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Abstract: Voice Activity Detection (VAD) is a root component in Human-Robot Interaction (HRI), especially for use 

cases such as a self-learning personalized conversational robot partner designed to support elderly users with 

high acceptance. While state-of-the-art, lightweight deep-learning–based VAD models achieve high 

precision, they often struggle with low recall in environments with significant background noise or music. In 

contrast, traditional lightweight rule-based VAD methods tend to yield higher recall but at the expense of 

precision. These limitations can negatively affect user experience, particularly among elderly individuals, by 

causing frustration from missed spoken inputs and reducing overall usability and acceptance of the 

conversational robot partners. This study investigates noise-suppressing preprocessing techniques to enhance 

both the recall and precision of existing VAD systems. Experimental results demonstrate that effective noise 

suppression prior to VAD processing substantially improves voice detection accuracy in noisy settings, 

ultimately promoting better interaction quality in elderly-centric robotic applications. Moreover, optimal 

sample rate, frame duration, thresholds and voice activity modes were identified for the robot Double3—the 

conversational robot partner platform for seniors in a care home, co-creatively developed by reflecting with 

the nursing staff. An open-source dataset and a dataset collected and annotated in-house with the Double3 

robot were evaluated for robustness in benchmarks.  

1 INTRODUCTION 

Voice Activity Detection (VAD) is a fundamental 

component in Human-Robot Interaction (HRI), 

particularly for a self-learning Conversational Robot 

Partner (CRP) designed for elderly users operating in 

indoor noisy environments. Robust VAD is essential 

for enabling these systems to effectively separate 

spoken content from ambient noise, thereby 

supporting self-learning personalized processes and 

maintaining contextual awareness through speaker 

diarization, speech recognition, and large language 

model-based text generation. Achieving high recall 

ensures no relevant speech is missed, while high 

precision minimizes the downstream tasks’ 

processing of non-speech segments. This balance 

enhances interaction quality and optimizes resource 

utilization, energy consumption, and bandwidth 

efficiency. [1] 

State-of-the-art lightweight deep learning VAD 

Silero [2] and rule-based VAD WebRTC [3] excel in 

high precision and recall respectively in 

environments with background noise or music. 

However, Silero often suffers from low recall, while 

WebRTC struggles with low precision. This can 

frustrate the elderly users and ultimately reduce the 

usability and acceptance of the system. A noise 

suppression methodology as a preprocessing step to 

the VADs is investigated to address these 

shortcomings without sacrificing their strengths. This 

approach effectively mitigates the limitations 

inherent to each system, preserving their advantages 

while enhancing overall performance. 

The CRP born from the project EduXBot1,2 is 

developed for German senior residents at a nursing 

home facility in indoor noisy environments by 

evaluating and reflecting with the nursing staff. Most 

modern VADs are mainly developed for English and 

1 https://www.hs-anhalt.de/eduxbot/uebersicht.html 
2 https://drks.de/search/de/trial/DRKS00034195 
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their range of dominant frequencies lies from 1000 

Hz to 2000 Hz, whereas the German language is from 

125 Hz to 3000 Hz. [4] However, language 

agnosticism has been studied and results show no 

significant difference between the accuracy of 

German and English languages in various SOTA 

VAD benchmarks. [5] Therefore, this is not 

considered in this study. 

Furthermore, since supervised learning based 

VADs such as Silero are susceptible to acoustic 

mismatch in different environments, experiments 

with the open-source dataset AVA Speech and a 

custom-recorded and annotated dataset based on the 

Double3 robot were conducted. [6][7] This is to prove 

that no separate training would be necessary, which is 

normally inherent in unsupervised VADs and noise 

grouping. [8][9][10][11] Finally, the optimal 

sampling rate, frame duration and VAD 

Modes/thresholding value were identified for the 

CRP development platform Double3 in which the 

VAD was deployed. The Double3 platform 

demonstrated consistent acceptance among nursing 

staff, as evidenced by increased System Usability 

Scale (SUS) scores across three iterations, rising 

progressively from below 70 to above 75. [12]  

2 BACKGROUND 

2.1 Base Models 

Two lightweight voice activity detection (VAD) 

models in our experiments are employed: one based 

on deep learning and the other rule-based. The deep-

learning-based model utilized is Silero, a lightweight 

VAD trained on datasets covering over 6,000 

languages. Silero employs Short-Time Fourier 

Transform (STFT) as features and operates efficiently 

at a sampling rate of 16 kHz with a 30ms frame 

duration. Processing each frame requires less than 

1ms on a single CPU thread, making it highly suitable 

for real-time applications [2]. Additionally, the model 

allows adjustable parameters, including threshold 

levels and minimum durations for speech and silence, 

enabling effective customization for various use 

cases.  

In contrast, WebRTC is a rule-based VAD model 

utilizing Gaussian Mixture Models (GMM). It 

processes six frequency bands ranging from 80 Hz to 

4000 Hz, represented as log-energy values. 

Optimized for real-time web communication through 

fixed-point arithmetic operations, WebRTC is highly 

suitable for deployment on edge devices due to its 

lightweight design. It supports multiple sampling 

rates of 8, 16, and 32 kHz and accepts frame durations 

of 10, 20, and 30ms. The presence of voice activity is 

determined by applying predefined rule-based 

criteria, enhancing its efficiency in real-time 

scenarios [3]. 

2.2 Datasets 

Our experiments were conducted using two distinct 

datasets. The first dataset is the open-source AVA 

Speech dataset, which consists of densely annotated 

audio clips recorded at sampling rates of 44.1 kHz 

and 48 kHz. The dataset provides approximately 40 

hours of audio segmented into four categories: no 

speech, clean speech, speech with music, and speech 

with noise. Specifically, clean speech segments 

account for 14.55%, speech with music 13.46%, 

speech with noise 24.32%, and no speech 47.68% of 

the total duration. The signal-to-noise ratios (SNR) 

for clean speech, speech with music, and speech with 

noise segments are 40.8 dB, 11.7 dB, and 16.2 dB, 

respectively [7]. 

Figure 1: Annotation procedure with Audacity for the in-

house Double3 dataset for the first 31.5 seconds. 

The second dataset was collected in-house using a 

Double3 robot’s microphone, incorporating typical 

environmental background noises such as coffee 

machines, doors opening and closing, keyboard 

typing, mouse clicks, and background music in an 

indoor environment similar to the nursing home’s 

communal space. This verification dataset, recorded 

at a sampling rate of 44.1 kHz, comprises 

approximately 20 minutes of densely annotated 

audio. Annotations were conducted manually using 

the Audacity software [13], by carefully listening, 

analyzing waveforms and spectrograms (see 

Figure 1). The speech segments were directly labeled 

using Audacity, while the remaining non-speech 

segments were identified and annotated using a 

Python script based on gaps between speech 

segments. The speech segment accounts for 58.02% 

and non-speech 41.98% of the total duration.  
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2.3 Noise Suppression 

Recent advancements in lightweight, real-time deep 

learning-based noise suppression and speech 

enhancement methods, such as DeepFilterNet, have 

significantly improved the feasibility of deploying 

efficient models on edge devices, including robotic 

platforms equipped with embedded systems [14]. In 

our study, the DeepFilterNet2 (DFN2) model was 

explored as a preprocessing step prior to the VAD 

stage. [14] DFN2 leverages the harmonic structure 

inherent in speech signals, achieving efficient speech 

enhancement with a real-time factor of 0.04, thus 

ensuring suitability for real-time applications. [14] 

3 METHODOLOGY 

The first objective of this study is to evaluate the 

performance and limitations of the lightweight VAD 

models Silero (deep-learning-based) and WebRTC 

(GMM-based) by benchmarking them against the 

AVA Speech and in-house Double3 datasets. 

Initially, WebRTC was benchmarked against both 

datasets across various sampling rates (8, 16, and 32 

kHz), frame durations (10, 20, and 30ms), and VAD 

operational modes (0, 1, 2, and 3). The VAD mode 

"0" corresponds to the lowest detection threshold, 

while mode "3" represents the highest detection 

threshold, with incremental steps (1 and 2) between 

each mode. This resulted in 36 benchmark 

combinations for each dataset, measuring recall and 

precision. The benchmarks were calculated based on 

the total duration of speech detected rather than the 

number of segments, ensuring better accuracy.   

The second objective is to investigate the impact 

of employing the DeepFilterNet2 (DFN2) noise 

suppression preprocessing technique to mitigate the 

limitations identified in the lightweight VAD models 

while preserving their performance. The final 

objective is to determine the optimal sampling rate, 

frame duration, threshold values, and operational 

modes for the VAD models when applied to the 

Double3-based CRP.  

For Silero, only the threshold parameter was 

varied, evaluated at equal intervals from 0 to 1, while 

maintaining fixed sampling rate and frame duration 

(16 kHz and 30ms, respectively), as these are the only 

supported settings relevant for this study. The 

evaluation process was subsequently repeated after 

applying the DFN2 preprocessing step to assess its 

impact on Silero's performance.  

4 RESULTS 

This section follows the structure outlined in the 

previous methodology section. First, the baseline 

results obtained using WebRTC and Silero are 

presented. Subsequently, the results achieved after 

incorporating the DNF2 noise suppression technique 

as a preprocessing step are discussed. 

4.1 Base Results 

WebRTC was benchmarked using the AVA Speech 

dataset and our in-house Double3 dataset across 

various sampling rates, frame durations, and VAD 

modes.   

Silero, on the other hand, was benchmarked 

exclusively at a sampling rate of 16 kHz and a frame 

duration of 30ms. However, various thresholds 

ranging from 0 to 1 were explored to assess their 

impact on performance.  

4.1.1 WebRTC without Preprocessing 

When looking across the sampling rate axis (x-axis) 

in Figure 2, no significant changes can be seen in the 

color and size representing the precision and recall for 

AVA Speech. In Figure 3, this is seen clearly, where 

the three colors representing the different sample 

rates overlay each other in most cases.  

Figure 2: 5D plot of precision vs recall for WebRTC on 

AVA Speech dataset with various sampling and frame rates 

without noise suppression preprocessing.  

A similar behavior is observed concerning frame 

duration, although predominantly at lower VAD 

modes (0 to 2), where threshold values are lower and 

less aggressive. At higher thresholds—specifically, 

VAD mode = 3 – the precision peaks at 72% with a 

frame duration of 10ms; however, this configuration 

also results in the lowest recall of only 70.8%. 
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Figure 3: 4D plot of precision vs recall for WebRTC on 

AVA Speech dataset with various sampling and frame rates 

without noise suppression preprocessing. VAD modes are 

bounded by circles. 

Figure 4: 4D plot of precision vs recall for WebRTC on 

Double3 in-house dataset for various sampling and frame 

rates without noise suppression preprocessing. VAD modes 

bounded by circles. 

However, the VAD mode demonstrates a clear 

relationship between precision and recall for the AVA 

Speech dataset. As the VAD mode increases, 

precision improves, whereas recall decreases. At the 

highest VAD mode (mode 3), precision peaks at 72%, 

but recall drops to its lowest at 70.8%. Conversely, at 

the lowest VAD mode (mode 0), precision decreases 

to the lowest 58%, while recall reaches its highest 

value of 95%.  

Similar observations were made when 

benchmarking WebRTC on the in-house Double3 

dataset, as illustrated in Figure 4. Specifically, the 

highest precision achieved was 88%, corresponding 

to the lowest recall value of 33%. Conversely, the 

highest recall of 93% was associated with the lowest 

precision of 69%.  

Although WebRTC demonstrates high recall for 

both datasets, peaking above 90%, the precision 

remains comparatively lower, peaking at 72% for the 

AVA Speech dataset. These trade-off highlights an 

inherent limitation of WebRTC VAD, wherein 

precision and recall cannot be simultaneously 

optimized, necessitating a compromise between the 

two metrics.  

4.1.2 Silero without Preprocessing 

The benchmark results for Silero, illustrating 

precision versus recall for both the AVA Speech and 

Double3 datasets, are shown in Figure 5. While Silero 

demonstrates high precision, exceeding 90% in 

certain thresholds, its recall remains comparatively 

lower, peaking at 73% for the AVA Speech dataset 

and 62% for the Double3 dataset when precision is 

90%. Consequently, an optimal balance between 

precision and recall is not observed in either dataset.  

Figure 5: 2D plot of precision vs recall for Silero on AVA 

Speech (AVA) and Double3 (D3) in-house datasets for 

various thresholds without noise suppression 

preprocessing.  

In contrast to WebRTC, which demonstrates 

higher recall but lower precision, Silero exhibits 

lower recall yet higher precision. However, both 

systems inherently involve a trade-off between these 

metrics, which constrains the ability to optimize them 

simultaneously. 

4.2 After Noise Suppression 

In this section, the results obtained after applying 

noise suppression (DNF2) as a preprocessing step to 

the VAD models WebRTC and Silero are 

summarized.  

4.2.1 WebRTC after DNF2 

Benchmarking WebRTC with DNF2 as a noise 

suppression preprocessing step yielded major 

improvements in precision. As illustrated in 

Figures 6 and 7, incorporating the noise suppression 
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model (DNF2) as a preprocessing step significantly 

improved the precision of the WebRTC VAD model 

on both the AVA Speech and Double3 datasets. 

Specifically, for the AVA Speech dataset, the highest 

precision increased by 15.5%, rising from 72% to 

87.5%. Similarly, the Double3 dataset exhibited a 

notable improvement, with the highest precision 

increasing by 5% from 76% to 81%, at VAD mode 2. 

Figure 6: 4D plot of precision vs recall for WebRTC on 

AVA Speech dataset for various sampling and frame rates 

after noise suppression. VAD modes bounded by circles. 

Figure 7: 4D plot of precision vs recall for WebRTC on 

Double3 dataset for various sampling and frame rates after 

noise suppression. VAD modes bounded by circles. 

The sampling rate showed minimal influence on 

performance, consistent with observations from the 

baseline model without noise suppression. However, 

the frame duration of 10ms in the AVA Speech 

dataset at VAD Mode 3 achieves recall less than 80%, 

whereas at frame durations 20ms and 30ms are above 

80%. Consequently, an 8 kHz sampling rate 

combined with a 20ms frame duration was selected to 

minimize sample size, inference time, and resource 

usage and maintain a precision and recall above 80% 

for both datasets.  

With this configuration, WebRTC combined with 

the noise suppression preprocessing step achieved the 

desired balance between precision and recall. 

Specifically, at VAD mode 3 for the AVA Speech 

dataset and VAD mode 2 for the Double3 dataset, 

both precision and recall exceeded 80%, as seen in 

Figure 8. Specifically, at this configuration, the AVA 

Speech dataset precision increased by 17% (from 

69% to 86%) and the Double3 dataset precision 

increased by 5% (from 75% to 80%). In both 

instances, recall was maintained (Double3 at 85%) or 

increased (AVA Speech by 3%).  

Figure 8: 2D plot of precision vs recall for WebRTC on 

AVA Speech and Double3 in-house datasets after noise 

suppression for the selected 8 kHz sampling rate and 20ms 

frame duration with various thresholds. 

4.2.2 Silero after DNF2 

Benchmarking Silero with DNF2 as a noise 

suppression preprocessing step yielded notable 

improvements in recall.    

Figure 9: 2D plot of precision vs recall for Silero on AVA 

Speech and Double3 in-house datasets with various 

thresholds after noise suppression.   
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For the AVA Speech dataset, recall increased by 

7%, rising from 73% to 80%, at a precision of 90% 

with a threshold of 0.20, as shown in Figure 9. 

Similarly, for the Double3 dataset, recall improved by 

4% (from 62% to 66%) at the same precision level at 

a threshold of 0.25. 

Although these enhancements are promising, 

recall remains below 80% in most instances. To 

explore a more optimal operating point, configuring 

the system to achieve 80% precision resulted in a 

recall increase of 4% (from 83% to 87%) for AVA 

Speech, while for Double3, it rose by 3% (from 80% 

to 83%) at the thresholds of 0.20 and 0.25 

respectively. 

5 CONCLUSIONS 

In this study, two lightweight VAD models enhanced 

by incorporating noise suppression (DNF2) as a 

preprocessing step are evaluated. The addition of this 

preprocessing significantly improved WebRTC VAD 

performance, increasing precision by 17% on the 

AVA Speech dataset and by 5% on the Double3 

dataset. This enhancement enabled WebRTC to 

achieve an optimal combination of precision and 

recall, with both metrics surpassing 80% at VAD 

mode 3 for the AVA Speech dataset and mode 2 for 

the Double3 dataset. The optimal sampling rate of 

8 kHz, 20ms frame duration and VAD mode 2 is 

identified for WebRTC, aligning to the Double3 

dataset. Additionally, the deep learning-based Silero 

model demonstrated improved recall, increasing by 

4% for the AVA Speech dataset and 3% for the 

Double3 dataset, all when precision is at 80%.  

Since WebRTC achieved better recall (85%) as 

compared to Silero (83%) when precision is above 

80% for the Double3 dataset, WebRTC with DNF2 

noise suppression is selected for the CRP at VAD 

mode 2. 

During the analysis of our results, it was observed 

that speech characterized by whispering, shouting, 

and high-pitched tones was frequently missed by both 

VAD models. This was done by analyzing the before 

and after spectrograms and listening to the cropped 

regions of the false negative regions of the audio 

datasets. Consequently, further optimization and 

additional benchmarking efforts are required to 

enhance the detection capabilities and overall 

performance of these lightweight VAD models.  
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