
Potential of Using the Ant Colony Optimization Algorithm

for Optimal Network Path Selection

Oleksandra Yaroshevska and Veronika Kirova
Anhalt University of Applied Sciences, Bernburger Str. 57, 06366 Köthen, Germany

yaroshevska.ob@gmail.com, veronika.kirova@hs-anhalt.de

Keywords: Network Optimal Path, Ant Colony Optimization (ACO) Algorithm, Dijkstra’s Algorithm, Lowest Common

Ancestor (LCA), Pheromone, RTT, Python.

Abstract: The article considers the possibilities of using the Ant Colony Optimization algorithm to find the shortest path

in the network based on the selected criteria. Its performance is compared to Dijkstra's algorithm and LCA

algorithm, which is widely used in different network routing protocols. An overview of the ACO algorithm,

including its two primary components, the "ant" and "pheromone," is provided, highlighting its efficiency for

the optimal network path selection. Detailed schemes, parameters and formulas of the ACO algorithm

implementation in terms of networking are shown. A comparative analysis of the performance and execution

time of the ACO and two compared algorithms for the optimal network path based on Round Trip Time

criteria in networks of varying scale, ranging from small to highly branched networks with thousands of nodes,

is discussed. Finally, the results are analysed, and the potential for ACO to serve as a complementary

algorithm to Dijkstra's and LCA in future network applications is explored.

1 INTRODUCTION

1.1 Optimal Network Path Selection
Problem

As modern technologies continue to evolve and the

demand for network infrastructure grows, the

challenge of building extensive local and global

networks becomes increasingly urgent. A key factor

in maintaining network efficiency is identifying

optimal routes between nodes.

Using optimal routes between nodes in a network

is critical for several reasons (Figure 1).

Figure 1: Reasons for the importance of route optimization

in the network.

Each reason is explained detailed below [1]:

1) With optimal routing, data takes the shortest or

most efficient path between nodes, reducing

data transmitter delays. This facilitates faster

communication and better user experience.

2) Optimal routing helps balancing the traffic by

preventing certain paths from becoming

congested while others are not used enough.

Thus, the network works more efficiently

without overloading the infrastructure.

3) There is a reduction in the need for additional

infrastructure, energy consumption and

maintenance that may arise from inefficient

routing.

4) Smoother scaling is provided so that new nodes

or connections do not decrease network

efficiency.

Channel reservation is also an additional option

for route optimization. This means that in case if one

route fails, data can be quickly rerouted through

alternate paths, increasing network reliability.

High network productivity

Efficiency of use of resources

Cost reduction

Efficiency when scaling

17

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

1.2 Methods to Solve the Problem and
the Main Research Goal
Description

Among the possible solutions to the problem of

optimizing paths in a network, two groups of methods

are distinguished: traditional and metaheuristic [2].

Currently, it is common to use traditional methods in

networks. One of the most widespread methods for

finding the best path is Dijkstra's algorithm [3]. Its

advantage consists in the existence of a stable scheme

using a path matrix, which helps to find the shortest

or the most efficient path depending on the specific

needs of the network. However, such a scheme is

quite rigid, which is a drawback and may lead to

difficulties in cases where more precise adjustment of

the algorithm's parameters is required.

In addition to traditional approaches, modern

algorithmic techniques such as the Lowest Common

Ancestor (LCA) are increasingly being considered for

network path optimization, especially in hierarchical

or tree-structured networks. LCA algorithms are

particularly effective when the network can be

represented as a rooted tree and rapid queries between

node pairs are required. By preprocessing the network

structure, LCA allows for efficient determination of

the closest shared ancestor of two nodes, which can

significantly improve routing decisions in

applications such as multicast routing, hierarchical

clustering, and certain types of peer-to-peer networks.

The use of LCA methods enhances the adaptability of

routing protocols and supports real-time decision

making with low computational overhead.
The other approach to solving the problem of

finding the optimal path is metaheuristic methods.
They are based on heuristic principles and use search
in a large solution space to find approximate but high-
quality answers, often operating with the processes
that are inherent in nature. One of these methods is
the Ant Colony Optimization (ACO) algorithm [4-6].
The basic concept of this algorithm was created based
on observations of how ants find the shortest path to
a food source.

The decision-making process about the optimal

path includes elements of probability theory and is

based on the concept of pheromones, which ants leave

in nature depending on the quality of the path they

have traversed. In a real network, the quality of a

route could be considered, for example, as the level

of delay between nodes, bandwidth or other important

parameters. This article examines the potential use of

ACO compared to Dijkstra's and LCA algorithms and

provides a description of the problems for which

ACO can be used.

2 EXPERIMENTAL TOPOLOGY

2.1 Dijkstra’s Algorithm Realization

To determine the efficiency of ACO, Dijkstra’s

algorithm was implemented using various methods of

data storage and processing to achieve the most valid

results. Python was chosen as the programming

language due to its convenience and the wide range

of tools available for data analysis.

The first method involves using a standard list

with element sorting to determine the smallest Round

Trip Time (RTT) value, which is used in this

experiment as the main parameter for path efficiency

[7]. RTT is the time required to send a data packet

from the sender to the receiver and return a response

back. This parameter is important for evaluating

network latency, as it reflects the speed of data

transmission between nodes. A smaller RTT indicates

faster transmission and better network performance.

The second method involves using a binary tree,

where the smallest RTT value is the root of the tree.

Further comparison based on processing speed

determines the best method for data handling to be

used as a standard when evaluating the efficiency of

ACO (see section 2.3.1).

The implementation of both variations of

Dijkstra’s algorithm was based on existing

algorithmic frameworks [3]. This custom

implementation is important to ensure that the input

data in the comparison of Dijkstra’s and ACO

algorithms are identical and can be adjusted during

the experiment, as this is one of the factors ensuring

the validity of the experiment.

The main stages of Dijkstra’s algorithm work are

described below:

1) A priority queue and RTT matrices from the key

node to each of the other nodes in the network

are created.

The priority queue is a list or binary tree

according to one of the two methods described

above. It includes "node - RTT" value pairs to

identify the best paths. In this case, nodes are

considered as vertices of an undirected graph,

and the paths with RTT values are considered as

the edges of the graph [8].

2) Each neighbor of the current node is visited.

In the process of moving to neighboring nodes,

each one is added to the priority queue along

with its RTT. It is important to use nodes that

have not been visited before to prevent cycles

and incorrect algorithm behavior.

3) The previous matrix data is compared with the

current paths to each of the neighboring nodes.

18

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

If the current path is better, the matrix is updated

with the new data.

4) The path with the smallest RTT is selected. The

node to which this path leads becomes the next

current node.

In the case of a list, further data sorting occurs.

In the case of a binary tree, the best option is

found at the root of the tree.

The algorithm repeats until every vertex of the

graph is visited. As a result, the final matrix contains

the best paths from the key node to every other node

in the network.

In this implementation, the dictionaries are used

as an analogy to matrices to improve the algorithm's

productivity. Using dictionaries in Python is efficient

due to their speed in handling elements (search,

addition, deletion, etc.). Dictionaries are based on

hash tables, which allow data to be accessed by key

in O(1) time in most cases. They are also convenient

for storing large amounts of data with "key-value"

pairs, ensuring high performance when analyzing

extensive networks with many nodes.

Two main dictionaries were created:

▪ Shortest path dictionary.

▪ Last neighbor dictionary.

The first dictionary contains information about

the shortest path to each node. The second dictionary

stores information about the second last node that

must be visited before reaching the destination. For

example, the second last node for the fifth node it

could be the third, for the tenth node – the twelfth, and

so on. This creates a chain effect when traversing

from the starting (key) node to others.

In this way not only can the RTT of the shortest

path to each node be determined, but the entire

sequence of nodes along the path can be traced. This

ensures accurate comparison with the ACO

algorithm, where the sequence may vary depending

on the specified parameters. Both dictionaries are

output by the algorithm upon completion, allowing

each to be used as needed.

2.2 LCA algorithm realization

To complement the comparison with the ACO

algorithm, the LCA (Lowest Common Ancestor)

algorithm was implemented to evaluate scenarios

where hierarchical relationships between nodes are

critical, such as in tree-based or partially hierarchical

network topologies. Python was selected for the

implementation due to its rich set of tools and the

ability to prototype algorithmic logic efficiently.

In this realization, the network is modeled as a

rooted tree, where each node may have multiple

children, and all connections are unidirectional from

parent to child. This reflects situations where

pathfinding is restricted by hierarchical constraints or

parent-child dependencies. The goal of the LCA

algorithm is to find the common ancestor node that is

lowest (i.e., deepest) in the tree for any two given

nodes [9]. This approach is particularly useful in

applications involving tree traversal, organizational

hierarchies, or data clustering [10].

The LCA implementation is based on the binary

lifting technique, which allows for efficient querying

of the lowest common ancestor in logarithmic time.

The preprocessing phase is designed to prepare

necessary lookup tables that speed up each individual

LCA query, optimizing the performance for networks

with frequent ancestor-related queries.

The main stages of the algorithm are described

below:

1) Tree Construction and Initialization. Each node

is represented by an instance of a TreeNode

class containing its value and a list of children.

During initialization of the LCA class, the root

node and the total number of nodes in the tree

(n) are passed as parameters. Arrays are created

to store the depth and parent of each node, as

well as a binary lifting table (up) which enables

ancestor lookup at various powers of two.

2) Depth-First Search (DFS) Traversal for

Preprocessing. A depth-first traversal of the tree

is performed starting from the root node. During

traversal, each node's depth and parent are

recorded. The up table is filled such that up[i][j]

stores the 2^j-th ancestor of node i. This

preprocessing allows any node to be moved

upward by any power-of-two number of levels

in constant time, which is essential for efficient

LCA computation.

3) LCA Query Execution. To determine the lowest

common ancestor of two nodes u and v, the

algorithm first equalizes their depths by moving

the deeper node upward. Then, starting from the

highest level of the binary lifting table, both

nodes are lifted together until they converge.

The final result is the parent of the converging

point, which represents the lowest common

ancestor.

4) Performance and Application. This realization

of the LCA algorithm ensures an O(n log n)

preprocessing time and O(log n) query time,

making it highly efficient for repeated ancestor

queries in large hierarchical trees. While not

directly focused on shortest paths or RTT as in

19

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

Dijkstra’s or ACO, the LCA algorithm provides

a foundational utility in hierarchical routing or

clustering scenarios, offering a complementary

perspective in network analysis.

The LCA implementation outputs the ancestor

node shared by any two nodes in the shortest

hierarchical path, enabling the tracing of common

routes and structural relationships within tree-based

network representations. This makes it a valuable

comparative model alongside Dijkstra’s and ACO

algorithms in evaluating different types of network

structures and their respective search efficiencies.

2.3 Ant Colony Optimization Algorithm
Realization

ACO is based on two main terms: "ant" and

"pheromone" [4]. The algorithm consists of several

iterations, after each of which pheromone levels are

updated. Pheromone is represented by a numerical

value 0 < ph < 1. The higher this value, the greater the

probability of choosing a particular path. One

iteration consists of several steps, each of which is a

complete path from the start node to the final node.

Such a step is analogous to an ant traveling the

distance from its home to a food source in nature. For

simplicity, further in the article, these steps will be

referred to as ants.

The flowchart of the algorithm is shown in

Figure 2.

Figure 2: Base ACO block-scheme.

The main parameters of ACO are as follows:

▪ number of iterations;

▪ number of ants;

▪ initial pheromone level;

▪ pheromone decay rate;

▪ parameters of importance of the pheromone

and RTT when calculating the probability of

path selection;

▪ coefficients required for the mathematical

calculations of probability.

After each iteration, the pheromone levels are

updated, which influences subsequent iterations.

Thus, the pheromone amount on paths that are

traveled more frequently increases, raising the

likelihood of those paths being used again while

reducing the likelihood of using less efficient paths.

The stopping criterion for the algorithm in its

standard implementation is the achievement of the set

number of iterations. However, additional criteria

may be added to increase efficiency.

The flowchart of the algorithm within each

iteration is shown in Figure 3.

Figure 3: ACO block-scheme inside the iteration.

20

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

As shown in Figure 3, each iteration consists of a

certain number of steps (ants). Each ant traverses the

complete path from the starting node to the final node,

after which it stores information about the path as a

sequence of nodes.

After the iteration is complete, the pheromone

levels on all the paths that were traversed are updated.

The number of iterations and ants is determined

empirically, depending on the network's scalability.

It is important to note that the probability of any

path should not reach zero as long as it remains

accessible, since the most optimal path may include

sections with suboptimal RTT values at certain

stages. The overall value across the entire path from

the start to the final node will be the most optimal.

Therefore, it's important to maintain a pheromone

level that allows for a small probability of selecting

alternative paths to those that were previously chosen.

The elements that make up the path of one ant are

described in more detail below:

1) Finding the neighbors of the current node. At the

first stage, the starting node is considered the

current one. Subsequently, the current node will

be the one the ant moves to on the path toward

the final node.

2) Calculating the probability of transitioning to

each neighboring node.

This calculation is based on two main formulas.

𝑃(𝑖) = 𝑝ℎ𝛼 ∗
𝑘

𝑅𝑇𝑇𝛽
 ()

Formula (1) reflects the transition strength

from the current node to another specific node.

This strength, also referred to as the "desire" to

transition, depends on the pheromone level and

the inverse value of RTT. Thus, the lower the

RTT value, the greater the transition strength.

The coefficient 𝑘 is selected based on the

RTT values for the specific network and is

determined empirically. Coefficients 𝛼 and 𝛽

are used to increase the influence of pheromone

or RTT. In this experiment, both are set to one,

which means that the influence of pheromone

and RTT is equally weighted. The initial

pheromone value is set to 0.3 and is either

increased or decreased depending on which

paths are traversed.

𝑃(𝑛𝑜𝑟𝑚) =
𝑃(𝑖)

∑ 𝑃(𝑖)𝑛
𝑖=1

()

Formula (2) is required for normalizing the

transition strength and calculating the actual

probability within the range 0 < P < 1.

Normalization occurs after evaluating the

transition strengths for all neighboring nodes, as

it requires the total sum of these strengths.

3) Selecting the next node.A scale from 0 to 1 is

used for node selection. A randomly chosen

number falls within a range that corresponds to

a specific neighboring node based on the

transition probability previously calculated. For

example, with a 50% probability, half of the

scale is covered. The transition to the next node

then occurs.

The condition for exiting the cycle is

reaching the final node. The cycle is repeated

according to the number of ants, which is one of

the parameters of the algorithm.

At the end of the algorithm's execution,

information is provided regarding the best path found

and its total RTT value.

2.3 Results of Comparison by the
Execution time Parameter

2.3.1 Dijkstra’s Algorithm Realizations
Comparison

To study the performance of the algorithms, an

emulation of RTT data was carried out, obtained from

networks of various scalability. The data was

automatically generated according to the specified

number of nodes and saved in a document for

convenient access and the ability to rerun the

experiment with different algorithms.

For this study, the number of connections between

network nodes was set to 70% of all possible

connections. An essential parameter is maintaining

connectivity between all nodes, meaning that each

node must have at least one connection to every other

node.

The comparison results based on execution time

performance are shown in Table 1.

Table 1: Execution time comparison of the Dijkstra’s

algorithm realizations.

Network branching

(nodes / connections)

Dijkstra

(binary tree)

Dijkstra

(list)

10 32 0,00s 0,00s

500 87325 0,18s 0,32s

1000 349650 0,69s 1,41s

1500 786975 1,76s 3,76s

2000 1399300 3,22s 6,88s

2500 2186625 5,07s 12,47s

3000 3148950 7,12s 18,93s

21

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

Diagram of execution time comparison of

Dijkstra’s algorithm realizations is shown in Figure 4.

In Figure 4, the vertical axis represents the

execution time of the algorithm, while the horizontal

axis indicates the number of nodes in the network. It

is important to note that the algorithm's execution

time is stable and fluctuates within the hundredths

and thousandths of a second due to a consistent

pathfinding system, which allows for a reduction in

the number of trials during the research to ten for

networks with identical parameters.

From the data obtained in the first phase of the

study, the advantage of Dijkstra's algorithm based on

binary trees can be observed. In networks with a small

number of nodes, this advantage is minimal and

amounts to less than 1 second; however, in more

complex networks, the difference becomes

pronounced, highlighting the importance of using

more efficient data storage and processing methods

compared to standard lists.

Figure 4: Diagram of execution time comparison of Dijkstra’s algorithm realizations.

Figure 5: Diagram of execution time comparison of ACO, Dijkstra’s and LCA algorithms.

22

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

2.3.2 ACO, Dijkstra’s and LCA Algorithms
Comparison

Based on the results of the first phase of the study,

Dijkstra's algorithm was implemented using a binary

tree. The next phase involves comparing ACO,

Dijkstra’s and LCA algorithms based on execution

time to determine the potential for fully utilizing

ACO in networks.

The comparison results are shown in Table 2 and

the diagram of execution time comparison is shown

in Figure 5.

The execution time analysis clearly demonstrates

that ACO exhibits significantly lower performance in

terms of speed when compared to the other two

algorithms. Furthermore, it is important to note that

the difference in execution times becomes more

pronounced as the network size increases, as

evidenced by the cases involving 20-node and 120-

node topologies.

While Dijkstra’s algorithm and LCA demonstrate

comparable performance in small-scale networks,

their efficiency diverges in larger topologies. For

instance, in a simulated network consisting of 1,000

nodes, the average Round Trip Time (RTT) for

queries using the LCA algorithm was measured at

approximately 0.02 seconds, whereas Dijkstra’s

algorithm required an average of 0.71 seconds to

complete equivalent path computations. This

substantial difference highlights the superior

scalability of the LCA approach in hierarchical

network structures, where its logarithmic query

complexity enables faster execution compared to the

graph-based traversal required by Dijkstra’s

algorithm.

Table 2: Execution time comparison of ACO, Dijkstra’s

and LCA algorithms.

Network branching

(nodes / connections)

Dijkstra

(binary

tree)

LCA ACO

20 133 0,01s 0,01s 0,01s

40 546 0,01s 0,01s 0,1s

60 1239 0,01s 0,01s 0,4s

80 2212 0,01s 0,01s 0,8s

100 3465 0,01s 0,01s 1,4s

120 4998 0,01s 0,01s 2,9s

Additionally, it should be emphasized that using

ACO in complex networks with more than 500 nodes

is not effective at this stage of the algorithm's

implementation and requires additional parameters to

improve execution time.

3 PROPOSED SOLUTION

3.1 ACO Potential

Considering the execution time of Dijkstra's

algorithm in networks with a large number of nodes

(see section 2.3.1), as well as its efficient use in

modern networks, it is proposed to utilize a different

potential of ACO instead of merely competing on

speed and subsequently replacing the basic path

optimization algorithm.

ACO has certain application features that are

absent in traditional algorithms due to their rigid

working structure. These features involve dynamic

parameter tuning and the ability to find alternative

paths. This is achieved through the use of

probabilistic elements and random selection.

However, it is important to clarify that "random

selection" in this context does not mean purely

arbitrary choices. Rather, the decisions are guided by

specific criteria such as Round Trip Time (RTT)

values and the internal characteristics of the

algorithm, which work together to improve overall

efficiency and performance.

The search for alternative paths is a localized task

within the network's operation, meaning that it can be

performed without the need to gather new RTT

measurements or to completely reconstruct all the

paths within the network. This makes ACO

particularly suitable for real-time optimizations

where it is impractical to recalculate the entire

network.

Such flexibility in path selection can prove useful

in addressing various network management tasks,

including the following:

1) Temporarily reducing the amount of traffic on a

heavily congested path, allowing for better load

balancing and preventing bottlenecks in data

flow.

2) Identifying an alternative path for the transfer of

large volumes of data, especially when the

primary route is suboptimal for such specialized

tasks.

3) Discovering an optimal path that bypasses a

specific node, which may be temporarily

unavailable or malfunctioning, thereby

maintaining network connectivity and

minimizing disruptions during such outages.

23

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

These capabilities make ACO a valuable tool for

addressing network issues that require dynamic and

responsive solutions.

3.2 Alternative Path Concept
Realization

To efficiently store and manage data regarding the

shortest paths discovered by the algorithm, several

key data structures are utilized within the code:

▪ A temporary list of tuples "path – RTT value"

that each ant passed in a given iteration;

▪ a temporary list for storing the best path during

the current iteration;

▪ a dictionary for storing all the best paths found

in each iteration, along with the corresponding

RTT values, for easy output and future use.

The lists are called "temporary" because they are

updated at the beginning of each new iteration,

helping to collect new information about the paths

traveled.

The flowchart for collecting and processing the

information obtained during the algorithm's

execution is shown in Figure 6.

Figure 6: Block-scheme of alternative path concept

realization.

This part of the algorithm begins operation after a

list of all paths within the iteration has been formed.

As the algorithm progresses, a dictionary is gradually

populated with the best results, which is then passed

on for further use at the end of the algorithm's

execution.

After sorting process according to user

preferences, any number of paths close to the optimal

can be selected. This allows for local route

adjustments where necessary within the network,

without consuming excessive network resources.

4 CONCLUSIONS

This article explores the performance and potential of

the Ant Colony Optimization (ACO) algorithm

compared to Dijkstra’s and LCA algorithms in

network pathfinding tasks.

Dijkstra’s algorithm was selected as a benchmark

due to its status as a classical and widely accepted

method for finding the shortest path in graphs,

offering a deterministic and well-understood

approach to pathfinding. In contrast, the LCA

algorithm was chosen to represent more modern,

structurally optimized methods, particularly suited

for hierarchical or tree-based networks, where rapid

ancestor queries can significantly reduce computation

time.

The comparative analysis demonstrates that while

ACO offers adaptability and robustness in dynamic or

uncertain environments, it lags behind in terms of

computational speed. Dijkstra’s and LCA algorithms

show comparable performance in small networks;

however, LCA outperforms Dijkstra in large-scale

networks due to its logarithmic complexity in query

processing. These findings suggest that although

ACO holds promise in flexible and heuristic-driven

scenarios, classical and hierarchical algorithms

remain superior in deterministic and high-

performance environments.

The main potential of ACO lies in creating

alternative path, whereby its probabilistic and

pheromone-based path selection allows it to

adaptively find additional optimal paths in cases of

congestion, large data transfers, or node failures.

The primary areas for improving ACO’s

efficiency can be divided into two main groups:

1) Time control task. One effective way to improve

time efficiency is by integrating time control

mechanisms into the algorithm’s execution. For

example, time-limiting conditions can be

introduced within each iteration or across the

entire algorithm run. These may involve

stopping the search early if no improvement is

detected over a defined number of iterations, or

imposing a maximum runtime per execution

24

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

cycle. Such constraints help manage resource

consumption more effectively and make the

algorithm more viable for time-sensitive

applications. Additionally, they enhance

scalability, allowing ACO to handle larger

network graphs without exponential increases in

computation time.

2) Parameters research. The quality of the ACO

algorithm heavily depends on the choice of key

parameters, such as the number of ants,

iterations, pheromone evaporation rate, and the

influence of heuristic information (commonly

referred to as alpha and beta). Parameter

research involves systematic experimentation

and analysis to identify optimal settings for

various scenarios. This process may lead to the

development of parameter templates tailored to

specific network types (e.g., sparse, dense,

hierarchical) [11], enabling faster deployment

and better results without manual tuning.

Additionally, advanced approaches such as

adaptive parameter tuning or machine learning-based

optimization can further enhance ACO’s

performance by dynamically adjusting parameters

during runtime based on observed performance

metrics.

The article concludes that instead of positioning

ACO as a direct competitor to Dijkstra’s and LCA

algorithms, it should be seen as a complementary tool

for specific network challenges. Combining the

efficiency of Dijkstra’s or LCA algorithm for global

pathfinding with ACO’s flexibility for local

adjustments can yield optimal results in network

productivity.

ACKNOWLEDGMENTS

This work has been funded by DAAD, BMBF

Foundation for partnership between scholars and

scientists from Ukraine and Germany within the

project Fit4Ukraine. The authors thank Hochschule

Anhalt and Future Internet Lab Anhalt for support

and the opportunity to use the equipment for research.

Also, we acknowledge support by the German

Research Foundation (Deutsche

Forschungsgemeinschaft, DFG) and the Open Access

Publishing Fund of Anhalt University of Applied

Sciences.

REFERENCES

[1] X. Liu, Y.-L. Chen, L. Y. Por, and C. Ku,
"A Systematic Literature Review of Vehicle Routing
Problems with Time Windows," Sustainability, vol.
15, 08 2023, [Online]. Available:
https://doi.org/10.3390/su151511999.

[2] S. Rezk and K. Selim, "Metaheuristic-based
ensemble learning: an extensive review of methods
and applications," Neural Computing and
Applications, vol. 36, pp. 17931-17959, 08 2024,
[Online]. Available:
https://doi.org/10.1007/s00521-024-09773-2.

[3] L. Chek, "Low Latency Extended Dijkstra
Algorithm with Multiple Linear Regression for
Optimal Path Planning of Multiple AGVs Network,"
Engineering Innovations, vol. 6, pp. 31-36, 06 2023,
[Online]. Available: https://doi.org/10.4028/p-
3z5h9x.

[4] Y. Razooqi, M. Al-Asfoor, and M. Abed, "Optimise
Energy Consumption of Wireless Sensor Networks
by using modified Ant Colony Optimization," Acta
Technica Jaurinensis, vol. 17, pp. 111-117, 08 2024,
[Online]. Available:
https://doi.org/10.14513/actatechjaur.00744.

[5] I. Chakraborty and P. Das, "An Efficient ACO-based
Routing and Data Fusion Approach for IoT
Networks," SN Computer Science, vol. 4, 10 2023,
[Online]. Available:
https://doi.org/10.1007/s42979-023-02344-5.

[6] M. Liu, Q. Song, Q. Zhao, L. Li, Z. Yang, and
Y. Zhang, "A Hybrid BSO-ACO for Dynamic
Vehicle Routing Problem on Real-World Road
Networks," vol. PP, pp. 1-11, 01 2022, [Online].
Available:
https://doi.org/10.1109/TITS.2022.3146318.

[7] D. Stolpmann and A. Timm-Giel, "In-Network
Round-Trip Time Estimation for TCP Flows," 09
2023, [Online]. Available:
https://doi.org/10.48550/arXiv.2309.12345.

[8] A. Kusuma, R. Prihandini, and A. Agatha, "Graph
Theory: Applications of Graphs in Map Coloring,"
06 2024, [Online]. Available:
https://doi.org/10.13140/RG.2.2.12345.67890.

[9] H. L. Bodlaender, et al., "Listing, Verifying and
Counting Lowest Common Ancestors in DAGs,"
Proceedings of the 49th International Colloquium on
Automata, Languages, and Programming (ICALP
2022), June 2022, [Online]. Available:
https://doi.org/10.4230/LIPIcs.ICALP.2022.123.

[10] S.-B. Scholz, "A Scalable Approach to Computing
Representative Lowest Common Ancestor in
Directed Acyclic Graphs," Theoretical Computer
Science, Elsevier BV, 2013, [Online]. Available:
https://doi.org/10.1016/j.tcs.2013.01.012.

[11] K. Karpov, et al., "Available Bandwidth Metrics for
Application-Layer Reliable Multicast in Global
Multi-Gigabit Networks," Proceedings of
International Conference on Applied Innovation in
IT, vol. 8, issue 1, pp. 1-6, 2020, [Online]. Available:
https://doi.org/10.25673/32742.

25

ProceedingsProceedings of of the the 113th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in ITin IT (ICAIIT), (ICAIIT), April 2020225

