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Abstract: Transportation Systems (ITS) enable seamless communication between vehicles and roadside infrastructure.
This connectivity significantly enhances road safety, traffic efficiency, and overall driving enjoyment for
users. However, router protocols in VANETS encounter substantial challenges due to the high mobility of
vehicles and the rapid changes in network topologies. Traditional routing methods often suffer from delays
and packet loss as a result of these dynamic conditions. To address these issues, we propose a novel algorithm
that leverages machine learning techniques, specifically utilizing neural networks for intelligent routing in
VANETSs. This innovative approach dynamically optimizes routing decisions while also enhancing
communication security. By effectively detecting and mitigating potential attacks, our algorithm improves
routing efficiency, reduces communication delays, and strengthens data security. Simulation results indicate
that our proposed system outperforms existing routing protocols, leading to improved network performance
and a significant reduction in end-to-end delay, particularly in challenging scenarios such as black hole
attacks.

1 INTRODUCTION (VANET), vehicles can communicate with roadside
units (RSUs) [2]. In Vehicle Area Networks

(VANETS), traffic congestion is reduced, road safety
is improved, and traffic efficiency is increased, as
shown in Figure 1 [3], [4]. Vehicle-to-vehicle
networks provide data communication, either with or
without fixed infrastructure [5]. With this
communication, a variety of safety and infotainment
applications can be integrated into the vehicle to
enhance the overall driving experience and contribute
to smarter transportation systems [6], [7]. Because
VANETSs are wireless and mobile, they are highly
susceptible to security threats [8]. There is the
potential for catastrophic results from malicious
activities, especially when it comes to the propagation
of emergency messages and the management of
traffic [9]. To ensure the success and wide adoption
of VANETS, security must be addressed at the highest
level [10]. It is vital to ensure the security of data
communication and that messages are trusted and
reliable in VANETS in order to operate efficiently and
safely [11], [12]. A secure and intelligent routing
scheme is crucial to addressing these challenges [4].
Traditionally designed routing protocols for
MANETSs often do not work well in VANETS due to

When vehicular ad-hoc networks (VANETS) are used
in intelligent transportation systems (ITS), traffic can
be managed better, and drivers are more comfortable
by being able to communicate with one another and
with roadside infrastructure. In an increasingly
complex and scaled network, ensuring secure and
efficient communication between vehicles becomes a
more challenging task [1]. The key challenge facing
VANETSs is ensuring robust, adaptive, and secure
routing mechanisms that can cope with the changing
topologies, mobility, and communication conditions
in vehicular environments.

A promising approach to addressing these
challenges is to use neural networks-based intelligent
routing. Neural networks can be used to optimize data
transmission efficiency and security by using
artificial intelligence and machine learning. In
addition to improving the accuracy of route selection,
minimizing communication delays, and enhancing
the overall security of information exchange, these
intelligent routing techniques can detect and mitigate
potential threats in real time. Using a vehicle ad hoc
network
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their high mobility and dynamic topology [13]. Smart
systems need to be designed for VANET routing
protocols, and the network environment is rapidly
changing. Due to malicious nodes and potential
attacks, innovative routing algorithms are required to
ensure efficient and secure data transmission [14].

A neural network and machine learning technique
can be used to improve routing in VANETS. In
addition to optimizing network performance and
mitigating security threats, NNs can enable smart
routing decisions based on data-driven predictions
and adaptive learning. With neural network-based
routing protocols, optimal paths can be predicted,
anomalies can be detected, and VANET
communications can be enhanced in terms of overall
security [15], [16].

Figure 1: A VANET is composed of the following elements
of communication.

Yty

Figure 2: Topics for VANET research and issues.

A variety of VANET features, from entertainment
features to driving assistance systems, have
significantly improved automobile capabilities [17].
While these services are beneficial, they also present
new challenges in terms of quality, security, and
privacy. Since the 1990s, VANET research has
encompassed a variety of topics, including
application development, routing, security, and

privacy. The challenges remain despite technological
advances, especially with the advent of IoT, cloud
computing, fog computing, edge computing, and
5G/6G technologies, as shown in Figure 2 [18], [19].

2 LITERATURE REVIEW

VANET is an integral part of Intelligent
Transportation Systems (ITS), which improve traffic
efficiency, safety, and convenience for drivers. As a
result, routing protocols struggle to keep up with the
rapid changes in topologies and highly mobile
vehicles of VANETs. This dynamic environment
often results in delays, packet losses, and security
vulnerabilities with traditional routing protocols. As
VANET communications have become more secure,
machine learning (ML) techniques, especially neural
networks (NNs), have become increasingly important
for developing smart and adaptive routing
solutions [20].

2.1 Intelligent Routing Protocols in
VANETSs Machine Learning-Based
Routing

VANET routing protocols have benefited from
machine learning (ML) due to their ability to learn
network behaviour on its own and in an adaptive
manner [21]. This learning-based approach can
address many challenges in VANETSs, including
mobility and dynamic topologies [22]. The use of
machine learning algorithms can improve routing
protocols' performance and security by making
intelligent decisions based on real-time network
conditions. Optimization of routing decisions can be
achieved using reinforcement learning (RL). Using
deep reinforcement learning, an author proposed a
roadside unit (RSU) model that can maintain traffic
information and predict vehicle movements to find
feasible routes [23].

Further studies investigate using Q-learning and
fuzzy logic to route VANETs hierarchically. The
QFHR protocol consists of three phases: identifying
traffic conditions, routing at intersections and routing
at roads. In comparison with other routing protocols,
QFHR improved packet delivery rate and reduced
delay.

2.2 ANN-Based Routing

It has become increasingly evident that Artificial
Neural Networks (ANNSs) are powerful tools for
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predicting routing in VANETS, enabling protocols to
adapt to changing network characteristics. In
accordance with the author [3], MPANN is a
Multimetric predictive routing protocol for VANETSs
in urban environments. With the protocol, the best
route to the destination is predicted by a neural
network, increasing delivery probability and reducing
delivery times. According to MPANN simulations,
losses at different densities of vehicles are less than
20%, while delays are less than 0.4 ms.

To combine clustering algorithms with artificial
neural networks, the author has developed an
enhanced routing protocol [24] capable of detecting
malicious nodes and establishing clusters. Through a
modified version of the ad hoc on-demand distance
vector protocol (AODV), it is possible to detect black
hole attacks 98.97% accurately using an ANN
classification model.

In this study, a neural network is used to provide
a dynamic routing and switching scheme (NARSS)
for Software-Defined Vehicular Networks (SDVNS)
using artificial neural networks [25]. In simulations,
NARSS is shown to outperform traditional protocols
in terms of packet delivery ratios and end-to-end
delays based on a neural network generating a
scheme-switching model.

2.3 Ad Hoc On-Demand Distance
Vector (AODV) Routing Protocol

The AODV protocol is used in VANETS for reactive
routing. In his study of AODV in VANETSs, the
author [26] used SUMO, MOVE, and NS2 simulators
to examine how it was implemented in those
networks. AODV uses request-response mechanisms
to establish routes only when they are needed. Based
on a comparison of AODV's results with those of
other studies, the authors evaluate packet drop rate,
throughput, average end delay, jitter, and routing
workload. AODV protocol was modified and
incorporated into the intelligent cluster-based routing
protocol. Modified AODV is used to discover routes
on demand, select routes optimally and reduce packet
transmission delays through enhanced request and
reply protocols [27]. Other approaches, such as
multicast routing protocols designed for delay-
tolerant wvehicular environments, have also been
explored to enhance data dissemination [34/28].

3 METHODOLOGY

In VANETS, nodes move, and their topology often
changes, which makes them more difficult to

distinguish from Mobile Ad Hoc Networks
(MANETs) [28/29]. Moreover, VANETs are
independently developed and have a short lifespan.
Mobile nodes (cars) primarily use VANETSs, but
roadside units (RSUs) also operate on VANETS
[29/30]. It is possible for nodes that want to interact
with another node that is not immediately within
range to do so by forwarding their target to
neighbouring nodes. There are a number of routing
protocols to choose from, but we focus on the AODV
protocol, which is among the most common and
important protocols used today. VANETSs and other
10T devices are becoming increasingly vulnerable to
security breaches as intra-vehicular communication
becomes increasingly important to applications [31],
[32], [33]. Using our solution to simulate attacks and
demonstrate their effectiveness can help us improve
prevention methods. By analyzing these simulations,
we show that our countermeasure detects and
prevents Black Hole attacks accurately and
effectively. As a result of our approach, network
performance was boosted proportionally in instances
of Black Hole attacks.

3.1 Data Rescaling Techniques

Due to the different sizes of the input variables,
rescaling the data is essential before applying the
statistical methods cited above. Analyzing data this
way might result in biased results. It is thus necessary
to transform or rescale input data in a way that no
single attribute dominates another [34]. This can be
accomplished by transforming the original data into a
standard range, such as [—1, 1] or [0, 1].

The original data must be transformed so that it
falls within a smaller or standard range.

UsingV_1,V_2,...,V_nasan example V, we have
n observations for this numeric variable

3.2 Z-Score Normalization

As a result, the data are rescaled to yield zero mean
and unit variance [34]. To transform [27] into v;iwe
follow the steps below:

v =22F, 1)

Among the variables, V,i =1, ... e e ceeeeen, 1, U4,
and o reflect the means and standard deviations of the
original values.

3.3 Min-Max Normalization

To map each value vji of v; to a value within the
series [0, 1], this new value is computed as tracks:
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; _ _ vi—minV
. Vi = max V—minV ’ . (2)
In this case, vji reflects its original vaiuc,
V,i=1,.........,n, minV and max V is its

maximum value.

A variable's minimum value becomes 0, and its
maximum value becomes 1. If = min V; then
vji =0.If=max V;then vji = 0.

3.4 Normalization by Decimal Scaling

In this method, variable maximum values are
determined by moving their decimal points. When
variables have logarithmic variations, the approach is
suitable [34].

Using the given data, instances v_i are rescaled
into v;i. As follows:

’ Vi
Ui = E . (3)

Anywhere: j =log 10 Max(v_i). A comparison of
three different techniques was conducted using
original research data [34].

3.5 Network Simulator 2 (NS-2)

To evaluate the performance of the proposed neural
network-based routing scheme, we conducted
experiments using Network Simulator 2 (NS-2).
NS-2 provides a discrete-event  simulation
environment widely used for testing ad-hoc and
vehicular networks due to its flexibility and support
for wireless protocols.

In our setup, the mobility of wvehicles was
generated  using  traffic  simulation  tools
(SUMO/MOVE), which were then integrated into
NS-2. The simulation included vehicles (mobile
nodes) and roadside units (RSUs), representing a
realistic VANET environment. Each vehicle was
equipped with wireless communication capability,
and nodes were allowed to dynamically join or leave
the network depending on their movement patterns.

The proposed routing model was implemented as
an extension of AODV, where neural network—based
decision-making was applied to detect malicious
behavior (e.g., black hole attacks) and to select
optimal routes. During simulation, packet headers
and routing tables were updated dynamically to
reflect real-time changes in topology.

For performance analysis, we measured:

= Packet delivery ratio (PDR) — the proportion of
successfully delivered packets.

= End-to-end delay — the average time taken for a
packet to reach its destination.

= Throughput — the overall amount of data
successfully transmitted across the network.

= Energy consumption — estimated for both
vehicle nodes and RSUs during communication.

= Attack detection accuracy — evaluated using
confusion matrix-based metrics (Accuracy,
Precision, Recall, F1-score).

These metrics allowed us to assess not only the
efficiency of the routing protocol but also its ability
to resist malicious nodes. By comparing results with
baseline protocols (AODV, DSR, and trust-based
schemes), we demonstrated that the proposed solution
achieves higher delivery ratios, lower delays, and
better resilience under attack scenarios.

3.6 Performance Evaluation

To evaluate the proposed neural network—based
routing scheme in VANETS, we used both network-
level metrics (alive and dead nodes, energy
efficiency) and machine learning—based classification
metrics (accuracy, precision, recall, F1 score).

3.6.1 Number of Dead Nodes

Since VANET nodes are mobile vehicles equipped
with communication modules, their availability
directly influences routing performance. In our
simulations, we observed the number of alive nodes
(vehicles that remained active and able to forward
packets) and dead nodes (vehicles that could no
longer participate due to depleted communication
resources or disconnection). A higher number of alive
nodes indicates better network sustainability and
routing efficiency.

3.6.2 Energy Consumption

Even though vehicles have more energy resources
than traditional sensor nodes, efficient energy usage
is still important for VANET devices, especially
roadside units (RSUs) and relay vehicles. We
modeled energy dissipation during data transmission
and reception. The total energy consumed by a
vehicle node E...(i) is represented as the sum of
residual energy and the energy harvested or supplied:

FEro1ai(i) =Exres(1)+Enarvest(i). 4

Here, Eres(i) - represents the remaining energy of the

node after communication activities, while Enarvest(i)
- accounts for energy replenishment (for example,
from vehicle batteries or hybrid systems).

The required transmitter power was estimated as:
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TP=SNR/a,

where SNR is the signal-to-noise ratio and a is the
channel attenuation factor.

3.7 Model Performance Evaluation

Model performance was comprehensively evaluated
using classification metrics derived from the
confusion matrix framework. The confusion matrix is
a tabular representation that summarizes the
predictions of a classification model, making it easy
to identify misclassified instances and calculate
performance measures. For a classification task with
multiple classes, four fundamental outcomes are
recorded for each class:
= true positive (TP) represents correctly classified
positive instances,
= false positive (FP) represents negative instances
incorrectly classified as positive,
= false negative (FN) represents positive instances
incorrectly classified as negative,
= true negative (TN) represents
classified negative instances.

correctly

Based on these four classification outcomes, four
key performance metrics were calculated according
to the formulas presented in [35].

Accuracy reflects the overall correctness of the
model's predictions across all instances, providing a
general measure of classification performance.
Precision indicates the relationship between correctly
predicted positive instances and all instances flagged
as positive by the model, measuring the reliability of
positive predictions. Recall, also known as the true
positive rate, measures the proportion of actual
positive instances that were successfully identified by
the model, indicating the model's ability to capture all
positive cases. The F1-score represents a harmonic
mean of precision and recall, providing a balanced
single metric that accounts for both false positives
and false negatives, making it particularly useful
when the class distribution is imbalanced.

For the attack detection task in this study,
accuracy reflects the overall correctness of intrusion
detection. Precision indicates how many nodes
flagged as malicious were truly malicious, reducing
false alarms. Recall measures the proportion of actual
malicious nodes that were successfully detected by
the model. The F1-score balances precision and
recall, providing a reliable single metric for
evaluating overall attack detection performance.

4 RESULTS AND DISCUSSION

With the help of the BHT dataset, a comprehensive
set of outcomes was developed to provide analytical
and predictive capabilities for evaluating the
proposed system's performance. A significant
improvement in the system's predictive capabilities
has resulted from our training efforts, enabling us to
compare its performance across different datasets in
a meaningful way. A clear illustration of the model's
accuracy can be found in Figure 3.

Using the proposed BHT dataset, Figure 4 shows
the model's loss. A graph showing the system's loss
across the specified dataset is shown below. Based on
these metrics, iterative training and testing can be
conducted on the proposed model. Figure 4 illustrates
the model's loss graphically.
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Figure 3: A model for BHT with high accuracy.
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Figure 4: An analysis of the BHT dataset's model loss.
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According to Figure 5, existing techniques are
compared to the minimum number of under-attack
scenarios that can occur. Compared to existing
techniques, these occurrences occur less frequently,
suggesting less impact on network routing
performance. Data transfer efficiency in a VANET
environment is reflected by this metric, which is
important during routing. Based on the end-to-end
delay comparison shown in Figure 5, our proposed
approach is faster than existing approaches.
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Figure 5: Packets to be delivered from end to end.

There are several established routing strategies
compared in Figure 6, including I-AODV (improved
ad hoc on-demand distance vector routing), L-AODV
(load-balancing ad hoc on-demand distance vector
routing), R-AODV (reliable ad hoc on-demand
distance vector routing), and T-AODV (trust-based
ad hoc on-demand distance vector routing). Figure 7
compares the hop counts obtained using the proposed
method.
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Figure 6: Number of hops in the network.

Figure 8 illustrates how these two concepts relate
to a black hole attack scenario. A comparison was
conducted with established protocols such as TRFHP
(reverse-path forwarding) and DSDV (destination-
sequenced distance vector routing). Results
demonstrate that the proposed technique is superior to
current techniques for network throughput, routing,
and performance improvement during black hole
attacks.
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Figure 8: Comparing the throughput of the proposed
technique versus vehicle speeds.

As shown in Figure 9, the average delay initially
increased and then stabilized. RPCC improves point
coverage and connectivity by improving point
coverage. It ensured that lower-level cluster leaders
would not be eligible for future elections through a
hierarchical structure. The CCMP mode in DSR
enabled packet encryption and authentication in
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MANET's routing and link layers in order to prevent
black hole attacks. Latencies on the network have
decreased significantly, enhancing cooperative
performance, as shown in the Figure 9.
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Figure 9: Comparison between MLCP, RPSS, and CCMP
in terms of average delay.

5 CONCLUSIONS

VANETSs face several challenges, including the need
to deal with dynamic network conditions and to
ensure communication security, which the proposed
neural network-based intelligent routing protocol
aims to solve. It optimizes routing decisions,
improves overall performance, and adapts to
changing traffic patterns and network topologies by
using machine learning. Simulated results indicate
that the proposed routing protocol reduces delays and
increases throughput compared to traditional routing
protocols. Through machine learning, the proposed
system optimizes routing decisions, significantly
enhances network performance, and -effectively
adapts to changing traffic patterns and environmental
conditions. Even though this approach has
demonstrated strong performance, further practical
research is necessary to understand scaling
complexities, seamless integration with emerging 5G
networks and loT-based communication systems, and
improve resilience under real-world vehicular
conditions. Neural network-based routing in
VANETS presents promising opportunities to reduce
accidents, manage congestion efficiently, and ensure
reliable, secure communication between vehicles.
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