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Abstract: Numerous studies have detailed instances of demographic bias in medical data and artificial intelligence (AI) 
systems used in medical setting. Moreover, these studies have also shown how these biases can significantly 
impact the access to and quality of care, as well as quality of life for patients belonging in certain under-
represented groups. These groups are then being marginalised because of stigma based on demographic 
information such as race, gender, age, ability, and so on. Since the performance of AI models is highly 
dependent on the quality of data used to train the algorithms, it is a necessary precaution to analyse any 
potential bias inadvertently existent in the data, in order to mitigate the consequences of using biased data in 
creating medical AI systems. For that reason, we propose a machine learning (ML) analysis which receives 
patient biosignals as input information and analyses them for two types of demographic bias, namely gender 
and age bias. The analysis is performed using several ML algorithms (Logistic Regression, Decision Trees, 
Random Forest, and XGBoost). The trained models are evaluated with a holdout technique and by observing 
the confusion matrixes and the classification reports. The results show that the models are capable of detecting 
bias in data. This makes the proposed approach one way to identify bias in data, especially throughout the 
process of building AI-based medical systems. Consequently, the proposed pipeline can be used as a 
mitigation technique for bias analysis in data. 

1 INTRODUCTION 

There exit numerous factors which contribute to or 
exacerbate disparities in healthcare, as are implicit 
and explicit biases which imbibe discriminatory 
practices based on demographic information as race, 
ethnicity, gender, or age [1]. With biased practices 
preserving, patients can receive subpar care quality, 
which can range from delays in admission and poor 
treatment to inaccurate diagnosis and potential for 
worsened health conditions [2].  

The impact of these issues largely affects 
underrepresented groups, and these (un)intended 
consequences even impede academic performance as 
medical professionals find themselves unable to treat 
certain populations. In example, dermatologists have 
spoken of their inability to accurately diagnose 
diseases in patients of colour due to under-
representation of certain populations in medical 
textbooks [3]. Consequently, five-year melanoma 
survival estimations show the survival rate for Black 
patients is only 70% compared to the 94% for White 
patients [4]. Compared to the self-awareness of 

dermatologists, there is a different side to medical 
personnel, as shown by [5], where it is illustrated that 
physicians are significantly less likely to recommend 
bypass surgery for Black compared to White patients. 
The contributing factor in these decisions was 
physicians believing Black patients to be less 
educated and, therefore, less likely to adhere to 
necessary activity post-surgery.  

Moreover, personnel biases extend to disability 
attitudes [6], with 83.6% of healthcare providers 
having a preference for able-bodied patients. 
Socioeconomic status is another aspect in which 
medicine is biased, and patients of lower status are 
likely to have worse self-reported health and at a risk 
of multimorbidity [7], in addition to having limited 
access to health care and being at a greater risk for 
substandard care [8]. 

The biases are not limited to preferences only, and 
extend to assumptions based on demographic 
information which personnel use when treating 
patients. The authors of [9] identify gender bias in 
patient-provider encounters and treatment decisions, 
with dichotomous depictions of “brave men” and 
“emotional women”. The study also found that 
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physicians are likely to attribute woman’s pain as a 
product of a mental health condition rather than as a 
physical condition. Medical personnel disregarding 
patients’ conditions can lead at the very least to delays 
in diagnosis. One example is [10], which found that 
women wait longer on average for a diagnosis 
compared to men in 72% of cases. Worst case 
scenarios can result in increased risk of death, e.g., 
how lack of awareness of the impact of heart attacks 
on women contributes to higher rates of females 
dying from heart attacks [11]. Healthcare 
professionals are less likely to recommend older 
patients for invasive or aggressive procedures 
denoting the choice as a “compassionate” approach 
even if said decision impacts life quality and 
expectancy in these patients [12]. 

Despite efforts to address and mitigate biased 
practices, health inequities persist, and infinitely 
worse get propagated in medical datasets and AI 
models which impact large populations. An algorithm 
was found to be racially biased since it used medical 
costs as a proxy for care needed, and consequently 
assigned the same level of risk to Black and White 
patients, even though the Black patients were in a 
worse medical condition [13]. A study of an 
algorithm for abnormalities in chest X-rays showed 
that highest rate of underdiagnosis exists in young 
females [14]. Another algorithm, which aimed to help 
with in-home care for patients, was found to 
recommend extreme cuts in cases of disabled 
patients, resulting in reduced quality of life and 
increased hospitalisation [15].  

As integration of AI in medical systems is 
expected to increase in the upcoming years, it is 
necessary to address and resolve biased issues in 
order to limit negative impact, as well as understand 
where the bias originates in order to reduce the 
chances of propagating said bias into production 
stages, and thus, mitigation strategies will be 
necessary. Previous examples demonstrate that one 
potential source of bias for AI models can be the data 
used for the research and its distributions, as shown 
in [16] where the authors show the impact of gender 
imbalance in medical imaging datasets in computer-
aided diagnostic tools. Additionally, the data used is 
the driving force for the algorithms, as they 
extrapolate information from said data in order to 
understand the problem and arrive at a decision. 

Since the basic foundation for AI systems is the 
data, we wanted to investigate whether data bias is 
visible and easily discernable by the algorithms even 
when confounding variables are excluded from the 
training data. That is to say, we investigate whether 
potential biased issues can be detected with simple 

analysis of the data itself. However, as all data can be 
a subject to bias, medical datasets are not excluded 
from the influences of biased medical personnel or 
biased decisions in real practice. Moreover, even 
though it is necessary for developers to thoroughly 
investigate trained models before their active use, in 
many cases hidden (or implicit) biases are not 
observed before models are deployed. This results in 
biased real-world applications, which impact large 
populations [13, 14]. Normally, biases arise from 
using confounding variables, however bias can be 
present even when confounding variables are 
excluded from research. 

For that reason, we wanted to investigate whether 
implicit biases can be found in data points where they 
should not exist, namely, measurements from bedside 
monitors. Therefore, we analyse bias from two 
demographic aspects, age and gender, using machine 
learning (ML) algorithms. The model is derived on 
80% of the data, whilst the performance is evaluated 
from a holdout of 20% using a classification report 
[17] and confusion matrix as metrics [18].

Previous papers have shown both gender [19, 20,
21] and age [22] differences in biosignals. Moreover,
ML algorithms have been used to predict age and
gender from iris biometrics [23, 24]. ML has also
been used for racial bias analysis in patient vital signs
[25], but to the best of our knowledge researchers
have not trained ML algorithms only on biosignals
from bedside monitors to differentiate patient age and
gender. This is a necessary analysis, and offers
insights into whether differences in biosignals can
unintendedly be learned by a model in a
discriminatory way, and therefore make the model
predict in favour of certain patient populations at the
expense of others.

The paper is organised as follows. Section two 
describes the data used for the research as well as the 
applied methodology. Section three contains the 
results and discussion, whilst section four concludes 
the paper. 

2 METHODOLOGY 

This section outlines the data used for the research 
and the specifics of the preprocessing stage. 
Additionally, we give an overview of the algorithms 
used as well as the metrics which evaluate the trained 
models. 

For the purposes of this research, we use the 
VitalDB dataset [26], which contains biosignals and 
clinical information from 6,388 non-cardiac surgical 
patients that underwent surgery in Seoul National 
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University Hospital in Seoul, Republic of Korea. The 
data has high-resolution with 2.8 million data points 
per case on average. The data of interest for us 
included: from demographic information, age and 
gender, and from vital information measured using 
Solar 8000M monitor, heart rate, respiratory rate, and 
(systolic, diastolic, and mean) blood pressure both 
invasively and non-invasively measured. As each of 
the biosignals was organised in a separate file, before 
proceeding with training the algorithms, it was 
necessary to merge the information while minding the 
time stamp of each measurement in order to maintain 
the continuity of the data. Additional information 
related to the surgical approach and the anaesthesia 
were not considered. The selected data was analysed 
in two different formats: first, the original data as 
recorded by the monitor without interference, and 
second, using features obtained with the tsfresh 
library [27]. In both cases, only patients with 
measurements for all biosignals of interest were 
considered, which reduced the population to 2905 
patients.  

The analysis of the demographic information, age 
and gender, is separate; namely, the gender analysis 
is a binary classification, whereas the age analysis is 
a multiclass classification problem. Each analysis was 
conducted both with the original data and with tsfresh 
statistics from the original data. All cases consider 
several ML algorithms: Logistic Regression (LR) 
[28], which estimates the probability of an event 
occurring, and so establishes baseline results, then 
Decision Trees (DT) [29] which represents a tree-like 
model showing series of decisions and possible 
consequences, Random Forest (RF) [30] which 
contains a collection of trees and uses a majority 
voting system to obtain the final prediction, and 
XGBoost [31], which compared to Random Forest 
operates on adjustable parameters through iterations, 
is proven as the most successful algorithm, even in 
cases of small and medium datasets, with limited 
feature count, as is the case here. However, as 
XGBoost is prone to overfitting when trained on 
small data, we performed parameter optimisation so 
to restrict the expansion of the model’s structure.  

The evaluation of the classification for each of the 
models was performed using a confusion matrix and 
a classification report (which observes metrics across 
each class), both for binary and multiclass 
classification. The confusion matrix visually 
represents the performance of the models, as it 
summarises the predicted and actual values obtained 
from the model and illustrates all misclassifications. 
The classification report shows the performance for 
each individual class and provides overall metrics for 

all classes. It observes the overall accuracy of the 
model and provides precision, recall, and F1-score 
values for each class. Precision measures how many 
of the positive predictions made are in fact correct, 
whilst recall measures how many of the positive cases 
from the overall positives were correctly predicted. 
The F1-score combines both metrics and shows intel 
into how many times the model made a correct 
prediction across the entire dataset.  

3 RESULTS 

The obtained results are divided into two separate 
groups: binary classification results for gender bias 
and multiclass classification results for age bias. The 
age bias results observe two age range divisions: one 
in three groups and another in four groups. The 
division of age ranges in three subgroups resulted in 
the first group of patients under 30 years, the second 
with patients between 30 and 49 years, and the third 
contained patients aged 50 and above. As majority of 
patients were aged 50 and over, and considering the 
age range considered for the third group was larger, 
we extended the analysis into a division of four 
groups, where the third range was split in two, with 
patients aged 50 to 69 years, and another with patients 
aged 70 and above.  

3.1 Gender Bias 

In order to perceive gender bias, the biosignals are 
used to classify patients as either male or female. The 
accuracy for all algorithms, both trained on the 
original data and the tsfresh features given in Table 1. 

Table 1: Accuracy from gender bias analysis. 

Models Original Data TSFRESH Features 
LR 64% 61% 
DT 99% 53% 
RF 100% 63% 

XGBoost 84% 58% 

As can be observed from the Table 1, the 
prediction is better when trained on the original 
values of the data. As expected LR provides the 
baseline result, whereas the three remaining 
algorithms show improvement in performance. The 
accuracy of 84% for XGBoost shows that gender can 
be identified from biosignals in four from five 
patients, which is a significant number. The two 
remaining algorithms show an accuracy of 99% and 
100% respectively, which essentially indicates that 
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biosignals can help AI algorithms to identify all 
patients’ gender details.  

The precision, recall, and F1-score are structured 
in Table 2. With XGBoost exists a drop in predictive 
power between the two classes, which is not the case 
with the results from DT and RF. The drop in the 
metrics for female patients can partially be due to a 
smaller pool of female patients. Nevertheless, these 
results are consistent with previous research data 
showing male patients have higher blood pressure 
compared to females [32].  

Table 2: Classification report from gender bias analysis on 
the original data (M – male, F – female) (in %). 

Models Precision Recall F1-score 
M F M F M F 

LR 64 61 87 29 74 39 
DT 99 99 99 99 99 99 
RF 100 100 100 99 100 100 

XGBoost 83 85 91 73 87 78 

This shows that models are able to detect subtle 
differences in data between patients of different 
genders, and while these subtle differences are 
necessary when analysing blood pressure 
information, they are not a beneficial feature when 
analysing biosignals in general, since models’ 
performances need to be invariant to demographic 
information.  

3.2 Age Bias 

The results for age bias, obtained using the selected 
biosignals, are observed from two standpoints: first, 
where only three groups of patients are considered, 
and second, with four groups of patients considered 
(created by dividing one of the three groups from the 
first observation into two). As this approach uses 
multiclass classification, only three algorithms were 
considered; namely LR was not trained and tested for 
these data points. The results from the division of 
patients in three groups (under 30; between 30 and 49; 
50 and over) are given in Table 3. The results from the 
division of patients in four groups (under 30; between 
30 and 49; between 50 and 69; 70 and over) are given 
in Table 4.  

Table 3: Accuracy from age bias analysis (3 groups). 

Models Original Data TSFRESH Features 
DT 99% 69% 
RF 100% 76% 

XGBoost 91% 75% 

These results show that patients’ age groups can 
be identified using biosignal information with an 
accuracy of 100% when using RF. The high accuracy 
results are obtained on the original data without value 
interference, whereas processing the data and using 
features extracted with tsfresh results in significant 
decrease of performance. When observing the 
behaviour of the models on the train and test data, the 
differences in metrics indicate that the models overfit 
when trained on the tsfresh features, which partially 
accounts for the worsened performance. Another 
reason is the difference in data points, meaning as 
there is lower data point count with tsfresh (since this 
approach aggregates the original data) the model is 
impacted by that reduction.  

Table 4: Accuracy from age bias analysis (4 groups). 

Models Original Data TSFRESH Features 
DT 98% 43% 
RF 99% 54% 

XGBoost 80% 51% 

With DT and RF obtaining near perfect results, it 
is interesting to analyse the performance of XGBoost 
and potential reasons for its performance. The 
confusion matrix from the analysis of three groups 
using the original data, given in Figure 1, shows the 
model mistakes patients aged between 30 and 49 with 
patients aged 50 and over, which might indicate that 
the model struggles with differentiating blood 
pressure values per age [33]. Potential conflicts in 
age-related medical problems can stem from 
differences in biological and chronological age [34], 
however with the other two algorithms performing 
with an accuracy approaching 100%, this is unlikely 
the case here. 

Another thing which can be noted is that the 
performance of the models decreases when patients 
aged 50 and over are divided in two groups, with DT 
dropping from 99% to 98%, RF dropping 

Figure 1: Confusion matrix for original data with three 
age groups analysed. 
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from 100% to 99%, and XGBoost significantly 
dropping from 91% to 80%. The change in 
performance can be observed in the confusion matrix 
for the original data for four groups, as seen in Figure 
2. Namely, once the patients are divided, the model is
impacted and unable to successfully learn the
difference between patients aged 50 to 69 and patients 
aged over 70. As the confusion matrix shows, a third
of patients aged over 70 are misclassified into the
group containing patients aged 50 to 69.

3.3 Discussion 

The results for both gender and age bias show that ML 
algorithms are able to differentiate genders and age 
ranges based on biosignals, which in turn shows that 
identifying potential biases in data can be 
accomplished by observing whether specific input 
information can be used to predict classes belonging 
to a variable carrying said potential bias. In cases 
where the algorithms accomplish near perfect score, 
as is the situation here with DT and RF, it is safe to 
say that using the data in the same format might 
confuse the algorithms and lead them to predict based 
on information which should be disregarded.  

With results showing high accuracy in predicting 
demographic information, it is necessary to discuss 
potential reasons behind the successful performance 
of the models. Namely, differences in biosignals 
based on gender and age have been shown, and it is 
likely the ML models observe these differences and 
make predictions on them. With models being able to 
differ between patient groups based on biosignals, it 
is possible that ML models trained on these biosignals 
for various other medical purposes also make their 
decisions based on these differences, and adjust 
predictions based on demographic information. 

Therefore, another interesting discussion to touch 
up on are the implications of these results and the 
challenges which they pose for real-world use of ML 
algorithms in medical setting. Namely, implicit bias 
can easily be propagated along the pipeline, and 
create biased application, which in turn can lead to 
skewed outcomes and inequity among different 
patient populations. This can lead to favouritism of 
certain patient groups as well as reduced or inaccurate 
performance of models based on demographics. 
Depending on the application and the purpose of the 
algorithms, serious illnesses can be disregarded or 
overlooked, patients can be silenced on important 
health problems, patients might receive substandard 
preventive care, and many others. All of the above 
can lead to higher chances of worsening medical 
conditions, health complications, disruption of 
patients’ lives, and in extreme cases, deaths which 
could have been avoided. 

4 CONCLUSIONS 

This paper proposes a demographic bias analysis 
approach from patients’ biosignals, using ML 
algorithms to perform binary and multiclass 
classification in order to identify patient gender and 
age. The approach focused on analysing two types of 
results, firstly, the original data was used, and 
secondly, the data was processed and extracted 
tsfresh features were used. In both cases, bias could 
be seen, however bias was more prominent with the 
original data. This indicates that extracting features 
using tsfresh can be seen as a marginal mitigation 
technique in partially handling bias in this dataset. 
However, further research is required in order to 
understand whether the same holds for other data.  
Moreover, with results showing that biosignal 
information can be used to classify patients according 
to gender and age (with two separate analyses into 
three and four age groups), the approach can allow 
researchers to understand whether algorithms might 
detect hidden bias in data which cannot be easily 
observed by the developer. Therefore, the approach 
itself can be used to mitigate potential biases in 
creating and selecting datasets, as well as throughout 
the processing stages when developing AI-based 
medical systems. This would reduce the propagation 
of biased data and practices in real-world applications 
before they are deployed into production, which 
would greatly benefit patients discriminated upon by 
biased applications. 

Figure 2: Confusion matrix for original data with four 
age groups analysed. 
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