their improvements, such as LSTMs, are not 

discussed. In [26] compares multiple linear 

regression, support vector regression, and random 

forest algorithms, assessing their effectiveness for 

soil moisture prediction [27]. 

3 METHODOLOGY 

3.1 Network Architecture 

The TelosB wireless sensor module connects soil 

moisture sensors, soil temperature sensors, or soil 

humidity sensors to the network nodes. During the 

measurement cycle, each node collects data about soil 

moisture, relative humidity, and soil temperature, 

which is then sent to a sink node for analysis. The 

following architecture is proposed to accomplish this 

goal. 

Sleeping and waking up periodically is essential 

for the sensing motes to extend the network's life. 

Network operations are ongoing. Most of the time, 

the nodes are sleeping (the sleep period lasts 26 

minutes, the wake-up period lasts 4 minutes, and the 

time between two consecutive periods lasts 4 days). 

There will be a lot of sleep among the sensor nodes 

during the day. To initiate the transmission of a 

message, the destination node must also become 

active (wake up) when the source node becomes 

active (wake up). A periodic synchronization of 

nodes is necessary to coordinate this process, as 

explained in section II-C. As data is relayed from 

nodes further up the tree, nodes near the sink node 

will drain their batteries more quickly.  A lack of 

precautions may lead to nodes near the sink node 

dying much earlier than those in the bottom layers. To 

make all the nodes' energy consumption consistent, a 

new SPT should be calculated, considering that a 

greater number of energy-consuming nodes will be 

chosen as parents with a larger number of children. 

Sensor networks that monitor environmental 

conditions, such as soil moisture, usually perform 

convergence casting. Data is gathered from all sensor 

nodes and stored at sink nodes with a tree-based 

routing architecture [10]. There are two types of 

convergent casts: aggregated data and raw data. At 

each hop, aggregated convergence casting uses data 

aggregation techniques, whereas raw data 

convergence casting relays sensor readings directly to 

the sink. Whenever parameters are highly correlated, 

an aggregated converge cast is used to detect them. 

We designed our soil moisture sensor network not 

to be densely deployed, so it covers a large area with 

few nodes, making it an affordable solution to 

monitor soil moisture. In this situation, it is assumed 

that all sensor readings are shared equally between 

the sink and source nodes.  

Coordinated, comprehensive, and sustained Earth 

observation strengthens the capacity of the 

international community to achieve this. 

In precision agriculture, environmental conditions 

related to crop health can be monitored using ZigBee 

wireless communication [28]. Wireless connectivity 

is provided by IEEE 802.15.4. ZigBee was originally 

developed for personal area networks under the 

ZigBee alliance [29]. Besides its flexible network 

structure, it comes with a long battery life, provides 

mesh, star, and tree topologies, and supports multi-

hop data transmission.  

A prominent IoT application that uses BLE is 

agriculture, which is a suitable protocol for Bluetooth 

smart technology [29]. The device was designed 

specifically for IoT applications requiring low 

bandwidth, low latency, and short range. With BLE, 

you can connect unlimited devices faster, use less 

power, and setup is easier than with conventional 

Bluetooth. In its original form, 6LoWPAN is an IP-

based communication protocol for IoT applications. 

The low bandwidth and low power consumption of 

6LoWPAN also make it a low-cost network. 

6LoWPAN, including star and mesh topologies, 

supports multiple topologies. A network adapter layer 

is used between the network and the MAC layer to 

ensure that IPv6 and IEEE 802.15.4 are 

interoperable [29].  

3.2 Soil Moisture Sensor Based on 
Coils 

Using the mutual inductance principle, this study 
proposes a sensor consisting of sensors. According to 
this principle, a magnetic field will be generated 
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whenever an electric current (EC) is applied to a 
powered coil (PC). Several parameters influence the 
magnetic field of a coil, including the number of 
spires (N), the diameter of the wire, and the diameter 
of the powered coil (PC), as well as the signal used to 
power the coil (including voltage and the ). An 
electric coil's magnetic field is determined by a 
variety of factors, such as the number of spires (N), 
the diameter of the wire, and the signal used to power 
the coil (voltage and frequency). The (1) depicts how 
Ampère's circuital law determines a solenoid's 
magnetic flux density 𝐵 as a function of the 
permeability of the core, 𝑁 spikes, and 𝐼 intensity. 
Although (1) applies to a free space infinite solenoid, 
in our case, we have a soil solenoid with relative 
permeability µ𝑟. As shown in (2), the solenoid's

length 𝑙 should be considered. Our soil's µ𝑟 is
modified when the moisture changes, which results in 
a change in its magnetic field generated. Increasing 
moisture will increase the soil's permeability. This 
will increase the magnetic field. Solenoid cores are 
generally placed in the centre, where the magnetic 
field is greatest. As a result of the powered solenoid's 
magnetic field being higher in the centre (with 
different moisture levels in different tests), the soil 
will be the core of our device. 

𝐵 = 𝜇0𝑁𝐼,  (1) 

𝐵 =
𝜇0𝜇𝑟𝑁𝐼

𝑙
.  (2) 

An induced magnetic field will be created if 
another coil is in close proximity to the PC. Mutual 
inductance refers to this phenomenon. Magnetic flux 
will be created by the lines going through the induced 
coil (IC) from the PC's magnetic field. According to 
the theory, mutual inductances are as follows to (3), 
the mutual inductance of two solenoids is 𝑀. A coil 

has an inductance 𝐿1 and, an inductance 𝐿2, and a 

coupling coefficient k. Equation (4) shows that 𝐿1, 
L2, 𝑁, 𝑙 and a depend on the core 𝜇0𝜇𝑟. As before, the
result of mutual inductance is determined by the 
medium acting as a core, the soil. A soil's 
permeability affects its 𝐾. A perfect coupling causes 
K to be maximum (1), while an absence of inductive 
coupling causes it to be minimum (0). A value of k 
indicates that 100% of the lines of flux in PC will cut 
all the turns in the IC, so the soil is highly conductive, 
and the coils are perfectly symmetrical. As part of our 
experiments, we examined the core's permeability 
(the characteristics of the core). Furthermore, 
different prototypes (different N 1 and A) are tested 
for various geometries to determine how they affect 
performance. While coils are located in the same 
place in each prototype, PC and IC distances, as well 
as total coil lengths, differ. 

𝑀 = 𝑘√𝐿1, 𝐿2,   (3) 

𝐿1 =
𝜇0𝜇𝑟𝑁𝐴

𝑙
.  (4) 

3.3 Circuit Design 

Figure 1 illustrates the circuit design for the soil 
profile moisture sensor. Circuits for sensor 
acquisition and control were essentially the same. 
Moisture acquisition circuits include annular metal 
electrodes, voltage-controlled oscillating circuits, 
amplifiers, and frequency dividing and conditioning 
circuits to measure soil moisture. An ATmega328p 8-
bit microcontroller (MCU) is integrated with the 
sensor control circuit, as well as an NRF 24L01 
wireless 2.4 GHz communication module and a time-
sharing power supply circuit in addition to the battery 
powering the sensor, a solar panel supplied 7.4V 
output from a lithium battery.  

This means that signal processors divide, 
condition, and shape frequency signals in order to be 
measured directly by MCUs, that is, frequency 
division and conditioning. Depending on the soil 
moisture content, equivalent capacitance varies. In 
the voltage-controlled oscillating circuit, output high 
frequencies are measured between 100MHz and 
150MHz. The frequency divider circuit, as well as the 
circuit that converts high-frequency signals into low-
frequency signals, is required for the microprocessor 
to read the measured output frequency. The original 
frequency signals were divided by 64 using a dual-
mode pre-scaler and divided by 256 using an 
SN74HC393D digital chip. MB504 and 
SN74HC393D are typical frequency-dividing circuits 
that enable back-end processors to measure frequency 
signals directly. Texas Instruments has developed a 
dual four-bit binary counter with an SN74HC393D. 
The number of counts can reach 256. When 256 
signal pulses are input, the output will flip, and the 
input frequency will become 256. 

3.4 Network Design 

During the Southern Sierra Critical Zone Observatory 

(CZO) (374' N, 11911' W), a 1.5-kilometer transect 

was surveyed along 23 locations to monitor water 

balance variables. There is a transition zone between 

rain and snow, with low elevations receiving more 

precipitation in the form of rain. In this sub-catchment 

of KREW, most precipitation falls, such as snow, in 

the northern part. There are 76–99% mixed-conifer 

forests in the catchment, mixed chaparral, and barren 

areas in WSN-instrumented catchments. 
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Figure 1: Principles behind the design of the soil profile moisture sensor. 

As far as the network level is concerned, regular 

WSNs have the same function for all nodes. After 

measuring a parameter, each node processes it and 

then sends its findings to its neighbours. By sending 

sensed information to its neighbours, the base station 

or sink will be able to receive it. As opposed to passive 

WSNs, passive WSNs receive data from their 

environment and send it to a sink without any further 

processing. An active WSN will notify the sink and/or 

the management centre whenever an event occurs. It 

is then the responsibility of a few nodes to take action 

(send the information to other nodes, sense more 

variable information, etc.) as a result of the 

notification (or selection) of a few nodes. 

There is a need for intelligent WSNs in many 

environments since passive WSNs are not useful. An 

event may require certain actions to be taken within a 

WSN to respond appropriately. A WSN used to detect 

fire, for example, should be able to measure a variety 

of variables to verify and even monitor the fire's 

progress. Once these variables are collected, a sensor 

may transmit the information to a node with a higher 

processing capacity to activate fire fighting 

mechanisms. 

4 RESULTS AND DISCUSSION 

Based on a 0.5 m emitter height, various deployment 

configurations were tested with a receiver at various 

heights. X-axis numbers indicate tree positions. For all 

distances tested, the receiver positioned closest to the 

ground consistently produced higher RSSI values, 

proving to be the most stable configuration (Fig. 2). 

Trees 1 and 4 showed minor fluctuations, while trees 

2 and 4 showed more significant fluctuations due to 

the density of foliage there. The multipath effect is 

likely to be responsible for these fluctuations. 

Figure 2: RSSI (dBm) versus distance (m) at 0.5 high 

emitter. 

This Figure 3 shows the resonance frequencies (in 

kHz) and induced coil voltages (in mV) of the 

prototypes developed. 
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Figure 3: Moisture measurement prototypes. 

Figure 4 shows the results of Prototype 1, showing 

93 kHz working frequency and 1.82% maximum 

output voltage. As soon as the best sensor has been 

chosen, it is tested on several soil types to assess its 

versatility, aiming for maximum linearity. In the 

previous figure, linear behaviour is observed up to a 

humidity level of 18.75%, which corresponds to 750 

mL of water for 4000g of sand. Sand on a beach is less 

sensitive than soil on a farm, so this needs to be 

considered when processing real-world results. 

Figure 5 shows the results for a 1-meter-high 

emitter. A near-ground receiver best achieves 

performance. There is a reduction in signal quality 

between trees 2 and 4 in this scenario. However, after 

passing through a densely forested area, the near-

ground receiver recovers its signal quality. There is no 

difference between the above-ground and below-

ground deployment in areas with dense foliage, but 

there is a significant difference in signal quality in 

other areas. In addition, the on-ground receiver 

configuration performs poorly. 

Figure 4: Various soil types and prototype 1's behaviour. 

Figure 5: RSSI (dBm) versus distance (m) at emitter at 

height of 1 m. 

Using a 1.5 m emitter height, Figure 6 illustrates the 

results. Almost all measurement points provide the 

highest level of signal quality, although there are some 

fluctuations between trees 2 and 3. This configuration 

maintains superior signal quality despite these 

fluctuations. In addition to near-ground receivers, 

above-ground receivers offer a more stable signal, but 

their quality still falls short. As a result of the on-

ground deployment, the results were the poorest and 

fluctuated the most. A higher emitter height yielded a 

lower average signal quality than a lower emitter 

height, also worth mentioning. 

Figure 6: RSSI (dBm) versus distance (m) at 1.5-meter-high 

emitter. 

The result at 2 meters is shown in Figure 7. All other 

emitter heights yield poorer signal quality than this 

one. Near-ground deployments deliver the best 

results, as with previous cases. At this emitter height, 
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however, all receiver configurations display similar 

performance. The on-ground configuration continues 

to be the least effective option in all scenarios. 

Figure 7: RSSI (dBm) versus distance (m) at emitter at 

height of 2 m. 

5 CONCLUSIONS 

As a reliable method for optimizing water use and 

improving agricultural productivity, WSNs have been 

integrated into precision farming to monitor soil 

moisture. The proposed system introduced in this 

paper, which integrates an energy-efficient 

architecture with periodic sleep-wake scheduling 

strategies and effective communication protocols, 

demonstrates significantly enhanced performance 

compared to existing agricultural monitoring systems. 

By deploying low-cost, highly responsive soil 

moisture sensors coupled with optimized routing 

techniques, the system achieves robust performance in 

large-scale agricultural environments, while ensuring 

minimal energy consumption and extended 

operational lifetimes. Future advancements should 

focus on scaling the system to handle more complex, 

heterogeneous agricultural scenarios, including 

diverse crop types, varied field topologies, and 

unpredictable environmental conditions. 

Additionally, enhancing sensor node reliability and 

durability would further ensure consistent and 

uninterrupted data collection. Integration of emerging 

technologies, such as cloud computing platforms for 

comprehensive data storage, analytics, and artificial 

intelligence for sophisticated predictive modeling, 

could greatly enhance real-time data interpretation, 

streamline decision-making processes, and ultimately 

improve agricultural productivity and resource 

efficiency in farming applications. 
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