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Abstract: Traffic Sign Recognition (TSR) is one of the key aspects for autonomous driving and it plays a vital role to 
make autonomous driving successful, but that’s only possible if TSR is efficient enough and reliable. This 
work addresses exploration of simple and fast to implement options for robotic applications. For analysis and 
implementation, we are focusing on a Turtlebot3 Robot (TB3). Various potential TSR algorithms are 
evaluated in different test-cases with the goal of developing an optimized TSR with accurate results for 
German traffic signs. Therefore, the robot was tested on its own Mini-City track. On this Track we started to 
detect the signs with a simple Scale-Invariant Feature Transform (SIFT). However, the accuracy of SIFT was 
showing limitations for the use within TSR on mini-city-Track. This approach focuses on educational use 
where limitations and simple applications of autonomous driving are investigated. A review of state-of-art 
algorithms was done, to evaluate and improve accuracy.  For example, Oriented FAST and Rotated Brief 
algorithm (ORB), You Only Look Once (YOLO) and SIFT algorithm was tested on TB3 in a way that all 
important criteria are fulfilled along with system being real-time. Regarding YOLOv8 a custom dataset and 
training is performed. The YOLO-model achieves 99.5% in terms of mean Average Perception (mAP@0.5) 
for all classes. In summary, as a powerful alternative to work with, YOLOv8 was identified.  Standalone or 
in combination with SIFT a TSR system is shown which can work impacted by several environmental 
conditions. Based on evaluation of three algorithms an optimized code was developed in which YOLOv8 and 
SIFT were used in combination as a well performing TSR algorithm, which has above 95% accuracy for each 
traffic sign tested. 

1 INTRODUCTION 

As observed in [1], TurtleBot3 can detect different 
signs using the SIFT algorithm that compares the 
source image and camera image. Additionally, as a 
customizable robot [2], TB3 has the flexibility to 
modify its functionality including Traffic Sign 
Recognition to improve its accuracy for autonomous 
driving task. As a starting point the autonomous 
driving “Autorace-Package” for Robot Operating 
System is recommended [1]. This work addresses 
evaluation as well as identification of alternative 
techniques to SIFT. After extensive research and 
analysis, one algorithm was found to be superior to 
all others. It was possible to develop an improved 
version of the package, which significantly increases 

accuracy and performance over the previous version. 
The work is noteworthy because it explores a variety 
of techniques and concludes with a solution that has 
a wide range of applications. The only limitation is 
that we use a ROS version that requires the use of an 
older version of Ubuntu, but this is neglected in terms 
of optimal performance of the algorithms. In 
summary the main objective of this paper is to 
improve the accuracy of traffic sign recognition and 
develop an optimized autonomous driving (so called 
Autorace) package for TB3. This is achieved by 
implementing various algorithms such as R-CNN, 
SIFT, ORB, and YOLO, and determining the 
algorithm that performs best. Once the best algorithm 
has been found, a technique that best suits our 
algorithm criteria can be implemented to improve 
efficiency. 
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2 METHODS AND ALGORITHMS 

For sign recognition, an algorithm is needed that can 
detect and recognize the traffic sign from the image 
received by robot. Furthermore, in order to improve 
the recognition, it is first necessary to understand how 
it works and what the flow is. As shown in Figure 1, 
first the TB3 captures the image and then transmits it 
in raw and compressed form to the system. After that, 
the system will pass the image to a certain function 
and this function will detect whether a traffic sign is 
present in the image or not. If a traffic sign is present, 
a frame is formed with the coordinates of the image 
and the modified image is published. So, if a traffic 
sign is detected, other nodes in the system will know 
about it. 

Figure 1: Process of traffic sign recognition. 

The focus is on "Step 4", where the input image is 
processed and traffic sign recognition is performed. 
This is a usual classification task within machine 
learning. In the autorace-package [1], the SIFT 
algorithm is used in combination with the FLANN 
matcher. The SIFT algorithm extracts key points 
(features) from the reference images of each traffic 
sign from local data and also finds key points from 
the received input image [3, 4]. These key points are 
then compared with FLANN. The final decision is 
made to publish whether or not a sign was 
detected [4].  

Figure 2: Traffic signs. 

Figure 2 shows which traffic signs shall be 
recognized using the traffic sign recognition system 
in TB3. As in Figure 3 an artificial testing 
environment  the Mini-City-Track [1] at Anhalt 
University of Applied Sciences has all of these signs 
implemented as part of autonomous driving test.  

Figure 3: Mini-City-Track at Anhalt University of Applied 
Sciences. 

However, improving efficiency does not mean 
improving accuracy. In order to increase efficiency, 
other aspects were also taken into consideration, such 
as computational time and resources used. As a first 
impression, SIFT was good in these aspects as it 
requires the least computational time, but accuracy 
was limited. It was also observed that accuracy, 
computation time and resources used were in a devil's 
triangle relationship with each other, as shown in 
Figure 4. If one was improved, the other was 
adversely affected.  

Figure 4: Devil’s Triangle. 

The ideal state of the Devil's Triangle in Figure 4 
is that there is a perfect balance in between with 
limited resources, manageable computation time and 
good accuracy, but that is an ideal state. So, usually 
engineering needs decisions, if accuracy is fully 
achieved, a lot of resources might be consumed and 
the computation time probably also increase with 
complexity, which is not our intention at all. We like 
to keep it simple like SIFT. This is also important for 

• Turtlebot captures a live image from pi cameraStep 1

• Publish the captured image in “compressed” and
“raw” formatStep 2

• Subscribe these images by “detect_sign” node in
cbFindTrafficSign()Step 3

• In cbFindTrafficSign() received image is processed and
traffic sign detection is done via selected algorithmStep 4

• If traffic sign is detected, a modified output image
with highlighted sign is generatedStep 5

• Publish corresponding output image as well as
related traffic signStep 6

Accuracy

Computational TimeResources
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the educational purpose, where students have limited 
time to understand and explore functionality. So, in 
this paper, we present a TSR system that is close to 
the ideal state. 

2.1 Algorithm Analysis 

Various algorithms exist for use in terms of object 
detection, yet the current cutting-edge technique is 
"Convolutional Neural Networks (CNN)." [5] CNN 
serves as a foundation for deep learning, wherein one 
algorithm handles feature extraction and comparison. 

Figure 5: Formula for Neural Networks. 

Figure 5 illustrates the basement of Neural 
Networks – the perceptron is equivalent to a 
simplified neuron in the human brain. In the 
perceptron, the inputs are multiplied by their 
respective weights, and the sum of these value is lead 
to a (non-linear) output with the assistance of an 
activation function. Based on this simple 
representation a network of Neurons consisting of 
several Neurons in several layers are used where the 
connection between Neurons can be varied in all 
directions. Out of that many possible neural network 
structures can be created, like CNN. 

Usually two versions of CNN are used for TSR 
tasks, which differ based on the number of stages 
used for detection - One-stage detection, where object 
classification and bounding boxes are acquired 
simultaneously, and two-stage detection, where sign 
area is identified as bounding box within picture first 
and object classes recognized in a second stage from 
these. This study compares these deep learning 
techniques with each other and classical machine 
learning techniques. The analysis results will 
determine the most effective algorithm among the 
currently available techniques for object recognition. 

2.1.1 YOLO (You Only Look Once) 

According to [6] “YOLOv3: An Incremental 
Improvement”, the YOLO algorithm encodes 
contextual information about classes and their 
appearance implicitly during both training and test 

periods. Hence it can be asserted that YOLO is a 
single-stage detection system employed by using 
CNN as the primary principle of detection. YOLO is 
currently the state-of-the-art technology in terms of 
having lower background error rates compared to 
other algorithms. Furthermore, it is easy to 
comprehend and execute [6]. It also features a range 
of models to adjust the complexity from "n" to "xl", 
enhancing accuracy with a superior model [7,8]. As it 
is a single-stage system, the detection precision is 
lower, but it is more suitable in real-time systems 
because it takes less time to detect [8]. However, this 
algorithm has a drawback - while training a custom 
dataset, it requires a significant amount of memory 
and storage space. However, it is currently considered 
to be the swiftest and most precise algorithm for 
identifying objects [8]. 

2.1.2 R-CNN (Region based CNN) 

This algorithm operates in two stages, beginning with 
a proposal of the region of interest where an object 
may be located. The output of the first stage is then 
sent to the second stage to classify the object within 
the designated region of interest. The resulting 
outcome is a bounding box surrounding the object, 
along with its classification within that box [9]. It is 
considered one of the most precise algorithms for 
detecting objects, as it processes various layers of an 
image, from the input layer to the hidden layers, all of 
which are interconnected [10]. The process for 
training an R-CNN model begins by identifying the 
region of interest, followed by convolution, non-
linearity (using ReLu), and ultimately, maxpooling. 
This multi-stage approach provides additional 
features for detection, while the use of maxpooling 
ensures that it does not consume excessive storage 
space. Furthermore, a sizeable image can be trained 
by reducing layers following each convolution and 
maxpooling. There are also advanced versions of R-
CNN available, such as Faster R-CNN, which aim to 
rectify its shortcomings [10,11]. Despite its various 
versions, R-CNN is time-consuming to train a model 
and not suitable for Real-Time systems as it takes a 
few seconds for detection due to its two-stage 
detection process [12]. 

2.1.3 SIFT (Scale-Invariant Feature 
Transform) 

This is a machine learning algorithm used to extract 
features from a given image. With the help of a 
feature matcher, the image can then be classified 
using key points fetched by SIFT. As its name 
suggests, the algorithm is not affected by the scale or 

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023 

49 



rotation of the image [3]. It can extract key points 
even from the smallest image [3]. The traffic signs are 
automatically annotated by the SIFT algorithm, 
without the need for human or manual intervention. 
This is advantageous compared to R-CNN and YOLO 
[13]. The method is not significantly affected by 
image size, lighting conditions, or rotation. The main 
issue with TB3 and SIFT is that it requires an image 
of the same quality as the reference image.  

2.1.4 ORB (Oriented FAST and Rotated 
BRIEF) 

ORB may be employed as an alternative to the SIFT 
algorithm, resulting in improved efficiency. ORB is 
constructed using established FAST key point 
detection and BRIEF descriptors. Because the FAST 
method is utilized, key points can be detected more 
rapidly and efficiently with the aid of the BRIEF 
descriptor.  This modified version of the FAST key 
point decider is used for vision tasks and has superior 
key point detection abilities compared to the SIFT 
algorithm [14]. When combined with the BFMatcher 
[15], it is suitable for traffic sign recognition. 
Additionally, it is a quick algorithm that requires less 
computational time than others. However, it operates 
differently in various environments (background 
dependency), best performance is reached by using 
the same environment as the reference image. 

2.2 Algorithm Selection 

Considering the task and with brief analysis on each 
algorithm of interest, we decided which algorithm can 
be suited best for the task. So, YOLO and ORB might 
be good fit and can be tested/ compared further along 
with SIFT. Reason for choosing YOLO is the 
promising accuracy shown in various applications 
with low computational time [7, 8, 12], and ORB 
might be a more comparable approach but better 
version of SIFT as it is said to be faster than SIFT and 
more accurate also [14]. R-CNN is highly accurate 
but when working with real-time systems it cannot be 
used as it is having two stage detection which affects 
the time used for detection of sign adversely. But 
along with YOLO and ORB, SIFT will also be 
implemented as it is the default algorithm for 
comparison. Furthermore, combinations of these 
three algorithms are possible and might also be 
implemented for test, such as YOLO with SIFT or 
YOLO with ORB.  

3 CRITERIA 

After carrying out the theoretical analysis, it is 
necessary to apply the algorithms on TB3 to 
determine performance and to judge the algorithms. 
To assess their efficiency, specific criteria must be 
established: 

1) Accuracy for each individual sign;
2) Overall-accuracy for all signs;
3) Calculation/ processing time (Computational

performance and Complexity).

Judgement shall be done by TP, TN, FP, FN [16] 
as with these four categories all the possible outcome 
can be measured and placed in at least one of these 
categories, which is helpful to determine the accuracy 
of the system.  

Figure 6: Evaluation Criteria [16]. 

Figure 6 illustrates. that True Positive is when 
system detects the sign that was showed, True 
Negative is that system detects no sign and no sign 
was shown. False Positive is when system detects a 
traffic sign even though there is no traffic sign shown, 
and False Negative occurs when wrong or no traffic 
sign is detected even though traffic sign is shown. To 
calculate accuracy and precision two formulas were 
used from [16] and illustrated in Figure 6. To measure 
precision, true positive is divided by summation of 
true positive and false positive, and to calculate 
accuracy, summation of true positive and true 
negative is divided by summation of all the four 
aspects. Furthermore, it is crucial to consider certain 
impacts when testing the accuracy of each sign 
individually as well as collectively. Firstly, 
environmental impacts have to be considered during 
sign recognition. Light is one of these environmental 
impacts, for example, the system might be trained in 
an environment with more or less illumination 
compared to the environment where the system is 
utilized. Therefore, testing should be conducted while 
keeping environmental constraints in mind. 
Secondly, the positioning of signs is crucial as they 
are not always in the same place; they can be located 
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on the right, left, top, bottom, near or far. 
To overcome this problem, testing the signs in 
different positions is necessary. Furthermore, it is 
important to note that for real-time systems, 
computational time alone is not sufficient. Instead, it 
is necessary to use it to determine how well the 
system can detect signs whilst in motion and up to 
which speed it can detect them without any issues. 

4 EXPERIMENTAL SETUPS 

The algorithms are tested on the TB3 using multiple 
test-cases, each with its own significance for fulfilling 
different criteria.  

4.1 On-Table and Mini-City-Track 
Test 

In On-Table test TB3 is placed in laboratory on the 
table to test functionality at defined conditions. 
During Mini-City test, the TB3 is placed on a track 
with predefined tasks and signs. 

4.1.1 Environment Independency 

To test this, the robot is placed on a table to assess its 
environment independence, mainly focusing on 
background interferences, as illustrated in Figure 7. 
The outcome is recorded, analyzed and a decision 
made accordingly. The traffic sign recognition system 
is activated after TB3 was placed on table to evaluate 
the signs presented in front of it. 

Figure 7: Environment independency test procedure. 

4.1.2 Dynamic Positioning Test 

There are two dynamic positioning tests: the first 
involves a moving traffic sign while the TB3 remains 
stationary, and the second involves the robot in 
motion on our Mini-City track. For the first test, robot 
is placed on table with the traffic sign recognition 
system activated. Different signs are then tested in a 
continuous manner, going from left to right, up and 
down, and vice versa. Results are recorded to 
determine whether the traffic sign recognition system 
operates independently in positioning. In the second 
version, TB3 is placed on the track and the traffic sign 

recognition system is triggered. Additionally, the lane 
detection function is activated, enabling the robot to 
move automatically on the signed roads. It shall be 
determined whether the system can detect signs when 
the TB3 is in motion or not. 

4.1.3 Track Range Test 

To determine if the TB3 can effectively detect signs 
on a track from short or long distances (greater and 
less than 12cm). This test is used for the evaluation of 
whether sign detection is affecting the real-time 
system by means of detecting signs within a required 
time equivalent to the distance of sign and the related 
reaction to it from TB3 functionality. 

Figure 8: Range test. 

Figure 8 outlines the procedure for conducting the 
test. Prior to the assessment, markings at precisely 
12cm in front of all signs are made. These markings 
serve to determine the accuracy of the robots sign 
detection prior to and after crossing the mark. The 
findings from both criteria are combined to make a 
final determination. 

4.1.4 Computational Power Testing 

For our case the best method for measuring 
computational power is to measure the time required 
to detect a sign. 

Figure 9: Computational Time Test On-Table/Track. 

Figure 9 outlines the method for measuring 
computational time. Initially, modifications are made 
to the "detect_sign" node by implementing code for 
time calculation. The code is inserted after accessing 
the input sign from the TB3 camera to start the 
recording process. 

    import time as t 
start_time = t.time()  

Secondly, to measure the time required, following 
code is added after the node publishes the output 
image back to the topic it subscribed from. 

Placing 
Turtlebot on 

Table

Running 
“detect_sign” 

node 

Note whether 
detection is 

environment 
Independent

Measuring 
test results 
and judging 
efficiency 

through TP, 
TN, FP and FN

Placing 
Turtlebot on 

Track

Running 
“detect_sign” 

and 
“detect_lane” 

node 

Judge if detection is 
good for both cases 

and decide if 
package is real-time 

distance reliable 

Measuring 
test results at 
distance > and 
< 12cm by TP, 
TN, FP and FN

Modify 
“detect_sign” 

node

Place 
Turtlebot on 
Table/ Track

Run “detect_sign” 
node and 

“detect_lane” node 
(if Turtlebot is on 

Track)

Judge if measured 
time fullfills

needed real-time 
requirements
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end_time = round(t.time() – 
start_time,2) * 1000 
print(end_time, “ms”) 

The TB3 is placed on the table or track and the 
traffic sign recognition system is turned on to detect 
the sign, by this change the time required for 
detecting the sign is now also recorded. 

5 IMPLEMENTATION AND 
TESTING 

5.1 Implementing Algorithms 

The first modification being executed involves 
altering the sign detection algorithm. As depicted in 
Figure 10, apart from SIFT, YOLO and ORB 
algorithms were implemented on the TB3 to assess 
their effectiveness regarding TSR. 

Figure 10: Steps to decide algorithm. 

5.1.1 Implementing YOLO for TSR 

YOLO is the fastest object detection algorithm [8], 
although implementation of YOLO is not complex 
but training custom model on custom dataset is time-
consuming [8]. For doing it a properly there are 
certain steps which are needed to be followed. 

5.1.1.1 Training YOLO on a Custom Dataset 

The initial stage involves installing the “Ultralytics” 
library to use in our case YOLOv8. After installation, 
import the library into the node for application 
purposes. To train the model, a custom dataset is 
necessary. To create a dataset, a multitude of images, 
showing various backgrounds under different lighting 
conditions, and in different locations are needed, as 
shown in Figure 11. 

Figure 11: Creating images for TSR dataset. 

After creating the image dataset, annotation of 
dataset is necessary. Using online tools, such as 
Roboflow [17] and CVAT [18], the images can be 
annotated. Specifically, for this paper, CVAT was 
utilized. A new project was created, with all 
necessary classes/labels specified. Afterwards, 
individual labels are generated for each class and 
relevant images are assigned to each label. To 
summarize, the images are manually annotated by 
dragging a labelled box to the location of the traffic 
sign within the image. 

Figure 12: Annotation of sign (image is recorded on Mini-
City-Track) with CVAT. 

When the images are annotated as displayed in 
Figure 12, with a box outlining the traffic sign in each 
image, the data is exported as a dataset, selecting 
YOLO version to ensure compatibility. Output 
consists of a label text file corresponding to each 
image which is located in "labels" directory, while all 
the images are copied to the "images" directory. 

A "config.yaml" file is generated in the same 
environment. This file specifies the path of the 
training dataset and defines all the classes/ labels. 
Within Python [20], which is used for training the 
YOLOv8n model on our custom dataset, this file is 
accessed. The model is trained using the "train" 
function that is pre-defined in the ultralytics library. 

model = YOLO("yolov8n.pt" 
results = 
model.train(data="config.yaml", 
epochs=65) 

Finally, a successful training of the model is 
indicated by a mean Average Perception (mAP@50) 
near to 1. The "runs" directory, generated during the 
YOLO training, can then be utilized as a custom 
model for our custom dataset. This directory contains 

Change/ Add 
Sign Detection 

Algorithm

• YOLO and ORB 
will be 
implemented

Algorithm 
Testing and  
Evaluation

• Compare YOLO 
and ORB results 
with each other, 
and also with 
CNN and SIFT

Criteria based 
Judgement

Judgement Criteria
1. Individual Sign 

Accuracy
2.Overall-Accuracy
3.Calculation time 
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weights, training results, and output images from 
various validation datasets. 

5.1.1.2 Using Pre-Trained YOLO Model 

Once the model has been trained, it can then be 
utilized to recognize traffic signs in images obtained 
from the TB3. To initiate sign recognition, 
modification is required to the "detect_sign"-node of 
autorace-package. The pre-trained YOLO model is 
imported from the "ultralytics" library and 
subsequently loaded as the model. 

from ultralytics import YOLO 
model_path = os.path.join('.', 
'runs', 'detect', 'train', 
'weights', 'best.pt',) 
model = YOLO(model_path) 

Afterwards, the YOLO model's "predict()"-
function is utilized on the input image to detect signs, 
and the resulting tensor is analyzed to determine 
whether any signs were detected. If a traffic sign is 
detected, the coordinates for bounding box, the 
classification of the box and its associated confidence 
are extracted from the tensor. If the confidence 
exceeds a predetermined threshold, the output image, 
along with the derived information, is transmitted 
back to the TB3. 

results = 
model.predict(cv_image_input) 
result = results[0] 
box = result.boxes[0] 
cords = box.xyxy[0].tolist() 
sign_ID = box.cls[0].item() 
confidence = box.conf[0].item() 
xmin,ymin,xmax,ymax = 
int(cords[0]), int(cords[1]), 
int(cords[2]), int(cords[3]) 

5.1.2 Implementing ORB 

ORB is a better form of SIFT algorithm, it almost 
works in similar pattern as SIFT [14]. It is having 
reference images for each sign and these images are 
used to find base key points for each sign and later 
these key points are matched with the help of 
BFMatcher to the key points of the input image [15]. 
It uses less computational time than YOLO as feature 
extraction of all reference images and initialization of 
ORB and BFMatcher was done just once before input 
image is subscribed. Once, one reference image for 
each sign is taken, “OpenCV2” [19] library is 
imported in the node because it is used as our base 

library for machine learning feature extraction. First, 
all the reference images are loaded in the node and 
afterwards, key points are fetched from each 
reference image with the help of ORB.  

self.orb = 
cv2.ORB_create(nfeatures=2000) 
self.img2 = cv2.imread(dir_path + 
'stop.png',0) 
self.kp2, self.des2 = 
self.orb.detectAndCompute(self.img
2,None) 

Once, the key points are fetched from the 
reference images, the input image subscribed from 
the TB3 is processed. Therefore, the feature matcher 
is initiated, in this case “BFMatcher” is used to 
compare key points of reference images to current 
image. If a sign is detected a bounding box is drawn 
on the input image along with which sign it is. 
Finally, the output image with the bounding box on it 
is published.  

self.bf = cv2.BFMatcher( 
kp1, des1 = 
self.orb.detectAndCompute(cv_image
_input,None)  
matches2 = 
self.flann.knnMatch(des1,self.des2
,k=2) 

6 EVALUATION OF 
PERFORMANCE 

Test-cases were formed in a way that all criteria are 
given for judging efficiency of the system regarding 
defined task of TSR for autonomous driving on Mini-
City track. Within following work each traffic sign 
(as shown in Figure 2) together with Accuracy and 
Precision criteria gets a specific abbreviation: 
P – Parking; T – Tunnel; S – Stop; 
I – Intersection; C – Construction; 50 – Speed 50; 
100 – Speed 100; Li – Traffic Light; L – Left; 
R – Right; A% – Accuracy; P% - Precision. 

Three test-cases have been selected which focus 
on both, accuracy and computational time required. 
All needed changes have been embedded in the 
autorace-package code. “On-Table test” was 
conducted on ORB, SIFT, YOLO and YOLO with 
SIFT. Further, the one with the best results was taken 
in consideration for “On-Track test” to get to a final 
decision.  

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023 

53 



Table 1: Test-Cases. 

Test Description 

On-Table: 
Accuracy 

To test accuracy of TB3 through TP, TN, 
FP, and FN 
1) TB3 is placed on a table, so environ-

ment/ background independency is 
tested. 

2) TB3 is not moving but the sign
shown to robot is moved to different 
positions like left, right, up, and 
down. 

On-Track: 
Accuracy 

To test accuracy of TB3 through TP, TN, 
FP, and FN 
1) TB3 is placed on the Mini-City track

and it performs sign detection along
with lane detection, by that motion
test is done.

2) Due to moving, signs can be de-
tected from long and short distances.
Range is defined as long range for
above 12cm and short range for less
than 12 cm.

Pro-
cessing: 
Time 

This test is done during On-Table and 
On-Track testing, by determining compu-
tational time in detect_sign node 

6.1 On-Table Results 

This test was mainly focused on accuracy in limited 
environmental conditions as name suggests. This test 
is conducted on YOLO, ORB and SIFT and the one 
with the best accuracy will be considered for further 
testing. 

Figure 13: TurtleBot3 during On-Table test. 

Figure 13 represents the setup of On-Table test, in 
which the TB3 is placed on the table in the laboratory 
and one after the other sign is placed in front of it as 
shown in the image on the left. Figure 13 right side 
shows in a ROS rqt-view what TB3 recognizes while 
On-Table test. 

6.1.1 YOLO 

Results from Table 2 clearly state that YOLO is 
having 100% accuracy for five signs out of ten, and 
90% or above accuracy for remaining signs except 
traffic sign “Left” and “Right.” 

Table 2: On-Table test YOLO. 

6.1.2 ORB 

It is clear from the results shown in Table 3 that ORB 
is having less than 40% accuracy for all signs except 
“Left” sign and it cannot be considered as a sign 
detection algorithm in the final system. 

Table 3: On-Table test ORB. 

6.1.3 SIFT 

As shown in Figure 14 ORB as well as SIFT uses 
reference images.  

Figure 14: Reference images used for SIFT. 

SIFT detects key points in each reference image 
and further matches those with the current input 
image’s key points. It is observed in Table 4 that SIFT 
is having better accuracy than ORB in all signs and in 
case of “Right” it is having better accuracy than 
YOLO and for “Left” equivalent to YOLO. 

Table 4: On-Table test SIFT. 

P T S I C 50 100 Li L R 
TP 10 10 10 10 9 10 9 9 7 5 
FP 0 0 0 0 0 0 0 0 0 0 
TN 2 1 1 3 2 2 1 1 3 2 
FN 0 0 0 0 1 0 1 1 3 5 
A% 100 100 100 100 92 100 91 91 77 58 
P% 100 100 100 100 100 10 100 100 100 100 

P T S I C 50 100 Li L R 
TP 2 1 3 0 0 2 2 0 8 2 
FP 0 0 0 0 0 0 0 0 4 0 
TN 2 1 1 2 2 2 1 1 0 2 
FN 8 9 7 10 10 8 8 10 2 8 
A% 33 18 36 16 16 33 27 9 57 33 
P% 100 100 100 100 100 100 100 100 66 100 

P T S I C 50 100 Li L R 
TP 1 7 10 8 9 10 8 5 8 10 
FP 0 0 0 0 0 0 0 0 2 0 
TN 1 1 2 2 2 2 1 5 3 2 
FN 9 3 0 2 1 0 2 5 2 0 
A% 18 73 100 83 91 100 82 66 73 100 
P% 100 100 100 100 100 100 100 100 80 100 
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However, Figure 15 left side shows also clearly, 
that partly not all the key points are set to the sign 
itself, in the shown case one was set to the bottom of 
the stand. 

Figure 15: Results of SIFT. 

6.2 Optimized Approach 

Based on all the gathered experience above and in 
combination of all techniques suggested, a final way 
of traffic sign recognition system was designed, 
which is using YOLO as the primary algorithm for 
detection of all signs and SIFT as secondary instance 
which is used only for verification of “Left” and 
“Right” traffic signs. This way the weakness of 
YOLO for these two signs shall be vanished. Due to 
that ORB is not accurate for our use case at all as well 
as it shows strong environment dependency, it was 
not further considered. Figure 16 shows the 
implementation of optimized TSR system. First, the 
TB3 will start its camera for publishing its video 
stream. Then, TSR will read frames until and unless 
system is stopped using “CTRL+C” from terminal. 
The TSR system starts to process these frames The 
object detection done by YOLO is detecting trained 
signs, if traffic sign is detected it checks if identified 
object is “Left/Right” sign or any other sign, else it 
will publish no sign detected. For the case of 
“Left/Right” sign it will cross verify it with the help 
of SIFT, else it will directly publish the detected sign 
without using this instance. If SIFT also confirms the 
same direction like YOLO, the system publishes that 
sign, else system will publish no sign detected.  

6.2.1 Implementing YOLO with SIFT 

Quickly, both libraries “Ultralytics” and “OpenCV2”, 
supporting YOLO and SIFT, have been added to the 
node. The pre-trained model is loaded for YOLO and 
SIFT is also initiated. Afterwards, for SIFT “Left” 
and “Right” sign’s reference images are loaded and 
key points are fetched from those two images. 
FLANN matcher is initiated and the input image is 
handled by YOLO model before it is optionally 
forwarded to the SIFT for cross verification. If it is 

any sign other than direction signs it will be published 
directly after YOLO detection is finished. 

Figure 16: Processing flow of Optimized-TSR based on 
YOLO combined with SIFT. 

6.2.2 On-Table Results YOLO with SIFT 

Results from Table 5 clearly state that YOLO with 
SIFT is having 100% accuracy for five out of ten 
signs, while for others it is higher than 80%. 

Table 5: On-Table test YOLO+SIFT. 

P T S I C 50 100 Li L R 
TP 10 10 10 10 9 10 9 9 8 8 
FP 0 0 0 0 0 0 0 0 0 0 
TN 2 1 1 3 2 2 1 1 3 2 
FN 0 0 0 0 1 0 1 1 2 2 
A% 100 100 100 100 92 100 91 91 85 83 
P% 100 100 100 100 100 100 100 100 100 100 
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Hence, it can be said that it is best result reached 
for On-Table test and that is why it is taken for 
continuing with On-Track test. 

6.3 On Track Results 

The On-Track test exclusively evaluates the YOLO 
with SIFT implementation due to that it has 
demonstrated the best results among all algorithms in 
the On-Table test. The TB3 is positioned on the Mini-
City track during this test to judge dynamic 
positioning and range dependencies, as well as the 
computational time when capturing images during 
motion. The main result of this test is to determine if 
the implementation is feasible to handle the given 
real-time task where it has to follow the lane with the 
aid of a lane detection node while detecting the signs 
at fixed positions. Obviously, detection must be 
finished in front of a sign so that other nodes can be 
called and processed in time. Earlier detection results 
in more time for processing other tasks during 
autonomous driving. However, if signs are detected 
to early, functions might be called that are not yet 
relevant. Figure 17 illustrates the setup of the On-
Track test, where the TB3 moves and upon 
approaching signs, it detects and notifies the system. 

Figure 17: TurtleBot3 during On-Track test. 

From Table 6 it is observed that YOLO with SIFT 
is having 100% accuracy for eight out of ten signs and 
for remaining two signs it is having above 90% 
accuracy. If compared to Table 5 “On-Table test 
YOLO+SIFT” shows that YOLO with SIFT shows 
better result in artificial-world conditions of Mini-
City.  

Table 6: On-Track test YOLO+SIFT. 

6.4 Analysis of Algorithm Performance 

As explained in Figure 8 “Computation Time Test 
On-Track/Table” in Chapter 4 “Experimental Setup” 
within “detect_sign” node the computational time is 
recorded.  

Figure 18: Computational Time Test samples. 

At Figure 18, it is clearly visible that 
YOLO+SIFT is the most time-consuming method for 
detecting signs and publishing the result. The average 
time taken for YOLO+SIFT (combining data from 
both On-Table and On-Track tests) is 163.7ms with a 
standard deviation of 36.94, highlighting the different 
effects of using two algorithms in sign detection. 
YOLO+SIFT takes longer for sign recognition, with 
an average time of 124.82ms and a standard deviation 
of 24.20. ORB and SIFT take nearly the same amount 
of time for traffic sign detection. ORB is a bit quicker 
with an average time of 19.15ms compared to SIFT's 
average time of 25.37ms. However, in terms of 
stability, SIFT is superior with 3.95, whereas for ORB 
the standard deviation is 5.93. Therefore, it can be 
concluded that ORB is the fastest algorithm among 
them, while SIFT yields more consistent outcomes. 
In addition, the accuracy and precision of On-Table 
and On-Track test for different algorithms for all 
signs was also measured with the help of formula 
shown in Figure 5 “Evaluation Criteria”.  

Average accuracy and precision in Figure 19 
demonstrates that the decision to use YOLO for 
traffic sign detection was justified, as it improved 
TB3's traffic sign recognition accuracy by 12% to 
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P T S I C 50 100 Li L R 
TP 10 10 10 10 9 10 10 10 9 10 
FP 0 0 0 0 0 0 0 0 0 0 
TN 2 1 1 3 1 2 1 1 2 3 
FN 0 0 0 0 1 0 0 0 1 0 
A% 100  100 100 100 91 100 100 100 92 100 
P% 100 100 100 100 100 100 100 100 100 100 
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90% compared to the default SIFT algorithm. 
Although the ORB algorithm was also implemented, 
where Figure 17 demonstrates that ORB has the 
shortest computational time at 19.15ms but with a low 
performing average accuracy of only 27% and a 4% 
loss in precision too. Table 2 reveals a lack of 
accurate detection for traffic signs such as "Left" and 
"Right" for YOLO.  

Figure 19: Comparison of average accuracy and precision 
for each algorithm. 

The combination of YOLO +SIFT achieved the 
highest accuracy of 98% on the track, again with 
perfect precision for traffic sign detection with the 
effort of a long computational time of 124.82ms. The 
optimized integration of YOLO with SIFT resulted in 
94% accuracy for table and 98% accuracy for track. 
Whereas most probably the fixed position in 
comparison to table tests pushed the average 4% up. 
This approach successfully detected all signs both on 
and off track with a cost of computational time, which 
can be managed by reducing frames per second. 

7 CONCLUSIONS 

The main objective of this paper is to develop an 
efficient, easy to train and understandable system for 
traffic sign recognition in educational use. The 
system should be robust, with minimal errors and 
operate in real-time. To improve efficiency, several 
algorithms such as R-CNN, YOLO, ORB, SURF, and 
SIFT were considered. The advantages and 
disadvantages of all algorithms, including SIFT, were 
analyzed through theoretical examination. YOLO, 
ORB and SIFT were selected for testing on TB3 

within an artificial environment, the Mini-City. 
However, selecting the appropriate algorithm alone 
does not suffice to boost efficiency; various 
techniques were also utilized. For instance, a 
detection frame and a fusion of two algorithms were 
employed. While these measures enhanced accuracy, 
they also impacted computational time, necessitating 
the implementation of numerous test cases.  

Two tests - the "On-Table Test," which focused 
on environment independence, floating traffic signs, 
and computational power criteria, and the "On-Track 
Test," which evaluated accuracy based on range and 
dynamic positioning - were conducted and efficiency 
was additionally tested via computational time. Test 
cases have demonstrated the effectiveness of the 
systems and identified the most suitable technique. 
 YOLO exhibited superior accuracy and perfect

precision compared to ORB and SIFT in various
environments, while the last two were only
reliable if tested in the same environmental
setting as their reference image. In contrast,
YOLO can effectively operate environment
independent with any background.

 ORB requires the least computational time,
whereas YOLO demands extensive resources to
function optimally. This is due to YOLO
performing recognition tasks after image access,
whereas ORB merely matches key points once
the input image is retrieved.

 YOLO itself is not entirely accurate for all signs; 
therefore, SIFT is introduced in combination
with YOLO, but solely on signs that are not
detected accurately, rather than all images.

One of the primary issues encountered was the 
high computational power demand of YOLO, leading 
to latency in the system and preventing it from being 
real-time. However, YOLO performed complete 
detection while intrinsic and extrinsic camera threads 
were working in the background. Simplest way to 
cover is to decrease the frames per second within 
autorace-package for TB3. 

    if self.counter % 10 != 0: 
self.counter += 1 
return 

    else:  
self.counter = 1 

After considering the findings and analyzing the 
computational time of various algorithms and 
techniques, it was decided that the optimal approach 
would be to utilize YOLO and SIFT. Of course, this 
approach might not be needed for a simple TSR 
exploration within educational use, however, it 

YOLO ORB SIFT

YOLO
+SIFT
(On-

Table)

YOLO
+SIFT
(On-

Track)
Accuracy 0.90 0.27 0.78 0.94 0.98
Precision 1.00 0.96 0.98 1.00 1.00
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demonstrates a usual way of implementing assistant 
systems where for example in addition to a camera-
based object detection digital-map data is used to 
validate detected objects or situations. As an 
alternative the YOLO training process could be made 
more complex to reach better accuracy for Left/ Right 
sign.  
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