
A Comprehensive Method for Anomaly Detection in Complex

Dynamic IoT Systems

Andrii Liashenko and Larysa Globa
Institute of Telecommunication Systems, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic

Institute", Beresteiska Avenue 37, 03056 Kyiv, Ukraine
andrey.lyashenko44@gmail.com, lgloba@its.kpi.ua

Keywords: Anomaly Detection, Temporal Graphs, Temporal Graph Neural Networks, Autoencoder, Graph Neural
Networks, Reconstruction Error, Dynamic Systems, Transportation Networks.

Abstract: Modern dynamic systems, such as transportation networks and IoT infrastructures, generate massive volumes
of interrelated temporal data represented as temporal graphs. Conventional methods – like clustering,
statistical thresholds, and classical time series analysis – often fail to account for the spatial-temporal
dependencies inherent in these systems, leading to high false positive rates or missed complex anomalies. In
this paper, we propose a novel anomaly detection approach that combines Temporal Graph Neural Networks
(TGNN) with Autoencoders. The method utilizes TGNN to extract robust node representations by capturing
both local connectivity and temporal evolution, while an autoencoder is trained to reconstruct normal node
behavior. Anomalies are subsequently identified through significant reconstruction errors, which serve as
indicators of deviations from typical patterns. Experimental evaluations on the real-world PeMSD7 dataset
demonstrate that the proposed TGNN + Autoencoder method improves detection accuracy by 17.33%
compared to traditional methods, reduces false positives by 4.71%, and achieves a 6.02% higher F1-score
relative to using TGNN or autoencoder individually. These results underline the practical relevance of our
approach for real-time monitoring of transportation networks, while also contributing theoretically to the
integration of spatial and temporal features in anomaly detection.

1 INTRODUCTION

Dynamic network systems such as transportation

networks, the Internet of Things (IoT), financial

markets, and cybersecurity generate vast amounts of

interconnected temporal data. For example,

according to Statista (Fig. 1), the number of IoT

devices in the world is projected to reach 39.6 billion

by 2033 [1].

Figure 1: Number of IoT devices by 2033 [1].

Data generated by such devices form dynamic
graph structures with nodes and edges that change

over time. Anomalies in these networks may indicate
transport congestion, IoT failures, financial fraud, or
cyberattacks, making early detection critical to
prevent accidents, inefficiencies, or financial losses.
However, traditional methods like clustering,
statistical thresholding, and machine learning have
significant limitations – they often ignore the inherent
graph structure needed to capture complex network
dynamics [2], lack adaptability as approaches such as
One-Class SVM or Isolation Forest require pre-
training and fail to accommodate new patterns [3],
and rely on fixed thresholds that lead to high false
positive rates in dynamic environments [4]. Thus,
new adaptive approaches that consider both temporal
and structural dynamics of graphs are essential for
more accurate anomaly detection.

The remainder of the paper is organized as

follows. Section 2 describes the methodology,

detailing Temporal Graph Neural Networks and

Autoencoders for anomaly detection Section 3

reviews traditional methods for anomaly detection.

Section 4 defines the problem addressed in this study.

Section 5 details the proposed method of anomaly

detection, which combines Temporal Graph Neural

Networks with Autoencoders. Finally, Section 6

presents the experimental results.

101

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

2 METHODOLOGY

The use of Graph Neural Networks (GNN) has

significantly improved the analysis of graph data,

allowing the creation of deep representations of nodes

and edges. However, standard GNNs do not take into

account temporal dependencies. Therefore, Temporal

Graph Neural Networks (TGNNs) were proposed for

dynamic systems (Fig. 2), which take into account the

evolution of graphs over time [5]. Autoencoders

(AEs) have proven themselves well in anomaly

problems, especially in unsupervised learning

(Fig. 3). AEs learn to reconstruct data, and nodes that

have a high reconstruction error are considered

anomalous [6].
Node: In TGNN, a node is a dynamic entity (e.g.,

a traffic sensor) in a temporal graph, representing
time-varying data. Characteristic (Feature): These
are the measurable, time-dependent attributes of a
node, such as sensor readings or traffic speed. Latent
Representation: A compact, low-dimensional
encoding of a node’s features, capturing its essential
spatial and temporal patterns.

In this paper, we propose a method that combines
TGNN with an AE for anomaly detection in temporal
graphs. The approach creates latent representations of
nodes using a TGNN trained to predict their states
over time, then trains an autoencoder to reconstruct
normal node states, with anomalies identified by high
reconstruction error.

Figure 2: Timestamp graph.

TGNNs extend classical GNNs to process
dynamic graphs by incorporating a temporal
component. Unlike traditional GNNs, which model
static node relationships, TGNNs update node states
at each time step based on both neighboring nodes
and historical information, often using recurrent
mechanisms such as Gated Recurrent Units (GRU) or
Long Short-Term Memory (LSTM) [7, 8].

The classical formula for updating the
representation of a node in GNN is as follows:

where:

▪ ℎ𝑖
(𝑡)

– d-dimensional state vector of node i at time

t, where each element represents a specific
feature (e.g., speed, traffic, etc.).,

▪ N(i) – the set of neighbors of node i,

▪ 𝛼𝑖𝑗
(𝑡)

– the attention weight between nodes i and j

▪ W – a trainable weight matrix that performs a
linear transformation (projection) of the input
node features,

▪ σ – the activation function (for example, ReLU
or Sigmoid).

At each time step t, the state vector ℎ𝑖
(𝑡)

of node i

is computed by aggregating the state vectors of its
neighbors N(i), weighted by the attention coefficients

𝛼𝑖𝑗
(𝑡)

– determine the influence of each neighboring

node j on node i. They are typically computed using
a small neural network to evaluate the "importance"
of each neighbor, and then normalized (e.g., via
softmax) so that the contributions sum to one. This
mechanism enables the model to focus on the most
relevant neighbors when aggregating information,
effectively capturing complex spatial-temporal
relationships.

Figure 3: Autoencoder architecture.

The encoder transforms the input data 𝑥𝑡 into a
compact representation [9] ℎ𝑡

ℎ𝑡= g(𝑥𝑡)

where:

▪ 𝑥𝑡 – the input data at time t,
▪ ℎ𝑡 – the hidden feature vector or compressed

representation of the data in the hidden space,
▪ g – the encoder function, which typically

includes several layers of neural networks (for
example, linear transformations or activation
functions).

102

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

The decoder reconstructs the input data �̂�𝑡 of the
hidden representation ℎ𝑡, trying to recreate the
original input data:

�̂�𝑡= f (ℎ𝑡)

where:

▪ �̂�𝑡 – the reconstructed output data for time t,
▪ f – the decoder function, which typically

includes several layers of neural networks to
reconstruct the output data from the compact
representation.

This transformation allows the autoencoder to
reduce the dimensionality of the input data,
preserving only the most important information about
its structure and temporal dynamics.

To train the autoencoder, we use the loss function
(Mean Square Error (MSE)) L(𝑥𝑡, �̂�𝑡) = ||𝑥𝑡 - �̂�𝑡 ||.

When working on new data, if the model is unable
to accurately reconstruct the input data, this may
indicate anomalous changes in the graph. Therefore,
an anomaly is defined as a large reconstruction error:

The proposedmethod was tested on PeMSD7 - a

real dataset of transport networks [10].

3 RELATED WORK

Traditional time series techniques–such as ARIMA,

Holt-Winters Exponential Smoothing, and Hidden

Markov Models–model node changes over time and

predict future graph states. Yet, they require

transforming graph data into independent time series,

resulting in lost structural information, high data

requirements, and sensitivity to model

parameters [12].

Clustering and machine learning methods (e.g.,

K-Means, DBSCAN, Isolation Forest, One-Class

SVM) also have been used to detect anomalies by

grouping nodes or identifying outliers. Their main

drawbacks are the need to manually set parameters

and the lack of temporal and relational context,

limiting their effectiveness in complex graphs [13].

In contrast, modern approaches leverage deep

neural networks, particularly GNNs and TGNNs,

which capture both spatial and temporal

dependencies [14]. This work proposes a combination

of TGNN with AEs: the TGNN models local and

temporal connections, while the AE learns to

reconstruct normal node patterns–nodes with high

reconstruction error are marked as

anomalous [15, 16].

This integrated approach significantly improves

anomaly detection accuracy by reducing false

positives and enhancing adaptability to new data.

Table 1: Comparison of anomaly detection methods.

Method Description Advantages Disadvantages

Statistical Methods

(Z-score, Grubbs'

Test)

An anomaly is defined as a deviation

from the mean. Nodes or edges that

significantly differ from the norm are

labeled as anomalous.

Simplicity,

computational

efficiency

Does not consider graph

structure, sensitive to noise

Time Series

Methods

(ARIMA)

Utilize time-series models to predict node

behavior. Anomalies are flagged when the

actual value substantially deviates from

the predicted value.

Perform well with

periodic trends

Do not account for structural

changes, sensitive to

parameters

Clustering Methods

(K-Means,

DBSCAN)

Nodes are clustered based on similarity,

and those that lie far from the main

groups are considered anomalous.

Effective for

group anomalies

Require manual selection of

cluster count, do not

incorporate temporal data

Machine Learning

Methods (Isolation

Forest, One-Class

SVM)

Models are trained on normal data and

classify any deviation as anomalous (one-

class learning).

Can operate

without extensive

manual parameter

tuning.

Unsuitable for dynamic

graphs without adaptation

GNN

(Graph Neural

Networks)

Graph Neural Networks analyze structural

relationships among nodes but do not

account for temporal dynamics.

Capture inter-node

connections

Do not model the time-

evolving behavior of nodes

103

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

According to the Table 1, we can conclude that

traditional methods are insufficient for analyzing

dynamic graphs because they do not take into account

the graph structure and the temporal dynamics of

changes. This limits their ability to effectively detect

anomalies in complex networks where both spatial

and temporal relationships are important.

4 PROBLEM DEFINITION

The paper addresses the challenge of detecting

anomalies in temporal graphs representing dynamic

systems (e.g., transportation networks) where

traditional methods fail to capture the intricate

spatial-temporal dependencies, leading to high false

positives. The goal is to develop a TGNN-based

approach combined with Autoencoders to accurately

model node behavior over time and identify

deviations via reconstruction errors.

5 PROPOSED COMPLEX

METHOD OF ANOMALY

DETECTION

Before detailing our method, we define the research

problem: given a temporal graph G = (V, E, X, T) –

where V are nodes (e.g., traffic sensors), E are time-

varying spatial connections, X are time-dependent

features (e.g., speed measurements every 5 minutes),

and T comprises historical data reflecting normal

node behavior–the task is to identify nodes that

deviate significantly from these expected patterns, by

leveraging both local spatial relationships and long-

term temporal dependencies.

This task involves analyzing the dynamic

evolution of each node's state, which is influenced not

only by its own historical data but also by the states

of its immediate neighbors, as encoded by the

adjacency matrix and attention coefficients. The

challenge lies in integrating these local interactions

with the long-term trends present in the node features

over extended periods. To address this, the proposed

method (Fig. 4) employs a TGNN to jointly capture

spatial and temporal information, along with an AE to

learn compact latent representations. Anomalies are

then detected by identifying significant deviations in

the reconstruction error, which signal abnormal

behavior.

Figure 4: Proposed complex method.

This proposed IoT anomaly detection system

operates through six key stages:

1) Incoming IoT data (sensors, network events) are

converted into graph structures and transferred

to the Graph Database.

2) TGNN takes as input a graph, node

characteristics and timestamp history. It creates

graph embeddings to represent relationships in

the data.

3) Autoencoder receives these embeddings, tries to

reconstruct the original data.

4) Comparison of the original and reconstructed

data → reconstruction error is calculated.

5) If the error is high → anomaly is detected.

6) Anomaly deviation triggers an alert in the

Monitoring System (Grafana, Kibana).

104

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

We designed our TGNN architecture using a

three-layer A3TGCN model combined with a single-

layer GRU to efficiently capture both spatial and

temporal dependencies in dynamic IoT networks.

The model consists of three graph convolutional

layers with 64 hidden units each, using ReLU

activation and an attention-based aggregation

mechanism to refine node representations by

weighting the influence of neighboring nodes. The

three-layer A3TGCN model was selected to ensure

that nodes incorporate information from both direct

neighbors and second-order connections, effectively

modeling localized interactions in dynamic graphs.

Increasing the depth beyond three layers resulted in

diminishing improvements while increasing

computational costs, making deeper architectures

inefficient for real-time IoT applications. A shallower

model, on the other hand, did not provide sufficient

contextual information for anomaly detection. The

use of attention-based aggregation further refines

node representations, ensuring that structurally

important nodes have a greater impact on anomaly

detection.

To model temporal dependencies, we integrate a

single-layer GRU instead of more complex recurrent

architectures like LSTM. GRUs provide a faster and

more memory-efficient alternative to LSTMs while

maintaining comparable performance in capturing

long-term dependencies. Unlike simple RNNs, GRUs

effectively retain relevant historical information

while dynamically controlling memory updates,

making them well-suited for large-scale,

continuously evolving IoT networks. The

combination of TGNN for spatial learning and GRU

for sequential modeling allows the system to

distinguish between normal fluctuations and true

anomalies over time.

Finally, a fully connected output layer maps the

learned node embeddings to a single scalar value per

node, indicating its predicted state. The model is

trained using the Mean Squared Error (MSE) loss

function, which evaluates the reconstruction error

between predicted and actual states.

The encoder network consists of three fully

connected layers with 128, 64, and 32 neurons, each

followed by a LeakyReLU activation function to

introduce non-linearity while preserving small

gradient updates for low-activation values. The final

layer of the encoder maps the data into a latent space

of 16 dimensions, providing a compressed

representation of node embeddings while maintaining

key structural and temporal information.

 The decoder network mirrors the encoder, consisting

of three fully connected layers (32, 64, 128 neurons),

using LeakyReLU activation in the hidden layers and

a linear activation in the final layer to reconstruct the

original input. This symmetrical structure ensures

effective reconstruction while preserving node-

specific features.

 To improve generalization and prevent overfitting,

we apply dropout (0.2 probability) and batch

normalization after each hidden layer. The AE is

trained using MSE loss, which quantifies the

difference between reconstructed and actual node

embeddings, helping the model learn normal patterns

in graph data.

 Correctly setting the threshold τ is crucial: too low

increases false positives, while too high leads to false

negatives. In this work, we adopt a quantile method

that automatically adapts τ to the reconstruction error

distribution by setting it at the 95th percentile.

𝜏 = 𝑄95,

where 𝑄95 is the value above which 5% of nodes with

the largest reconstruction error are located. This

approach allows for dynamic detection of anomalies,

reducing the risk of false positive detections, since the

model adapts to changes in the graph structure and the

dynamics of its nodes.

The 95th percentile is chosen empirically

because it reduces false positives by avoiding the

misclassification of normal nodes, provides noise

immunity by adapting to the specific error

distribution rather than relying on a manually set

threshold, and effectively captures rare events by

identifying the top 5% of the most deviant nodes. To

validate this choice, we performed a threshold

sensitivity analysis, summarized in the table above.

Selecting the 90th percentile increases recall to 0.88

but significantly raises false positives due to lower

precision. Conversely, the 98th percentile improves

precision to 0.91 and reduces false positives, but

recall drops sharply to 0.74, causing many anomalies

to be missed. The 95th percentile offers the best

balance between precision and recall with an F1-score

of 0.88, ensuring both effective anomaly detection

and a manageable false positive rate.

Unlike fixed-threshold methods, the quantile

approach adapts automatically to the graph's state: in

stable conditions, the error distribution is narrow and

τ is low, while significant changes adjust τ to new

data. Our method captures the entire process in one

formula: the state vector of node i at time t is

computed by aggregating neighbor states (weighted

by attention coefficients), transforming them via a

trainable weight matrix and activation function, and

then passing the result through an encoder-decoder to

105

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

reconstruct the original state. This entire process is

encapsulated in the following expression:

ℎ̂𝑡(𝑡) = 𝑓𝐷𝐸𝐶

(

𝑓𝐸𝑁𝐶 (𝜎(𝑊 ∑

𝑗∈𝑁(𝑖)

𝛼𝑖𝑗(𝑡)ℎ𝑗(𝑡 − 1) + 𝑏))

)

In this formulation, ℎ𝑖(𝑡) denotes the state vector

of node 𝑖 at time 𝑡, 𝛼𝑖𝑗(𝑡) represents the attention

coefficient reflecting the influence of neighbor 𝑗 on

node 𝑖, and 𝑊is a trainable weight matrix that projects

the aggregated features into a new space before

applying the non-linear activation 𝜎. The functions

𝑓𝐸𝑁𝐶 та 𝑓𝐷𝐸𝐶 correspond to the encoder and decoder

of the autoencoder, respectively, which learn a

compact latent representation and reconstruct the

original signal.

𝐴𝑛𝑜𝑚𝑎𝑙𝑦(𝑖, 𝑡) = (||ℎ𝑖(𝑡) − ℎ̂𝑖(𝑡)||
2

> 𝜏).

The anomaly indicator is then determined by

comparing the reconstruction error ||ℎ𝑖(𝑡) −

 ℎ̂𝑖(𝑡)||
2

 a threshold 𝜏; if the error exceeds 𝜏, the node

is flagged as anomalous. This compact representation

captures the entire method's essence, seamlessly

integrating spatial and temporal dynamics for

effective anomaly detection.

Variables and notation:
▪ ℎ𝑖(𝑡) − is the node representation from the

TGNN at time 𝑡;
▪ 𝑓𝐸𝑁𝐶 and 𝑓𝐷𝐸𝐶 − are the encoder and decoder

functions of the autoencoder;
▪ 𝜎 – is an activation function (e.g., ReLU);
▪ 𝑊 and 𝑏 trainable parameters;
▪ 𝛼𝑖𝑗(𝑡) − represents the attention weight

between node 𝑖 and its neighbor 𝑗;
▪ τ – is the threshold for anomaly detection.

Thus, the proposed approach allows not only to

train high-quality representations of nodes in

temporal graphs, but also to effectively identify

anomalous nodes using the reconstruction error. The

use of the quantile threshold selection method ensures

the adaptability of the model, which allows avoiding

problems associated with excessive sensitivity to

noise in the data. The proposed method combines the

advantages of TGNN in training representations with

the advantages of the autoencoder in detecting

deviations, which makes it an effective tool for

analyzing anomalies in dynamic graphs.

6 EXPERIMENT

This section evaluates the proposed TGNN+AE

method for anomaly detection on the PeMSD7

dataset, which contains temporal graphs of a transport

network (nodes = road sensors, edges = spatial

connections). The goal is to detect traffic anomalies

(e.g., accidents, congestion) by analyzing

reconstruction errors and comparing results with

traditional methods (Isolation Forest, One-Class

SVM, K-Means). Traffic speeds were normalized

using Z-score, and sequences of 24 previous values

were used to predict the current state. The TGNN

extracts spatiotemporal features, while the

autoencoder compresses these into a latent space,

with the 95th percentile of the reconstruction error

used as the anomaly threshold. The experimental

results show that the TGNN+AE method improves

detection accuracy by 17.33%, reduces false positives

by 4.71%, and increases the F1-score by about 6%

compared to using each method separately.

Table 2: Comparison of results.

Method Precision Recall F1-score

Isolation Forest 0.72 0.68 0.70

One-Class SVM 0.76 0.64 0.69

K-Means 0.78 0.72 0.75

Autoencoder

(AE)
0.81 0.76 0.79

TGNN 0.85 0.81 0.83

TGNN + AE 0.89 0.85 0.88

From Table 2, it can be seen that TGNN + AE

improves the anomaly detection accuracy by 10.67%

compared to the best traditional method (K-Means):

Percentage Increase =
𝐹1𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑚𝑎𝑥 (𝐹1 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)

𝑚𝑎𝑥 (𝐹1 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)
×

100=
0.88 − 0.75

0.75
= 17.33%.

TGNN + AE provides 6.02% higher F1-measure

compared to using Autoencoder or TGNN alone:

Percentage Increase =
𝐹1𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑚𝑎𝑥 (𝐹1 𝐴𝐸,𝐹1𝑇𝐺𝑁𝑁)

𝑚𝑎𝑥 (𝐹1 𝐴𝐸,𝐹1𝑇𝐺𝑁𝑁)
×

100=
0.88 − 0.83

0.83
= 6.02%.

TGNN + AE reduces the number of false positives

by 4.71% compared to TGNN due to improved

Precision:

106

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

False Positive Reduction =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁 + 𝐴𝐸 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑇𝐺𝑁𝑁
× 100=

0.89 − 0.85

0.89
= 4.71%.

To assess the efficiency, the distribution of the

reconstruction error and the definition of the 95th

percentile as the anomaly threshold were used. The

graph (Fig. 5) shows how the threshold and the error

distribution were calculated:

Figure 5: Distribution of reconstruction error.

This graph shows the distribution of the

reconstruction error and the anomaly threshold (red

dashed line), which is determined by the 95th

percentile. Nodes with a reconstruction error greater

than this threshold are classified as anomalous.

Comparative analysis proved that the proposed

complex method outperforms traditional approaches,

providing higher accuracy and lower number of false

positive detections.

7 CONCLUSIONS

This paper proposes a comprehensive method for

anomaly detection in temporal graphs based on a

combination of TGNN and a graph AE.

The TGNN captures spatiotemporal relationships,

while the AE learns hidden node representations and

measures deviations through reconstruction error.

Experimental results show that the TGNN+AE

approach improves detection accuracy by 17.3%,

reduces false positives by 4.71%, and increases the

F1-measure by 6.02% compared to using each

method alone. A key element is setting the anomaly

threshold at the 95th percentile of the reconstruction

error, which adaptively identifies anomalous nodes

without manual tuning, thereby enhancing stability.

Overall, this integrated method effectively predicts

node dynamics and identifies anomalies, paving the

way for further research into adaptive anomaly

detection in complex dynamic systems.

REFERENCES

[1] Statista, "Number of IoT-connected devices
worldwide 2024–2033," [Online]. Available:
https://www.statista.com/statistics/1183457/iot-
connected-devices-worldwide/, [Accessed: Apr.
2024].

[2] Y. Wu, H. N. Dai, and H. Tang, "Graph neural
networks for anomaly detection in industrial IoT,"
IEEE Internet of Things Journal, vol. 8, no. 3, pp. 212-
223, Mar. 2021.

[3] J. Yang and Z. Yue, "Learning hierarchical spatial-
temporal graph representations for anomaly
detection," IEEE Transactions on Knowledge and
Data Engineering, early access, 2022.

[4] Y. Feng and J. Chen, "Full graph autoencoder for one-
class group anomaly detection," IEEE Internet of
Things Journal, vol. 9, no. 5, pp. 4021-4030, May
2022.

[5] Y. Lai, Y. Zhu, and L. Li, "STGLR: A spacecraft
anomaly detection method using spatio-temporal
graph learning," Sensors, vol. 25, no. 4, pp. 1123-
1137, 2025.

[6] T. N. Kipf and M. Welling, "Variational Graph
Autoencoders," 2016.

[7] J. Wan, L. Cao, J. Bai, and J. Li, "Learning multiple
types of features on a hybrid neural network for
blockchain transaction behavior detection," SSRN,
2024.

[8] M. W. Asres, C. W. Omlin, L. Wang, P. Parygin, and
D. Yu, "Data quality monitoring through transfer
learning on anomaly detection for the Hadron
calorimeters," 2024.

[9] J. Liu, X. Han, and X. Shang, "Spatial-Temporal
Memories Enhanced Graph Autoencoder for Anomaly
Detection in Dynamic Graphs," 2024.

[10] PEMS-D7 Dataset, [Online]. Available:
https://paperswithcode.com/dataset/pemsd7,
[Accessed: Apr. 2024].

[11] J. Qi, C. Zeng, Z. Luan, S. Huang, S. Yang, and Y. Lu,
"Beyond window-based detection: A graph-centric
framework for discrete log anomaly detection,"
preprint, 2025.

[12] M. Wen, Z. H. Chen, Y. Xiong, and Y. C. Zhang,
"LGAT: A novel model for multivariate time series
anomaly detection with improved anomaly
transformer and learning graph structures,"
Neurocomputing, vol. 554, pp. 126-138, 2025.

[13] R. Hosseini, F. Simini, V. Vishwanath et al., "A Deep
Probabilistic Framework for Continuous Time
Dynamic Graph Generation," 2024.

[14] F. Xiao, S. Chen, Y. Ma et al., "SENTINEL: Insider
threat detection based on multi-timescale user
behavior interaction graph learning," IEEE
Transactions on Information Forensics and Security,
vol. 19, pp. 432-445, 2024.

[15] J. Li, X. Deng, and B. Yao, "Enhanced anomaly
detection of industrial control systems via graph-
driven spatio-temporal adversarial deep support vector
data description," Expert Systems with Applications,
vol. 224, p. 119899, 2025.

[16] J. Cao, X. Di, J. Li, K. Yu, and L. Zhao, "IoVST: An
anomaly detection method for IoV based on
spatiotemporal feature fusion," Future Generation
Computer Systems, vol. 145, pp. 409-421, 2025.

107

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

