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Abstract: Transportation Systems (ITS) enable seamless communication between vehicles and roadside infrastructure. 

This connectivity significantly enhances road safety, traffic efficiency, and overall driving enjoyment for 

users. However, router protocols in VANETs encounter substantial challenges due to the high mobility of 

vehicles and the rapid changes in network topologies. Traditional routing methods often suffer from delays 

and packet loss as a result of these dynamic conditions. To address these issues, we propose a novel algorithm 

that leverages machine learning techniques, specifically utilizing neural networks for intelligent routing in 

VANETs. This innovative approach dynamically optimizes routing decisions while also enhancing 

communication security. By effectively detecting and mitigating potential attacks, our algorithm improves 

routing efficiency, reduces communication delays, and strengthens data security. Simulation results indicate 

that our proposed system outperforms existing routing protocols, leading to improved network performance 

and a significant reduction in end-to-end delay, particularly in challenging scenarios such as black hole 

attacks. 

1 INTRODUCTION 

When vehicular ad-hoc networks (VANETs) are used 

in intelligent transportation systems (ITS), traffic can 

be managed better, and drivers are more comfortable 

by being able to communicate with one another and 

with roadside infrastructure. In an increasingly 

complex and scaled network, ensuring secure and 

efficient communication between vehicles becomes a 

more challenging task [1]. The key challenge facing 

VANETs is ensuring robust, adaptive, and secure 

routing mechanisms that can cope with the changing 

topologies, mobility, and communication conditions 

in vehicular environments. 

A promising approach to addressing these 

challenges is to use neural networks-based intelligent 

routing. Neural networks can be used to optimize data 

transmission efficiency and security by using 

artificial intelligence and machine learning. In 

addition to improving the accuracy of route selection, 

minimizing communication delays, and enhancing 

the overall security of information exchange, these 

intelligent routing techniques can detect and mitigate 

potential threats in real time. Using a vehicle ad hoc 

network  

(VANET), vehicles can communicate with roadside 

units (RSUs) [2]. In Vehicle Area Networks 

(VANETs), traffic congestion is reduced, road safety 

is improved, and traffic efficiency is increased, as 

shown in Figure 1 [3], [4]. Vehicle-to-vehicle 

networks provide data communication, either with or 

without fixed infrastructure [5]. With this 

communication, a variety of safety and infotainment 

applications can be integrated into the vehicle to 

enhance the overall driving experience and contribute 

to smarter transportation systems [6], [7]. Because 

VANETs are wireless and mobile, they are highly 

susceptible to security threats [8]. There is the 

potential for catastrophic results from malicious 

activities, especially when it comes to the propagation 

of emergency messages and the management of 

traffic [9]. To ensure the success and wide adoption 

of VANETs, security must be addressed at the highest 

level [10]. It is vital to ensure the security of data 

communication and that messages are trusted and 

reliable in VANETs in order to operate efficiently and 

safely [11], [12]. A secure and intelligent routing 

scheme is crucial to addressing these challenges [4]. 

Traditionally designed routing protocols for 

MANETs often do not work well in VANETs due to 
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their high mobility and dynamic topology [13]. Smart 

systems need to be designed for VANET routing 

protocols, and the network environment is rapidly 

changing. Due to malicious nodes and potential 

attacks, innovative routing algorithms are required to 

ensure efficient and secure data transmission [14].  

A neural network and machine learning technique 

can be used to improve routing in VANETs. In 

addition to optimizing network performance and 

mitigating security threats, NNs can enable smart 

routing decisions based on data-driven predictions 

and adaptive learning. With neural network-based 

routing protocols, optimal paths can be predicted, 

anomalies can be detected, and VANET 

communications can be enhanced in terms of overall 

security [15], [16].  

Figure 1: A VANET is composed of the following elements 

of communication. 

Figure 2: Topics for VANET research and issues. 

A variety of VANET features, from entertainment 

features to driving assistance systems, have 

significantly improved automobile capabilities [17]. 

While these services are beneficial, they also present 

new challenges in terms of quality, security, and 

privacy. Since the 1990s, VANET research has 

encompassed a variety of topics, including 

application development, routing, security, and 

privacy. The challenges remain despite technological 

advances, especially with the advent of IoT, cloud 

computing, fog computing, edge computing, and 

5G/6G technologies, as shown in Figure 2  [18], [19]. 

2 LITERATURE REVIEW 

VANET is an integral part of Intelligent 

Transportation Systems (ITS), which improve traffic 

efficiency, safety, and convenience for drivers. As a 

result, routing protocols struggle to keep up with the 

rapid changes in topologies and highly mobile 

vehicles of VANETs. This dynamic environment 

often results in delays, packet losses, and security 

vulnerabilities with traditional routing protocols. As 

VANET communications have become more secure, 

machine learning (ML) techniques, especially neural 

networks (NNs), have become increasingly important 

for developing smart and adaptive routing 

solutions [20]. 

2.1 Intelligent Routing Protocols in 
VANETs Machine Learning-Based 
Routing 

VANET routing protocols have benefited from 

machine learning (ML) due to their ability to learn 

network behaviour on its own and in an adaptive 

manner [21]. This learning-based approach can 

address many challenges in VANETs, including 

mobility and dynamic topologies [22]. The use of 

machine learning algorithms can improve routing 

protocols' performance and security by making 

intelligent decisions based on real-time network 

conditions. Optimization of routing decisions can be 

achieved using reinforcement learning (RL). Using 

deep reinforcement learning, an author proposed a 

roadside unit (RSU) model that can maintain traffic 

information and predict vehicle movements to find 

feasible routes [23].  

Further studies investigate using Q-learning and 

fuzzy logic to route VANETs hierarchically. The 

QFHR protocol consists of three phases: identifying 

traffic conditions, routing at intersections and routing 

at roads. In comparison with other routing protocols, 

QFHR improved packet delivery rate and reduced 

delay. 

2.2 ANN-Based Routing 

It has become increasingly evident that Artificial 

Neural Networks (ANNs) are powerful tools for 
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predicting routing in VANETs, enabling protocols to 

adapt to changing network characteristics. In 

accordance with the author [3], MPANN is a 

Multimetric predictive routing protocol for VANETs 

in urban environments. With the protocol, the best 

route to the destination is predicted by a neural 

network, increasing delivery probability and reducing 

delivery times. According to MPANN simulations, 

losses at different densities of vehicles are less than 

20%, while delays are less than 0.4 ms. 

To combine clustering algorithms with artificial 

neural networks, the author has developed an 

enhanced routing protocol [24] capable of detecting 

malicious nodes and establishing clusters. Through a 

modified version of the ad hoc on-demand distance 

vector protocol (AODV), it is possible to detect black 

hole attacks 98.97% accurately using an ANN 

classification model. 

In this study, a neural network is used to provide 

a dynamic routing and switching scheme (NARSS) 

for Software-Defined Vehicular Networks (SDVNs) 

using artificial neural networks [25]. In simulations, 

NARSS is shown to outperform traditional protocols 

in terms of packet delivery ratios and end-to-end 

delays based on a neural network generating a 

scheme-switching model. 

2.3 Ad Hoc On-Demand Distance 
Vector (AODV) Routing Protocol 

The AODV protocol is used in VANETs for reactive 

routing. In his study of AODV in VANETs, the 

author [26] used SUMO, MOVE, and NS2 simulators 

to examine how it was implemented in those 

networks. AODV uses request-response mechanisms 

to establish routes only when they are needed. Based 

on a comparison of AODV's results with those of 

other studies, the authors evaluate packet drop rate, 

throughput, average end delay, jitter, and routing 

workload. AODV protocol was modified and 

incorporated into the intelligent cluster-based routing 

protocol. Modified AODV is used to discover routes 

on demand, select routes optimally and reduce packet 

transmission delays through enhanced request and 

reply protocols [27]. Other approaches, such as 

multicast routing protocols designed for delay-

tolerant vehicular environments, have also been 

explored to enhance data dissemination [34/28]. 

3 METHODOLOGY 

In VANETs, nodes move, and their topology often 

changes, which makes them more difficult to 

distinguish from Mobile Ad Hoc Networks 

(MANETs) [28/29]. Moreover, VANETs are 

independently developed and have a short lifespan. 

Mobile nodes (cars) primarily use VANETs, but 

roadside units (RSUs) also operate on VANETs 

[29/30]. It is possible for nodes that want to interact 

with another node that is not immediately within 

range to do so by forwarding their target to 

neighbouring nodes. There are a number of routing 

protocols to choose from, but we focus on the AODV 

protocol, which is among the most common and 

important protocols used today. VANETs and other 

IoT devices are becoming increasingly vulnerable to 

security breaches as intra-vehicular communication 

becomes increasingly important to applications [31], 

[32], [33]. Using our solution to simulate attacks and 

demonstrate their effectiveness can help us improve 

prevention methods. By analyzing these simulations, 

we show that our countermeasure detects and 

prevents Black Hole attacks accurately and 

effectively. As a result of our approach, network 

performance was boosted proportionally in instances 

of Black Hole attacks.  

3.1 Data Rescaling Techniques 

Due to the different sizes of the input variables, 

rescaling the data is essential before applying the 

statistical methods cited above. Analyzing data this 

way might result in biased results. It is thus necessary 

to transform or rescale input data in a way that no 

single attribute dominates another [34]. This can be 

accomplished by transforming the original data into a 

standard range, such as [−1, 1] or [0, 1]. 

The original data must be transformed so that it 

falls within a smaller or standard range. 

Using 𝑉_1, 𝑉_2, … , 𝑉_𝑛 as an example 𝑉, we have 

n observations for this numeric variable 

3.2 Z-Score Normalization 

As a result, the data are rescaled to yield zero mean 

and unit variance [34]. To transform [27] into 𝑣𝑖
′𝑖we

follow the steps below: 

𝑣𝑖
′ =

𝑣𝑖−𝜇

𝜎
 .  (1) 

Among the variables, 𝑉, 𝑖 = 1, … … … … … … . , 𝑛, 𝜇, 
and 𝜎 reflect the means and standard deviations of the 

original values. 

3.3 Min-Max Normalization 

To map each value 𝑣𝑖
′𝑖 of 𝑣𝑖 to a value within the

series [0, 1], this new value is computed as tracks: 
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𝑣𝑖
′ =

𝑣𝑖−min 𝑉

max 𝑉−min 𝑉
   . 

In this case, 𝑣𝑖
′𝑖 reflects its original value,

𝑉, 𝑖 = 1, … … … . . , 𝑛, min 𝑉 and max 𝑉 is its 

maximum value. 

A variable's minimum value becomes 0, and its 

maximum value becomes 1. If = min V; then 

𝑣𝑖
′𝑖 = 0. If = max V; then 𝑣𝑖

′𝑖 = 0.

3.4 Normalization by Decimal Scaling 

In this method, variable maximum values are 

determined by moving their decimal points. When 

variables have logarithmic variations, the approach is 

suitable [34]. 

Using the given data, instances 𝑣_𝑖 are rescaled 

into 𝑣𝑖
′𝑖. As follows:

𝑣𝑖
′ =

𝑣𝑖

10𝑗  .          (3) 

Anywhere:  𝑗 = log_10 𝑀𝑎𝑥(𝑣_𝑖 ). A comparison of 

three different techniques was conducted using 

original research data [34]. 

3.5 Network Simulator 2 (NS-2) 

To evaluate the performance of the proposed neural 

network–based routing scheme, we conducted 

experiments using Network Simulator 2 (NS-2). 

NS-2 provides a discrete-event simulation 

environment widely used for testing ad-hoc and 

vehicular networks due to its flexibility and support 

for wireless protocols. 

In our setup, the mobility of vehicles was 

generated using traffic simulation tools 

(SUMO/MOVE), which were then integrated into 

NS-2. The simulation included vehicles (mobile 

nodes) and roadside units (RSUs), representing a 

realistic VANET environment. Each vehicle was 

equipped with wireless communication capability, 

and nodes were allowed to dynamically join or leave 

the network depending on their movement patterns. 

The proposed routing model was implemented as 

an extension of AODV, where neural network–based 

decision-making was applied to detect malicious 

behavior (e.g., black hole attacks) and to select 

optimal routes. During simulation, packet headers 

and routing tables were updated dynamically to 

reflect real-time changes in topology. 

For performance analysis, we measured: 

▪ Packet delivery ratio (PDR) – the proportion of

successfully delivered packets.

▪ End-to-end delay – the average time taken for a

packet to reach its destination.

▪ Throughput – the overall amount of data

successfully transmitted across the network.

▪ Energy consumption – estimated for both

vehicle nodes and RSUs during communication.

▪ Attack detection accuracy – evaluated using

confusion matrix–based metrics (Accuracy,

Precision, Recall, F1-score).

These metrics allowed us to assess not only the 

efficiency of the routing protocol but also its ability 

to resist malicious nodes. By comparing results with 

baseline protocols (AODV, DSR, and trust-based 

schemes), we demonstrated that the proposed solution 

achieves higher delivery ratios, lower delays, and 

better resilience under attack scenarios. 

3.6 Performance Evaluation 

To evaluate the proposed neural network–based 

routing scheme in VANETs, we used both network-

level metrics (alive and dead nodes, energy 

efficiency) and machine learning–based classification 

metrics (accuracy, precision, recall, F1 score). 

3.6.1 Number of Dead Nodes 

Since VANET nodes are mobile vehicles equipped 

with communication modules, their availability 

directly influences routing performance. In our 

simulations, we observed the number of alive nodes 

(vehicles that remained active and able to forward 

packets) and dead nodes (vehicles that could no 

longer participate due to depleted communication 

resources or disconnection). A higher number of alive 

nodes indicates better network sustainability and 

routing efficiency. 

3.6.2 Energy Consumption 

Even though vehicles have more energy resources 

than traditional sensor nodes, efficient energy usage 

is still important for VANET devices, especially 

roadside units (RSUs) and relay vehicles. We 

modeled energy dissipation during data transmission 

and reception. The total energy consumed by a 

vehicle node Etotal(i) is represented as the sum of 

residual energy and the energy harvested or supplied: 

Etotal(i) =Eres(i)+Eharvest(i).  (4) 

Here, Eres(i) - represents the remaining energy of the 

node after communication activities, while Eharvest(i) 

- accounts for energy replenishment (for example,

from vehicle batteries or hybrid systems).

The required transmitter power was estimated as: 

(2)
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TP=SNR/α, 

where SNR is the signal-to-noise ratio and α is the 

channel attenuation factor. 

3.7 Model Performance Evaluation 

Model performance was comprehensively evaluated 

using classification metrics derived from the 

confusion matrix framework. The confusion matrix is 

a tabular representation that summarizes the 

predictions of a classification model, making it easy 

to identify misclassified instances and calculate 

performance measures. For a classification task with 

multiple classes, four fundamental outcomes are 

recorded for each class:  

▪ true positive (TP) represents correctly classified

positive instances,

▪ false positive (FP) represents negative instances

incorrectly classified as positive,

▪ false negative (FN) represents positive instances

incorrectly classified as negative,

▪ true negative (TN) represents correctly

classified negative instances.

Based on these four classification outcomes, four 

key performance metrics were calculated according 

to the formulas presented in [35].  

Accuracy reflects the overall correctness of the 

model's predictions across all instances, providing a 

general measure of classification performance. 

Precision indicates the relationship between correctly 

predicted positive instances and all instances flagged 

as positive by the model, measuring the reliability of 

positive predictions. Recall, also known as the true 

positive rate, measures the proportion of actual 

positive instances that were successfully identified by 

the model, indicating the model's ability to capture all 

positive cases. The F1-score represents a harmonic 

mean of precision and recall, providing a balanced 

single metric that accounts for both false positives 

and false negatives, making it particularly useful 

when the class distribution is imbalanced. 

For the attack detection task in this study, 

accuracy reflects the overall correctness of intrusion 

detection. Precision indicates how many nodes 

flagged as malicious were truly malicious, reducing 

false alarms. Recall measures the proportion of actual 

malicious nodes that were successfully detected by 

the model. The F1-score balances precision and 

recall, providing a reliable single metric for 

evaluating overall attack detection performance. 

4 RESULTS AND DISCUSSION 

With the help of the BHT dataset, a comprehensive 

set of outcomes was developed to provide analytical 

and predictive capabilities for evaluating the 

proposed system's performance. A significant 

improvement in the system's predictive capabilities 

has resulted from our training efforts, enabling us to 

compare its performance across different datasets in 

a meaningful way. A clear illustration of the model's 

accuracy can be found in Figure 3. 

Using the proposed BHT dataset, Figure 4 shows 

the model's loss. A graph showing the system's loss 

across the specified dataset is shown below. Based on 

these metrics, iterative training and testing can be 

conducted on the proposed model. Figure 4 illustrates 

the model's loss graphically. 

Figure 3: A model for BHT with high accuracy. 

Figure 4: An analysis of the BHT dataset's model loss. 
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According to Figure 5, existing techniques are 

compared to the minimum number of under-attack 

scenarios that can occur. Compared to existing 

techniques, these occurrences occur less frequently, 

suggesting less impact on network routing 

performance. Data transfer efficiency in a VANET 

environment is reflected by this metric, which is 

important during routing. Based on the end-to-end 

delay comparison shown in Figure 5, our proposed 

approach is faster than existing approaches. 

Figure 5: Packets to be delivered from end to end. 

There are several established routing strategies 

compared in Figure 6, including I-AODV (improved 

ad hoc on-demand distance vector routing), L-AODV 

(load-balancing ad hoc on-demand distance vector 

routing), R-AODV (reliable ad hoc on-demand 

distance vector routing), and T-AODV (trust-based 

ad hoc on-demand distance vector routing). Figure 7 

compares the hop counts obtained using the proposed 

method. 

Figure 6: Number of hops in the network. 

Figure 8 illustrates how these two concepts relate 

to a black hole attack scenario. A comparison was 

conducted with established protocols such as TRFHP 

(reverse-path forwarding) and DSDV (destination-

sequenced distance vector routing). Results 

demonstrate that the proposed technique is superior to 

current techniques for network throughput, routing, 

and performance improvement during black hole 

attacks. 

Figure 7: Comparison of hop counts. 

Figure 8: Comparing the throughput of the proposed 

technique versus vehicle speeds. 

As shown in Figure 9, the average delay initially 

increased and then stabilized. RPCC improves point 

coverage and connectivity by improving point 

coverage. It ensured that lower-level cluster leaders 

would not be eligible for future elections through a 

hierarchical structure. The CCMP mode in DSR 

enabled packet encryption and authentication in 
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MANET's routing and link layers in order to prevent 

black hole attacks. Latencies on the network have 

decreased significantly, enhancing cooperative 

performance, as shown in the Figure 9.  

Figure 9: Comparison between MLCP, RPSS, and CCMP 

in terms of average delay. 

5 CONCLUSIONS 

VANETs face several challenges, including the need 

to deal with dynamic network conditions and to 

ensure communication security, which the proposed 

neural network-based intelligent routing protocol 

aims to solve. It optimizes routing decisions, 

improves overall performance, and adapts to 

changing traffic patterns and network topologies by 

using machine learning. Simulated results indicate 

that the proposed routing protocol reduces delays and 

increases throughput compared to traditional routing 

protocols. Through machine learning, the proposed 

system optimizes routing decisions, significantly 

enhances network performance, and effectively 

adapts to changing traffic patterns and environmental 

conditions. Even though this approach has 

demonstrated strong performance, further practical 

research is necessary to understand scaling 

complexities, seamless integration with emerging 5G 

networks and IoT-based communication systems, and 

improve resilience under real-world vehicular 

conditions. Neural network-based routing in 

VANETs presents promising opportunities to reduce 

accidents, manage congestion efficiently, and ensure 

reliable, secure communication between vehicles. 
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