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Abstract: The article considers the possibilities of using the Ant Colony Optimization algorithm to find the shortest path 

in the network based on the selected criteria. Its performance is compared to Dijkstra's algorithm and LCA 

algorithm, which is widely used in different network routing protocols. An overview of the ACO algorithm, 

including its two primary components, the "ant" and "pheromone," is provided, highlighting its efficiency for 

the optimal network path selection. Detailed schemes, parameters and formulas of the ACO algorithm 

implementation in terms of networking are shown. A comparative analysis of the performance and execution 

time of the ACO and two compared algorithms for the optimal network path based on Round Trip Time 

criteria in networks of varying scale, ranging from small to highly branched networks with thousands of nodes, 

is discussed. Finally, the results are analysed, and the potential for ACO to serve as a complementary 

algorithm to Dijkstra's and LCA in future network applications is explored.

1 INTRODUCTION 

1.1 Optimal Network Path Selection 
Problem 

As modern technologies continue to evolve and the 

demand for network infrastructure grows, the 

challenge of building extensive local and global 

networks becomes increasingly urgent. A key factor 

in maintaining network efficiency is identifying 

optimal routes between nodes. 

Using optimal routes between nodes in a network 

is critical for several reasons (Figure 1). 

Figure 1: Reasons for the importance of route optimization 

in the network. 

Each reason is explained detailed below [1]: 

1) With optimal routing, data takes the shortest or

most efficient path between nodes, reducing

data transmitter delays. This facilitates faster

communication and better user experience.

2) Optimal routing helps balancing the traffic by

preventing certain paths from becoming

congested while others are not used enough.

Thus, the network works more efficiently

without overloading the infrastructure.

3) There is a reduction in the need for additional

infrastructure, energy consumption and

maintenance that may arise from inefficient

routing.

4) Smoother scaling is provided so that new nodes

or connections do not decrease network

efficiency.

Channel reservation is also an additional option 

for route optimization. This means that in case if one 

route fails, data can be quickly rerouted through 

alternate paths, increasing network reliability. 

High network productivity

Efficiency of use of resources

Cost reduction

Efficiency when scaling
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1.2 Methods to Solve the Problem and 
the Main Research Goal 
Description 

Among the possible solutions to the problem of 

optimizing paths in a network, two groups of methods 

are distinguished: traditional and metaheuristic [2]. 

Currently, it is common to use traditional methods in 

networks. One of the most widespread methods for 

finding the best path is Dijkstra's algorithm [3]. Its 

advantage consists in the existence of a stable scheme 

using a path matrix, which helps to find the shortest 

or the most efficient path depending on the specific 

needs of the network. However, such a scheme is 

quite rigid, which is a drawback and may lead to 

difficulties in cases where more precise adjustment of 

the algorithm's parameters is required. 

In addition to traditional approaches, modern 

algorithmic techniques such as the Lowest Common 

Ancestor (LCA) are increasingly being considered for 

network path optimization, especially in hierarchical 

or tree-structured networks. LCA algorithms are 

particularly effective when the network can be 

represented as a rooted tree and rapid queries between 

node pairs are required. By preprocessing the network 

structure, LCA allows for efficient determination of 

the closest shared ancestor of two nodes, which can 

significantly improve routing decisions in 

applications such as multicast routing, hierarchical 

clustering, and certain types of peer-to-peer networks. 

The use of LCA methods enhances the adaptability of 

routing protocols and supports real-time decision 

making with low computational overhead. 
The other approach to solving the problem of 

finding the optimal path is metaheuristic methods. 
They are based on heuristic principles and use search 
in a large solution space to find approximate but high-
quality answers, often operating with the processes 
that are inherent in nature. One of these methods is 
the Ant Colony Optimization (ACO) algorithm [4-6]. 
The basic concept of this algorithm was created based 
on observations of how ants find the shortest path to 
a food source. 

The decision-making process about the optimal 

path includes elements of probability theory and is 

based on the concept of pheromones, which ants leave 

in nature depending on the quality of the path they 

have traversed. In a real network, the quality of a 

route could be considered, for example, as the level 

of delay between nodes, bandwidth or other important 

parameters. This article examines the potential use of 

ACO compared to Dijkstra's and LCA algorithms and 

provides a description of the problems for which 

ACO can be used. 

2 EXPERIMENTAL TOPOLOGY 

2.1 Dijkstra’s Algorithm Realization 

To determine the efficiency of ACO, Dijkstra’s 

algorithm was implemented using various methods of 

data storage and processing to achieve the most valid 

results. Python was chosen as the programming 

language due to its convenience and the wide range 

of tools available for data analysis. 

The first method involves using a standard list 

with element sorting to determine the smallest Round 

Trip Time (RTT) value, which is used in this 

experiment as the main parameter for path efficiency 

[7]. RTT is the time required to send a data packet 

from the sender to the receiver and return a response 

back. This parameter is important for evaluating 

network latency, as it reflects the speed of data 

transmission between nodes. A smaller RTT indicates 

faster transmission and better network performance. 

The second method involves using a binary tree, 

where the smallest RTT value is the root of the tree. 

Further comparison based on processing speed 

determines the best method for data handling to be 

used as a standard when evaluating the efficiency of 

ACO (see section 2.3.1). 

The implementation of both variations of 

Dijkstra’s algorithm was based on existing 

algorithmic frameworks [3]. This custom 

implementation is important to ensure that the input 

data in the comparison of Dijkstra’s and ACO 

algorithms are identical and can be adjusted during 

the experiment, as this is one of the factors ensuring 

the validity of the experiment. 

The main stages of Dijkstra’s algorithm work are 

described below: 

1) A priority queue and RTT matrices from the key

node to each of the other nodes in the network

are created.

The priority queue is a list or binary tree

according to one of the two methods described

above. It includes "node - RTT" value pairs to

identify the best paths. In this case, nodes are

considered as vertices of an undirected graph,

and the paths with RTT values are considered as

the edges of the graph [8].

2) Each neighbor of the current node is visited.

In the process of moving to neighboring nodes,

each one is added to the priority queue along

with its RTT. It is important to use nodes that

have not been visited before to prevent cycles

and incorrect algorithm behavior.

3) The previous matrix data is compared with the

current paths to each of the neighboring nodes.

18 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), April 2020225  



If the current path is better, the matrix is updated 

with the new data. 

4) The path with the smallest RTT is selected. The

node to which this path leads becomes the next

current node.

In the case of a list, further data sorting occurs.

In the case of a binary tree, the best option is

found at the root of the tree.

The algorithm repeats until every vertex of the 

graph is visited. As a result, the final matrix contains 

the best paths from the key node to every other node 

in the network. 

In this implementation, the dictionaries are used 

as an analogy to matrices to improve the algorithm's 

productivity. Using dictionaries in Python is efficient 

due to their speed in handling elements (search, 

addition, deletion, etc.). Dictionaries are based on 

hash tables, which allow data to be accessed by key 

in O(1) time in most cases. They are also convenient 

for storing large amounts of data with "key-value" 

pairs, ensuring high performance when analyzing 

extensive networks with many nodes. 

Two main dictionaries were created: 

▪ Shortest path dictionary.

▪ Last neighbor dictionary.

The first dictionary contains information about 

the shortest path to each node. The second dictionary 

stores information about the second last node that 

must be visited before reaching the destination. For 

example, the second last node for the fifth node it 

could be the third, for the tenth node – the twelfth, and 

so on. This creates a chain effect when traversing 

from the starting (key) node to others.  

In this way not only can the RTT of the shortest 

path to each node be determined, but the entire 

sequence of nodes along the path can be traced. This 

ensures accurate comparison with the ACO 

algorithm, where the sequence may vary depending 

on the specified parameters. Both dictionaries are 

output by the algorithm upon completion, allowing 

each to be used as needed.  

2.2 LCA algorithm realization 

To complement the comparison with the ACO 

algorithm, the LCA (Lowest Common Ancestor) 

algorithm was implemented to evaluate scenarios 

where hierarchical relationships between nodes are 

critical, such as in tree-based or partially hierarchical 

network topologies. Python was selected for the 

implementation due to its rich set of tools and the 

ability to prototype algorithmic logic efficiently. 

In this realization, the network is modeled as a 

rooted tree, where each node may have multiple 

children, and all connections are unidirectional from 

parent to child. This reflects situations where 

pathfinding is restricted by hierarchical constraints or 

parent-child dependencies. The goal of the LCA 

algorithm is to find the common ancestor node that is 

lowest (i.e., deepest) in the tree for any two given 

nodes [9]. This approach is particularly useful in 

applications involving tree traversal, organizational 

hierarchies, or data clustering [10]. 

The LCA implementation is based on the binary 

lifting technique, which allows for efficient querying 

of the lowest common ancestor in logarithmic time. 

The preprocessing phase is designed to prepare 

necessary lookup tables that speed up each individual 

LCA query, optimizing the performance for networks 

with frequent ancestor-related queries. 

The main stages of the algorithm are described 

below: 

1) Tree Construction and Initialization. Each node

is represented by an instance of a TreeNode

class containing its value and a list of children.

During initialization of the LCA class, the root

node and the total number of nodes in the tree

(n) are passed as parameters. Arrays are created

to store the depth and parent of each node, as

well as a binary lifting table (up) which enables

ancestor lookup at various powers of two.

2) Depth-First Search (DFS) Traversal for

Preprocessing. A depth-first traversal of the tree

is performed starting from the root node. During

traversal, each node's depth and parent are

recorded. The up table is filled such that up[i][j]

stores the 2^j-th ancestor of node i. This

preprocessing allows any node to be moved

upward by any power-of-two number of levels

in constant time, which is essential for efficient

LCA computation.

3) LCA Query Execution. To determine the lowest

common ancestor of two nodes u and v, the

algorithm first equalizes their depths by moving

the deeper node upward. Then, starting from the

highest level of the binary lifting table, both

nodes are lifted together until they converge.

The final result is the parent of the converging

point, which represents the lowest common

ancestor.

4) Performance and Application. This realization

of the LCA algorithm ensures an O(n log n)

preprocessing time and O(log n) query time,

making it highly efficient for repeated ancestor

queries in large hierarchical trees. While not

directly focused on shortest paths or RTT as in
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Dijkstra’s or ACO, the LCA algorithm provides 

a foundational utility in hierarchical routing or 

clustering scenarios, offering a complementary 

perspective in network analysis. 

The LCA implementation outputs the ancestor 

node shared by any two nodes in the shortest 

hierarchical path, enabling the tracing of common 

routes and structural relationships within tree-based 

network representations. This makes it a valuable 

comparative model alongside Dijkstra’s and ACO 

algorithms in evaluating different types of network 

structures and their respective search efficiencies. 

2.3 Ant Colony Optimization Algorithm 
Realization 

ACO is based on two main terms: "ant" and 

"pheromone" [4]. The algorithm consists of several 

iterations, after each of which pheromone levels are 

updated. Pheromone is represented by a numerical 

value 0 < ph < 1. The higher this value, the greater the 

probability of choosing a particular path. One 

iteration consists of several steps, each of which is a 

complete path from the start node to the final node. 

Such a step is analogous to an ant traveling the 

distance from its home to a food source in nature. For 

simplicity, further in the article, these steps will be 

referred to as ants. 

The flowchart of the algorithm is shown in 

Figure 2. 

Figure 2: Base ACO block-scheme. 

The main parameters of ACO are as follows: 

▪ number of iterations;

▪ number of ants;

▪ initial pheromone level;

▪ pheromone decay rate;

▪ parameters of importance of the pheromone

and RTT when calculating the probability of

path selection;

▪ coefficients required for the mathematical

calculations of probability.

After each iteration, the pheromone levels are 

updated, which influences subsequent iterations. 

Thus, the pheromone amount on paths that are 

traveled more frequently increases, raising the 

likelihood of those paths being used again while 

reducing the likelihood of using less efficient paths. 

The stopping criterion for the algorithm in its 

standard implementation is the achievement of the set 

number of iterations. However, additional criteria 

may be added to increase efficiency. 

The flowchart of the algorithm within each 

iteration is shown in Figure 3. 

Figure 3: ACO block-scheme inside the iteration. 
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As shown in Figure 3, each iteration consists of a 

certain number of steps (ants). Each ant traverses the 

complete path from the starting node to the final node, 

after which it stores information about the path as a 

sequence of nodes.  

After the iteration is complete, the pheromone 

levels on all the paths that were traversed are updated. 

The number of iterations and ants is determined 

empirically, depending on the network's scalability. 

It is important to note that the probability of any 

path should not reach zero as long as it remains 

accessible, since the most optimal path may include 

sections with suboptimal RTT values at certain 

stages. The overall value across the entire path from 

the start to the final node will be the most optimal. 

Therefore, it's important to maintain a pheromone 

level that allows for a small probability of selecting 

alternative paths to those that were previously chosen. 

The elements that make up the path of one ant are 

described in more detail below: 

1) Finding the neighbors of the current node. At the

first stage, the starting node is considered the

current one. Subsequently, the current node will

be the one the ant moves to on the path toward

the final node.

2) Calculating the probability of transitioning to

each neighboring node.

This calculation is based on two main formulas.

𝑃(𝑖) = 𝑝ℎ𝛼 ∗
𝑘

𝑅𝑇𝑇𝛽
  () 

Formula (1) reflects the transition strength 

from the current node to another specific node. 

This strength, also referred to as the "desire" to 

transition, depends on the pheromone level and 

the inverse value of RTT. Thus, the lower the 

RTT value, the greater the transition strength. 

The coefficient 𝑘 is selected based on the 

RTT values for the specific network and is 

determined empirically. Coefficients 𝛼 and 𝛽 

are used to increase the influence of pheromone 

or RTT. In this experiment, both are set to one, 

which means that the influence of pheromone 

and RTT is equally weighted. The initial 

pheromone value is set to 0.3 and is either 

increased or decreased depending on which 

paths are traversed. 

𝑃(𝑛𝑜𝑟𝑚) =
𝑃(𝑖)

∑ 𝑃(𝑖)𝑛
𝑖=1

() 

Formula (2) is required for normalizing the 

transition strength and calculating the actual 

probability within the range 0 < P < 1. 

Normalization occurs after evaluating the 

transition strengths for all neighboring nodes, as 

it requires the total sum of these strengths. 

3) Selecting the next node.A scale from 0 to 1 is

used for node selection. A randomly chosen

number falls within a range that corresponds to

a specific neighboring node based on the

transition probability previously calculated. For

example, with a 50% probability, half of the

scale is covered. The transition to the next node

then occurs.

The condition for exiting the cycle is 

reaching the final node. The cycle is repeated 

according to the number of ants, which is one of 

the parameters of the algorithm. 

At the end of the algorithm's execution, 

information is provided regarding the best path found 

and its total RTT value. 

2.3 Results of Comparison by the 
Execution time Parameter 

2.3.1 Dijkstra’s Algorithm Realizations 
Comparison 

To study the performance of the algorithms, an 

emulation of RTT data was carried out, obtained from 

networks of various scalability. The data was 

automatically generated according to the specified 

number of nodes and saved in a document for 

convenient access and the ability to rerun the 

experiment with different algorithms. 

For this study, the number of connections between 

network nodes was set to 70% of all possible 

connections. An essential parameter is maintaining 

connectivity between all nodes, meaning that each 

node must have at least one connection to every other 

node. 

The comparison results based on execution time 

performance are shown in Table 1. 

Table 1: Execution time comparison of the Dijkstra’s 

algorithm realizations. 

Network branching 

(nodes / connections) 

Dijkstra 

(binary tree) 

Dijkstra 

(list) 

10 32 0,00s 0,00s 

500 87325 0,18s 0,32s 

1000 349650 0,69s 1,41s 

1500 786975 1,76s 3,76s 

2000 1399300 3,22s 6,88s 

2500 2186625 5,07s 12,47s 

3000 3148950 7,12s 18,93s 
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Diagram of execution time comparison of 

Dijkstra’s algorithm realizations is shown in Figure 4.  

In Figure 4, the vertical axis represents the 

execution time of the algorithm, while the horizontal 

axis indicates the number of nodes in the network. It 

is important to note that the algorithm's execution 

time is stable and fluctuates within the hundredths 

and thousandths of a second due to a consistent 

pathfinding system, which allows for a reduction in 

the number of trials during the research to ten for 

networks with identical parameters. 

From the data obtained in the first phase of the 

study, the advantage of Dijkstra's algorithm based on 

binary trees can be observed. In networks with a small 

number of nodes, this advantage is minimal and 

amounts to less than 1 second; however, in more 

complex networks, the difference becomes 

pronounced, highlighting the importance of using 

more efficient data storage and processing methods 

compared to standard lists. 

Figure 4: Diagram of execution time comparison of Dijkstra’s algorithm realizations. 

Figure 5: Diagram of execution time comparison of ACO, Dijkstra’s and LCA algorithms. 
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2.3.2 ACO, Dijkstra’s and LCA Algorithms 
Comparison 

Based on the results of the first phase of the study, 

Dijkstra's algorithm was implemented using a binary 

tree. The next phase involves comparing ACO, 

Dijkstra’s and LCA algorithms based on execution 

time to determine the potential for fully utilizing 

ACO in networks. 

The comparison results are shown in Table 2 and 

the diagram of execution time comparison is shown 

in Figure 5. 

The execution time analysis clearly demonstrates 

that ACO exhibits significantly lower performance in 

terms of speed when compared to the other two 

algorithms. Furthermore, it is important to note that 

the difference in execution times becomes more 

pronounced as the network size increases, as 

evidenced by the cases involving 20-node and 120-

node topologies. 

While Dijkstra’s algorithm and LCA demonstrate 

comparable performance in small-scale networks, 

their efficiency diverges in larger topologies. For 

instance, in a simulated network consisting of 1,000 

nodes, the average Round Trip Time (RTT) for 

queries using the LCA algorithm was measured at 

approximately 0.02 seconds, whereas Dijkstra’s 

algorithm required an average of 0.71 seconds to 

complete equivalent path computations. This 

substantial difference highlights the superior 

scalability of the LCA approach in hierarchical 

network structures, where its logarithmic query 

complexity enables faster execution compared to the 

graph-based traversal required by Dijkstra’s 

algorithm. 

Table 2: Execution time comparison of ACO, Dijkstra’s 

and LCA algorithms. 

Network branching 

(nodes / connections) 

Dijkstra 

(binary 

tree) 

LCA ACO 

20 133 0,01s 0,01s 0,01s 

40 546 0,01s 0,01s 0,1s 

60 1239 0,01s 0,01s 0,4s 

80 2212 0,01s 0,01s 0,8s 

100 3465 0,01s 0,01s 1,4s 

120 4998 0,01s 0,01s 2,9s 

Additionally, it should be emphasized that using 

ACO in complex networks with more than 500 nodes 

is not effective at this stage of the algorithm's 

implementation and requires additional parameters to 

improve execution time. 

3 PROPOSED SOLUTION 

3.1 ACO Potential 

Considering the execution time of Dijkstra's 

algorithm in networks with a large number of nodes 

(see section 2.3.1), as well as its efficient use in 

modern networks, it is proposed to utilize a different 

potential of ACO instead of merely competing on 

speed and subsequently replacing the basic path 

optimization algorithm.  

ACO has certain application features that are 

absent in traditional algorithms due to their rigid 

working structure. These features involve dynamic 

parameter tuning and the ability to find alternative 

paths. This is achieved through the use of 

probabilistic elements and random selection. 

However, it is important to clarify that "random 

selection" in this context does not mean purely 

arbitrary choices. Rather, the decisions are guided by 

specific criteria such as Round Trip Time (RTT) 

values and the internal characteristics of the 

algorithm, which work together to improve overall 

efficiency and performance. 

The search for alternative paths is a localized task 

within the network's operation, meaning that it can be 

performed without the need to gather new RTT 

measurements or to completely reconstruct all the 

paths within the network. This makes ACO 

particularly suitable for real-time optimizations 

where it is impractical to recalculate the entire 

network.  

Such flexibility in path selection can prove useful 

in addressing various network management tasks, 

including the following: 

1) Temporarily reducing the amount of traffic on a

heavily congested path, allowing for better load

balancing and preventing bottlenecks in data

flow.

2) Identifying an alternative path for the transfer of

large volumes of data, especially when the

primary route is suboptimal for such specialized

tasks.

3) Discovering an optimal path that bypasses a

specific node, which may be temporarily

unavailable or malfunctioning, thereby 

maintaining network connectivity and 

minimizing disruptions during such outages. 

23 

ProceedingsProceedings  of of the the 113th Internationalth International  Conference Conference on Appliedon Applied  Innovations Innovations in ITin IT  (ICAIIT), (ICAIIT), April 2020225  



These capabilities make ACO a valuable tool for 

addressing network issues that require dynamic and 

responsive solutions. 

3.2 Alternative Path Concept 
Realization 

To efficiently store and manage data regarding the 

shortest paths discovered by the algorithm, several 

key data structures are utilized within the code: 

▪ A temporary list of tuples "path – RTT value"

that each ant passed in a given iteration;

▪ a temporary list for storing the best path during

the current iteration;

▪ a dictionary for storing all the best paths found

in each iteration, along with the corresponding

RTT values, for easy output and future use.

The lists are called "temporary" because they are 

updated at the beginning of each new iteration, 

helping to collect new information about the paths 

traveled.  

The flowchart for collecting and processing the 

information obtained during the algorithm's 

execution is shown in Figure 6.  

Figure 6: Block-scheme of alternative path concept 

realization. 

This part of the algorithm begins operation after a 

list of all paths within the iteration has been formed. 

As the algorithm progresses, a dictionary is gradually 

populated with the best results, which is then passed 

on for further use at the end of the algorithm's 

execution. 

After sorting process according to user 

preferences, any number of paths close to the optimal 

can be selected. This allows for local route 

adjustments where necessary within the network, 

without consuming excessive network resources.  

4 CONCLUSIONS 

This article explores the performance and potential of 

the Ant Colony Optimization (ACO) algorithm 

compared to Dijkstra’s and LCA algorithms in 

network pathfinding tasks.  

Dijkstra’s algorithm was selected as a benchmark 

due to its status as a classical and widely accepted 

method for finding the shortest path in graphs, 

offering a deterministic and well-understood 

approach to pathfinding. In contrast, the LCA 

algorithm was chosen to represent more modern, 

structurally optimized methods, particularly suited 

for hierarchical or tree-based networks, where rapid 

ancestor queries can significantly reduce computation 

time. 

The comparative analysis demonstrates that while 

ACO offers adaptability and robustness in dynamic or 

uncertain environments, it lags behind in terms of 

computational speed. Dijkstra’s and LCA algorithms 

show comparable performance in small networks; 

however, LCA outperforms Dijkstra in large-scale 

networks due to its logarithmic complexity in query 

processing. These findings suggest that although 

ACO holds promise in flexible and heuristic-driven 

scenarios, classical and hierarchical algorithms 

remain superior in deterministic and high-

performance environments. 

The main potential of ACO lies in creating 

alternative path, whereby its probabilistic and 

pheromone-based path selection allows it to 

adaptively find additional optimal paths in cases of 

congestion, large data transfers, or node failures. 

The primary areas for improving ACO’s 

efficiency can be divided into two main groups: 

1) Time control task. One effective way to improve

time efficiency is by integrating time control

mechanisms into the algorithm’s execution. For

example, time-limiting conditions can be

introduced within each iteration or across the

entire algorithm run. These may involve

stopping the search early if no improvement is

detected over a defined number of iterations, or

imposing a maximum runtime per execution
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cycle. Such constraints help manage resource 

consumption more effectively and make the 

algorithm more viable for time-sensitive 

applications. Additionally, they enhance 

scalability, allowing ACO to handle larger 

network graphs without exponential increases in 

computation time. 

2) Parameters research. The quality of the ACO

algorithm heavily depends on the choice of key

parameters, such as the number of ants,

iterations, pheromone evaporation rate, and the

influence of heuristic information (commonly

referred to as alpha and beta). Parameter

research involves systematic experimentation

and analysis to identify optimal settings for

various scenarios. This process may lead to the

development of parameter templates tailored to

specific network types (e.g., sparse, dense,

hierarchical) [11], enabling faster deployment

and better results without manual tuning.

Additionally, advanced approaches such as 

adaptive parameter tuning or machine learning-based 

optimization can further enhance ACO’s 

performance by dynamically adjusting parameters 

during runtime based on observed performance 

metrics. 

The article concludes that instead of positioning 

ACO as a direct competitor to Dijkstra’s and LCA 

algorithms, it should be seen as a complementary tool 

for specific network challenges. Combining the 

efficiency of Dijkstra’s or LCA algorithm for global 

pathfinding with ACO’s flexibility for local 

adjustments can yield optimal results in network 

productivity. 
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