
Quantum Approximate Optimization Algorithm for the Max-Cut

Problem: JavaScript Programming Language Implementation

Dmytro Sapozhnyk
Department of Software Engendering, Zhytomyr Polytechnic State University, Chudnivska Str. 103,

10005 Zhytomyr, Ukraine
phd121221_sdo@student.ztu.edu.ua

Keywords: Quantum Approximate Optimization Algorithm (QAOA), Max-Cut, JavaScript, Quantum Algorithms.

Abstract: In this paper, we present the implementation of the Quantum Approximate Optimization Algorithm (QAOA)
for the Max-Cut problem using the JavaScript programming language. The Max-Cut issue, which involves
partitioning the vertices of a graph into two subsets such that the number of edges between the subsets is
maximized, is a well-known NP-hard difficulty with numerous practical applications, including network
design and resource allocation. The implementation of QAOA in JavaScript is a significant step towards
integrating quantum computing with modern web technologies, thus broadening access to quantum algorithms
among software developers. Quantum algorithm implementation leverages the principles of quantum
mechanics, such as superposition and entanglement, to approximate solutions to combinatorial optimization
issues. The quantum.js framework, developed in the context of this research, facilitates the construction and
manipulation of quantum circuits in a web environment. The framework includes functions for building
quantum circuits, optimizing the parameters of the QAOA algorithm, and visualizing the resulting quantum
states. By enabling the execution of quantum algorithms in a web-based setting, this work demonstrates the
potential for utilizing quantum computing capabilities within popular web development environments. The
results highlight the efficiency of QAOA in providing approximate solutions to the Max-Cut, offering a
promising alternative to classical optimization methods. Future work will focus on enhancing the framework
by adding cloud-based quantum computing capabilities, expanding the documentation, incorporating
additional quantum-hybrid algorithms, and improving the user interface of the associated web application.

1 INTRODUCTION

Quantum computing is a revolutionary technology

based on the principles of quantum mechanics. The

idea of quantum computing was first put forward by

Paul Benioff and Richard Feynman, Benioff proposed

a model of a computer based on quantum mechanics,

Feynman, and motivated the use of computers to

simulate quantum phenomena [1]. This technology

promises significant improvements in various fields,

such as security, finance, medicine, communications,

and sciences. Quantum mechanics revolutionized the

world by redefining Newtonian physics and our

understanding of the universe. Its principles, such as

entanglement, interference, and superposition, have

become the basis of many fields, including quantum

chemistry, quantum information theory, quantum

cryptography, and quantum machine learning [2].

The advantages of quantum computing over

classical computing include exponential acceleration

of performance in some specific computing, these

include all problems that are based on a complete

enumeration of options. It has been theoretically and

mathematically proven that they can significantly

surpass classical computing systems. Google has

experimentally confirmed this with its Sycamore

processor [3]. Quantum devices, although in the early

stages of development, are already showing great

potential for solving complex issues.

Quantum computers are based on key principles

of quantum mechanics, such as superposition,

entanglement, interference, and the uncertainty

principle. Quantum bits (qubits), units of quantum

information, can be in a superposition of states 0 and

1 [4]. The main difference from classical bits is

superposition, a visualization of classical and

quantum bits, can be seen in picture 1. Superposition

allows a qubit to be in multiple states at the same time,

which provides an exponential advantage over

classical computing. Quantum algorithms such as the

Variational Quantum Eigensolver (VQE) and the

Quantum Approximate Optimization Algorithm

(QAOA) use these capabilities to find approximate

solutions to combinatorial problems [5]. However,

existing quantum devices are noisy due to

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

27

decoherence, i.e., the loss of quantum states due to

interaction with the environment [6].

Figure 1: Visualization of classical and quantum bits.

Quantum computing makes it possible to find

patterns that are inaccessible to classical computers.

They promise to revolutionize many fields, including

machine learning, optimization, complex systems

modeling, cryptography, and much more.

Investments in the development of quantum

hardware, software packages, and simulators have

already led to the creation of numerous tools for

quantum development.

Quantum technologies open up new horizons for

scientific research and technological innovation.

They allow you to solve problems that are too

complex for classical computers, including

optimization problems, modeling molecules and

materials, cryptography, machine learning, and many

others. These computers can provide significant

improvements in linear algebra problems, database

searches, integer factorization, and quantum system

simulations [6].

Figure 2: Pennylane imitation of molecules [8].

In medicine, quantum computing can help in the

development of new drugs and therapies by

simulating the interaction of molecules with great

accuracy, in Figure 2 you can see that the Pennylane

library has a simulation of molecules for quantum

programming. In finance, they can be used to

optimize portfolios and predict market trends. In

machine learning, quantum algorithms can provide a

significant acceleration in model training and

processing large amounts of data.

2 RELEVANCE

Quantum computing opens up new possibilities for

solving complex computational difficulties by

leveraging the principles of quantum mechanics, such

as superposition and entanglement. The Quantum

Approximate Optimization Algorithm (QAOA) is a

promising option for solving combined issues, in

particular Max-Cut, due to its ability to approximate

optimal solutions using quantum computing.

The Max-Cut problem consists in finding such a

partition of the set of vertices of a graph into two

subsets that maximizes the number of edges between

these subsets. It is one of the classic NP-complex

problems in graph theory and combinatorial

optimization [7]. It has numerous practical

applications in areas such as network design, resource

allocation, statistical physics, and machine learning

[7]. Since the Max-Cut issue is an NP-complex

problem, traditional algorithms are insufficient to

effectively solve problems of this kind. This makes

the problem of graph section optimization important

for both theoretical research and practical

applications.

Although QAOA implementations for Max-Cut

are already available in languages like Python, the

addition of this functionality to JavaScript is

significant for several reasons. By enabling quantum

algorithms to be executed in this language, we can

promote the widespread adoption of quantum

computing concepts among web developers and the

broader software development community. This

accessibility can accelerate educational initiatives,

collaborative research, and the integration of quantum

algorithms into mainstream technology stacks. This

integration is expected to enhance the applicability of

quantum algorithms, fostering innovation and

collaboration across various disciplines.

3 ANALYSIS OF CURRENT

RESEARCH

To date, there is a significant amount of research

devoted to the application of quantum algorithms to

solve combinatorial problems such as Max-Cut. The

main efforts are focused on the development and

optimization of algorithms, as well as the creation of

tools for their implementation on different quantum

platforms. Among such platforms, IBM's Qiskit and

Xanadu's Pennylane stand out, which have become

the main tools for the development of quantum

applications.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

28

Qiskit is an open-source quantum computing

software package that provides tools for developing

and simulating quantum algorithms, as well as access

to IBM quantum computers. Qiskit includes modules

for creating quantum circuits, simulating their

operation, and executing them on real quantum

devices. This tool supports various noise models and

allows you to investigate the efficiency of algorithms

in the conditions of real quantum systems [9].

Particular attention should be paid to the IBM

Quantum Composer software (Figure 3), which

allows you to work with quantum bits in a graphical

interface. It has a visualization of results, displays a

Bloha sphere, and makes it possible to run or export

a written circuit for working with quantum bits [10].

Figure 3: IBM Quantum Composer [10].

IBM does a lot of work to develop quantum

technologies, from the development of quantum

computers themselves to the creation of educational

materials and research. It is noteworthy to mention

that on the Learning Quantum resource of IBM, a

comprehensive article titled “Solve utility-scale

quantum optimization problems” is available, which

focuses on the QAOA algorithm for resolving the

Max-Cut problem [11].

Pennylane is another powerful tool for quantum

computing that enables the development of hybrid

quantum-classical algorithms. It integrates with

popular machine learning libraries such as

TensorFlow and PyTorch, making it easy to combine

quantum algorithms with classical neural networks.

Pennylane supports a wide range of quantum

hardware platforms and simulators, making it a

versatile tool for quantum machine learning and

optimization research [12]. Pennylane also

implements modules that implement work with

quantum algorithms, in particular with the algorithm

of approximate quantum optimization [13].

Despite significant progress in the development of

quantum computing tools, there is a notable lack of

implementations of quantum algorithms in the

JavaScript programming language. Most current

research focuses on the use of Python, which limits

the accessibility of quantum computing for web

application developers. JavaScript is one of the most

popular programming languages and is widely used

in all areas of software development. Creating

implementations of quantum algorithms in JavaScript

will be an important step in spreading quantum

computing to a wider range of developers.

4 SOFTWARE

IMPLEMENTATION OF THE

ALGORITHM

The Max-Cut problem is a classic problem of graph

theory and combinatorial optimization, which

consists in finding such a partition of the set of

vertices of a graph into two subsets that maximizes

the number of edges between these subsets, solving

the problem using the QAOA quantum algorithm, can

significantly accelerate the optimization process and

provide a faster solution compared to classical

methods.

Figure 4: Part one of the flowchart of the QAOA.

Quantum Approximate Optimization Algorithm

is one of the most promising approaches for solving

complex combination problems such as Max-Cut.

QAOA combines quantum computing with classical

optimization methods, using the properties of

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

29

superposition and entanglement to achieve

approximate solutions [14]. To visualize the

algorithm, a flowchart was created (Figures 4-6).

The main idea of QAOA is to build a variational

quantum circuit, which includes two main

components: a phase separator (cost Hamiltonian)

and a mixer (mixing Hamiltonian). The phase

separator is responsible for encoding the optimization

problem into a quantum system, while the mixer

facilitates the mixing of states to explore the space of

possible solutions.

Figure 5: Part two of the QAOA flowchart.

The algorithm begins with the fact that a quantum

system is in a state of superposition of all possible

classical states. At each step of the algorithm, a phase

separator is used, which changes the phase of each

state according to the objective function, followed by

a mixer, which performs quantum stirring. The

process is repeated several times to get as close as

possible to the optimal solution.

After several iterations of these transformations, a

measurement of the quantum system is performed to

obtain a classical solution that corresponds to an

approximate optimal result for solving the Max-Cut

problem. The efficiency of the algorithm depends on

the optimization of parameters, which can be

implemented using classical optimization

methods [15].

Figure 6: Part three of the QAOA flowchart.

QAOA is a flexible and versatile algorithm that

can be applied to various combinatorial problems,

thanks to its ability to effectively explore the solution

space. Due to its versatility and efficiency, QAOA

has the potential to significantly improve the solution

of complex problems in various industries. The

QAOA algorithm uses the principles of quantum

mechanics, such as superposition and entanglement,

to efficiently explore a large space of possible

solutions [15]. The use of quantum computing in

combination with classical optimization methods

makes QAOA a powerful tool for solving

optimization problems that are too complex for

classical algorithms.

To implement QAOA to solve the Max-Cut

problem in the JavaScript programming language, the

Quantum.js [16] framework, written by the author of

the article in the context of a scientific work. It

provides tools for working with quantum computing

in the JavaScript programming language. The main

components of the implementation are functions for

constructing quantum circuits and optimizing

algorithm parameters.

The implementation begins with the import of the

main Circuit class, which is used to create and

manipulate quantum circuits.

TypeScript code:

import { Circuit } from '.. /..

/circuit';

The appendZZTerm function adds a phase

separator corresponding to the Hamiltonian of the

Max-Cut problem. It uses CX and RZ quantum gates

to apply a phase shift between qubits.

TypeScript code:

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

30

function appendZZTerm(qc: Circuit,

q1: number, q2: number, gamma: number)

{

 qc.cx(q1, q2);

 qc.rz(2 * gamma, q2);

 qc.cx(q1, q2);

}

The appendCostOperatorCircuit function adds a

phase separator for all edges of the graph using the

appendZZTerm function.

TypeScript code:

function

appendCostOperatorCircuit(qc: Circuit,

edges: Array<[number, number]>, gamma:

number) {

 for (const [i, j] of edges) {

appendZZTerm(qc, i, j, gamma);

 }

}

The appendXTerm function adds a mixer using

RX quantum gates for each qubit.

TypeScript code:

function appendXTerm(qc: Circuit, q:

number, beta: number) {

 qc.rx(2 * beta, q);

}

The appendMixerOperatorCircuit function adds a

mixer for all vertices of the graph using the

appendXTerm function[17].

TypeScript code:

function

appendMixerOperatorCircuit(qc: Circuit,

nodes: Array<number>, beta: number) {

 for (const n of nodes) {

appendXTerm(qc, n, beta);

 }

}

The main function getQAOACircuit creates a

quantum circuit for QAOA. It takes the vertices and

edges of the graph, as well as the β and γ parameters

that determine the number of steps of the algorithm.

TypeScript code:

function getQAOACircuit(

 nodes: Array<number>,

 edges: Array<[number, number]>,

 beta: number[],

 gamma: number[]

): Circuit {

const p = beta.length; Number of

QAOA steps

const qc = new

Circuit(nodes.length);

 // First Step: Apply the Adamartt

Gate Layer

 nodes.forEach((node) =>

qc.h(node));

 // Second Step: Apply p Duty

Operators

 for (let i = 0; i < p; i++) {

appendCostOperatorCircuit(qc,

edges, gamma[i]);

appendMixerOperatorCircuit(qc,

nodes, beta[i]);

 }

 // The Last Step: Measure the

Result

 nodes.forEach((node) =>

qc.measure(node));

 return qc;

}

The objectiveFunction function defines the

objective function for QAOA. It builds a quantum

circuit, runs it, and evaluates the result by calculating

the number of edges cut.

TypeScript code:

export function objectiveFunction(

 beta: number[],

 gamma: number[],

 nodes: Array<number>,

 edges: Array<[number, number]>,

 idCircuitDraw?: string

): number {

 const qc = getQAOACircuit(nodes,

edges, beta, gamma);

 qc.run();

 if (typeof document !==

'undefined' && idCircuitDraw) {

const circuitDraw =

document.getElementById(idCircuitDraw);

if (circuitDraw) {

circuitDraw.innerHTML =

qc.exportSVG();

}

 }

 const result = qc.measure() as

number[];

 Evaluation of the result

 return computeMaxCutScore(result,

edges);

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

31

}

The computeMaxCutScore function calculates

the number of edges cut for a given partition of the

vertices of the graph.

TypeScript code:

function computeMaxCutScore(result:

number[], edges: Array<[number,

number]>): number {

 let score = 0;

 for (const [i, j] of edges) {

if (result[i] !== result[j]) {

score++;

}

 }

 return score;

}

To optimize β and γ parameters, the

optimizeQAOAWithCOBYLA function is used,

which implements a simple random search

optimization approach.

TypeScript code:

export function

optimizeQAOAWithCOBYLA(

 nodes: Array<number>,

 edges: Array<[number, number]>,

 steps: number,

 idCircuitDraw?: string

): { beta: number[]; gamma:

number[]; score: number; maxCutScore:

number } {

 let bestBeta: number[] =

Array(steps).fill(Math.PI / 4); Initial

assumption for beta

 let bestGamma: number[] =

Array(steps).fill(Math.PI / 4); Initial

assumption for gamma

 let bestScore =

objectiveFunction(bestBeta, bestGamma,

nodes, edges, idCircuitDraw);

 let bestMaxCutScore = bestScore;

 const maxIterations = 100; Maximum

number of iterations

 const randomStepScale = 0.01;

Scale of Random Change

 for (let iter = 0; iter <

maxIterations; iter++) {

for (let i = 0; i < steps; i++)

{

Const Newbeta = [...

Bestbeta];

constant newgamma = [...

Bestgamma];

// Changing the beta and gamma

values to a small random increment

newBeta[i] += (Math.random() -

0.5) * randomStepScale;

newGamma[i] += (Math.random()

- 0.5) * randomStepScale;

const newScore =

objectiveFunction(newBeta, newGamma,

nodes, edges);

if (newScore > bestScore) {

bestBeta = newBeta;

Bestgamma = Neugamma;

bestScore = newScore;

bestMaxCutScore = newScore;

}

}

 }

 return { beta: bestBeta, gamma:

bestGamma, score: bestScore,

maxCutScore: bestMaxCutScore };

}

This implementation demonstrates the integration

of the QAOA quantum algorithm with JavaScript,

allowing the power of quantum computing to be

harnessed on a web page or in a Node.js environment.

The use of quantum computing in JavaScript

contributes to the spread of quantum technologies

among web developers and opens up new

opportunities for optimizing complex problems.

5 CONNECTING

THE FRAMEWORK TO A WEB

APPLICATION

To implement the use of the algorithm, it was decided

to build a web application using modern web

development technologies [17]. The interaction of the

application with the user (Figure 7) can be described

as follows:

1) Open the page;

2) Enter graph edges;

3) Click the draw graph button;

4) Click the start calculation button;

5) Get the result.

The architecture of the application is built based

on the following components[17]:

1) App.tsx: The main component of React,

containing the core logic and rendering of the

application;

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

32

2) Form.tsx: A form component that provides user

input required to run the QAOA algorithm;

3) graph.ts: contains a Graph class that implements

basic functionality for creating graphs, such as

adding nodes, edges, and graph visualization;

4) useEdges.ts: A React hook for controlling the

state of edges in a graph, provides functions for

adding, removing, and updating edges;

5) main.tsx: The main login file for the application,

which includes setting up and initializing the

main components;

6) App.css: A style file for the add-on containing

CSS rules for the main components.

Figure 7: Scheme of the application.

Figure 8: Application component interaction.

The interaction of the components is described in

Figure 8. The components interact as follows [17]:

1) Initialization (main.tsx): The main.tsx file

initializes the application by connecting the

main component of App.tsx;

2) Main component (App.tsx): The App.tsx

component imports and uses Form.tsx for user

input, graph.js for graph visualization, and other

helper components and hooks;

3) Data Entry Form (Form.tsx): Form.tsx is

responsible for the user entering parameters to

run the QAOA algorithm. This data is

transmitted to App.tsx for further processing;

4) Graph (graph.ts): provides an implementation of

the Graph class, which is used to create and

manage graphs;

5) Edge Management and QAOA (useEdges.ts):

The useEdges.ts Hook is used to manage the

state of edges in graphs, providing functions for

adding, removing, and updating edges,

connecting the quantum.js library, and running

QAOA algorithm calculations;

6) Styles (App.css): App.css contains CSS rules for

the design of the main components of the

application.

The Graphical Interface (Figure 9) of the

appendix can be divided into 4 zones [17]:

1) Graph construction;

2) A form for constructing a graph;

3) Graph of quantum interaction between qubits;

4) Display of results.

Figure 9: Application GUI.

6 CONCLUSIONS

As a result of the study, a quantum.js framework for

high-level interaction with quantum bits was built and

an implementation of the QAOA quantum hybrid

algorithm was added to solve the Max-Cut problem.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

33

By disabling the quantum.js framework to the web

application, a graphical interface was built that allows

you to: build and visualize graphs, use the QAOA

algorithm in the browser, draw a quantum scheme of

interaction between qubits used in the QAOA

algorithm. For future improvement of the framework,

the following points quantum.js highlighted:

 connect to quantum computers in the cloud;

 add other quantum-hybrid algorithms;

 build the functions of the framework for solving

real problems (the task of optimizing resources,

solving logistic problems).

To improve the performance of the web

application, it is worth paying attention to the user's

interaction with the application, improving styles, and

adding validation for entering edge values.

The implementation demonstrated the possibility

of effective use of quantum algorithms in the web

environment, which contributes to the widespread use

of quantum computing among web developers. The

main achievements were the creation of the

quantum.js framework, which provides high-level

interaction with quantum bits and the integration of

quantum bits computing with web technologies

through a modern graphical interface. It has been

shown that the QAOA quantum algorithm can

significantly improve the optimization process for

complex combinatorial problems compared to

classical methods. The use of quantum computing in

combination with classical optimization methods

makes QAOA a powerful tool for solving

NP-complex problems. Prospects for further

development include connecting to quantum

computers in the cloud, expanding documentation,

adding new quantum-hybrid algorithms, and

improving the user interface of the web application.

REFERENCES

[1] R. Feynman, [Online]. Available:
https://en.wikipedia.org/wiki/Richard_Feynman.

[2] A. Almajid, "Summary of Real Quantum Mechanics,"
2024. 10.13140/RG.2.2.20837.61928.

[3] “Google’s Sycamore: Exploring the Power of
Google’s Quantum Computer,” [Online]. Available:
https://medium.com/the-quantastic-journal/googles-
sycamore-exploring-the-power-of-google-s-quantum-
computer-266374339d5.

[4] “Qubit,” [Online]. Available:
https://en.wikipedia.org/wiki/Qubit.

[5] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li,
E. Grant, L. Wossnig, I. Rungger, G. Booth, and J.
Tennyson, “The Variational Quantum Eigensolver: A
review of methods and best practices,” Physics
Reports, vol. 986, pp. 1-128, 2022.
10.1016/j.physrep.2022.08.003.

[6] H. Sahu and Dr. Gupta, "Quantum Computing Toolkit
From Nuts and Bolts to Sack of Tools," 2023.

[7] “The Max-Cut Problem,” [Online]. Available:
https://www.cs.cmu.edu/afs/cs/academic/class/15854
-f05/www/scribe/lec02.pdf.

[8] “Pennylane datasets,” [Online]. Available:
https://pennylane.ai/datasets/.

[9] “Qiskit,” [Online]. Available:
https://docs.quantum.ibm.com/guides.

[10] “IBM Quantum Composer,” [Online]. Available:
https://quantum.ibm.com/composer.

[11] “Solve utility-scale quantum optimization problems,”
[Online]. Available:
https://learning.quantum.ibm.com/tutorial/quantum-
approximate-optimization-algorithm.

[12] V. Bergholm et al., "PennyLane: Automatic
differentiation of hybrid quantum-classical
computations," 2018. arXiv:1811.04968.

[13] “Intro to QAOA,” [Online]. Available:
https://pennylane.ai/qml/demos/tutorial_qaoa_intro/.

[14] M. X. Goemans and D. P. Williamson, "Improved
Approximation Algorithms for Maximum Cut and
Satisfiability Problems Using Semidefinite
Programming," Journal of the ACM, vol. 42, no. 6, pp.
1115-1145, 1995.

[15] E. Farhi, J. Goldstone, and S. Gutmann, "A Quantum
Approximate Optimization Algorithm," 2014.
arXiv:1411.4028.

[16] “Quantum.js Framework,” [Online]. Available:
https://github.com/EarlOld/quantum.js.

[17] “QAOA-quantum,” [Online]. Available:
https://github.com/EarlOld/QAOA-quantum.js.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

34

