
Analysis and Implementation of an Efficient Traffic Sign Recognition
Based on YOLO and SIFT for Turtlebot3 Robot

Stefan Twieg and Ravin Menghani
Department of Electrical, Mechanical and Industrial Engineering, Anhalt University of Applied Sciences,

Bernburger Str. 55, Köthen, Germany
stefan.twieg@hs-anhalt.de, ravinvijaybhai.menghani@student.hs-anhalt.de

Keywords: Traffic Sign Recognition, Machine Learning, YOLO, SIFT, Turtlebot3, ROS, Robot Operating System,
Convolutional-Neural-Network, CNN.

Abstract: Traffic Sign Recognition (TSR) is one of the key aspects for autonomous driving and it plays a vital role to
make autonomous driving successful, but that’s only possible if TSR is efficient enough and reliable. This
work addresses exploration of simple and fast to implement options for robotic applications. For analysis and
implementation, we are focusing on a Turtlebot3 Robot (TB3). Various potential TSR algorithms are
evaluated in different test-cases with the goal of developing an optimized TSR with accurate results for
German traffic signs. Therefore, the robot was tested on its own Mini-City track. On this Track we started to
detect the signs with a simple Scale-Invariant Feature Transform (SIFT). However, the accuracy of SIFT was
showing limitations for the use within TSR on mini-city-Track. This approach focuses on educational use
where limitations and simple applications of autonomous driving are investigated. A review of state-of-art
algorithms was done, to evaluate and improve accuracy. For example, Oriented FAST and Rotated Brief
algorithm (ORB), You Only Look Once (YOLO) and SIFT algorithm was tested on TB3 in a way that all
important criteria are fulfilled along with system being real-time. Regarding YOLOv8 a custom dataset and
training is performed. The YOLO-model achieves 99.5% in terms of mean Average Perception (mAP@0.5)
for all classes. In summary, as a powerful alternative to work with, YOLOv8 was identified. Standalone or
in combination with SIFT a TSR system is shown which can work impacted by several environmental
conditions. Based on evaluation of three algorithms an optimized code was developed in which YOLOv8 and
SIFT were used in combination as a well performing TSR algorithm, which has above 95% accuracy for each
traffic sign tested.

1 INTRODUCTION

As observed in [1], TurtleBot3 can detect different
signs using the SIFT algorithm that compares the
source image and camera image. Additionally, as a
customizable robot [2], TB3 has the flexibility to
modify its functionality including Traffic Sign
Recognition to improve its accuracy for autonomous
driving task. As a starting point the autonomous
driving “Autorace-Package” for Robot Operating
System is recommended [1]. This work addresses
evaluation as well as identification of alternative
techniques to SIFT. After extensive research and
analysis, one algorithm was found to be superior to
all others. It was possible to develop an improved
version of the package, which significantly increases

accuracy and performance over the previous version.
The work is noteworthy because it explores a variety
of techniques and concludes with a solution that has
a wide range of applications. The only limitation is
that we use a ROS version that requires the use of an
older version of Ubuntu, but this is neglected in terms
of optimal performance of the algorithms. In
summary the main objective of this paper is to
improve the accuracy of traffic sign recognition and
develop an optimized autonomous driving (so called
Autorace) package for TB3. This is achieved by
implementing various algorithms such as R-CNN,
SIFT, ORB, and YOLO, and determining the
algorithm that performs best. Once the best algorithm
has been found, a technique that best suits our
algorithm criteria can be implemented to improve
efficiency.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

47

2 METHODS AND ALGORITHMS

For sign recognition, an algorithm is needed that can
detect and recognize the traffic sign from the image
received by robot. Furthermore, in order to improve
the recognition, it is first necessary to understand how
it works and what the flow is. As shown in Figure 1,
first the TB3 captures the image and then transmits it
in raw and compressed form to the system. After that,
the system will pass the image to a certain function
and this function will detect whether a traffic sign is
present in the image or not. If a traffic sign is present,
a frame is formed with the coordinates of the image
and the modified image is published. So, if a traffic
sign is detected, other nodes in the system will know
about it.

Figure 1: Process of traffic sign recognition.

The focus is on "Step 4", where the input image is
processed and traffic sign recognition is performed.
This is a usual classification task within machine
learning. In the autorace-package [1], the SIFT
algorithm is used in combination with the FLANN
matcher. The SIFT algorithm extracts key points
(features) from the reference images of each traffic
sign from local data and also finds key points from
the received input image [3, 4]. These key points are
then compared with FLANN. The final decision is
made to publish whether or not a sign was
detected [4].

Figure 2: Traffic signs.

Figure 2 shows which traffic signs shall be
recognized using the traffic sign recognition system
in TB3. As in Figure 3 an artificial testing
environment the Mini-City-Track [1] at Anhalt
University of Applied Sciences has all of these signs
implemented as part of autonomous driving test.

Figure 3: Mini-City-Track at Anhalt University of Applied
Sciences.

However, improving efficiency does not mean
improving accuracy. In order to increase efficiency,
other aspects were also taken into consideration, such
as computational time and resources used. As a first
impression, SIFT was good in these aspects as it
requires the least computational time, but accuracy
was limited. It was also observed that accuracy,
computation time and resources used were in a devil's
triangle relationship with each other, as shown in
Figure 4. If one was improved, the other was
adversely affected.

Figure 4: Devil’s Triangle.

The ideal state of the Devil's Triangle in Figure 4
is that there is a perfect balance in between with
limited resources, manageable computation time and
good accuracy, but that is an ideal state. So, usually
engineering needs decisions, if accuracy is fully
achieved, a lot of resources might be consumed and
the computation time probably also increase with
complexity, which is not our intention at all. We like
to keep it simple like SIFT. This is also important for

• Turtlebot captures a live image from pi cameraStep 1

• Publish the captured image in “compressed” and
“raw” formatStep 2

• Subscribe these images by “detect_sign” node in
cbFindTrafficSign()Step 3

• In cbFindTrafficSign() received image is processed and
traffic sign detection is done via selected algorithmStep 4

• If traffic sign is detected, a modified output image
with highlighted sign is generatedStep 5

• Publish corresponding output image as well as
related traffic signStep 6

Accuracy

Computational TimeResources

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

48

the educational purpose, where students have limited
time to understand and explore functionality. So, in
this paper, we present a TSR system that is close to
the ideal state.

2.1 Algorithm Analysis

Various algorithms exist for use in terms of object
detection, yet the current cutting-edge technique is
"Convolutional Neural Networks (CNN)." [5] CNN
serves as a foundation for deep learning, wherein one
algorithm handles feature extraction and comparison.

Figure 5: Formula for Neural Networks.

Figure 5 illustrates the basement of Neural
Networks – the perceptron is equivalent to a
simplified neuron in the human brain. In the
perceptron, the inputs are multiplied by their
respective weights, and the sum of these value is lead
to a (non-linear) output with the assistance of an
activation function. Based on this simple
representation a network of Neurons consisting of
several Neurons in several layers are used where the
connection between Neurons can be varied in all
directions. Out of that many possible neural network
structures can be created, like CNN.

Usually two versions of CNN are used for TSR
tasks, which differ based on the number of stages
used for detection - One-stage detection, where object
classification and bounding boxes are acquired
simultaneously, and two-stage detection, where sign
area is identified as bounding box within picture first
and object classes recognized in a second stage from
these. This study compares these deep learning
techniques with each other and classical machine
learning techniques. The analysis results will
determine the most effective algorithm among the
currently available techniques for object recognition.

2.1.1 YOLO (You Only Look Once)

According to [6] “YOLOv3: An Incremental
Improvement”, the YOLO algorithm encodes
contextual information about classes and their
appearance implicitly during both training and test

periods. Hence it can be asserted that YOLO is a
single-stage detection system employed by using
CNN as the primary principle of detection. YOLO is
currently the state-of-the-art technology in terms of
having lower background error rates compared to
other algorithms. Furthermore, it is easy to
comprehend and execute [6]. It also features a range
of models to adjust the complexity from "n" to "xl",
enhancing accuracy with a superior model [7,8]. As it
is a single-stage system, the detection precision is
lower, but it is more suitable in real-time systems
because it takes less time to detect [8]. However, this
algorithm has a drawback - while training a custom
dataset, it requires a significant amount of memory
and storage space. However, it is currently considered
to be the swiftest and most precise algorithm for
identifying objects [8].

2.1.2 R-CNN (Region based CNN)

This algorithm operates in two stages, beginning with
a proposal of the region of interest where an object
may be located. The output of the first stage is then
sent to the second stage to classify the object within
the designated region of interest. The resulting
outcome is a bounding box surrounding the object,
along with its classification within that box [9]. It is
considered one of the most precise algorithms for
detecting objects, as it processes various layers of an
image, from the input layer to the hidden layers, all of
which are interconnected [10]. The process for
training an R-CNN model begins by identifying the
region of interest, followed by convolution, non-
linearity (using ReLu), and ultimately, maxpooling.
This multi-stage approach provides additional
features for detection, while the use of maxpooling
ensures that it does not consume excessive storage
space. Furthermore, a sizeable image can be trained
by reducing layers following each convolution and
maxpooling. There are also advanced versions of R-
CNN available, such as Faster R-CNN, which aim to
rectify its shortcomings [10,11]. Despite its various
versions, R-CNN is time-consuming to train a model
and not suitable for Real-Time systems as it takes a
few seconds for detection due to its two-stage
detection process [12].

2.1.3 SIFT (Scale-Invariant Feature
Transform)

This is a machine learning algorithm used to extract
features from a given image. With the help of a
feature matcher, the image can then be classified
using key points fetched by SIFT. As its name
suggests, the algorithm is not affected by the scale or

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

49

rotation of the image [3]. It can extract key points
even from the smallest image [3]. The traffic signs are
automatically annotated by the SIFT algorithm,
without the need for human or manual intervention.
This is advantageous compared to R-CNN and YOLO
[13]. The method is not significantly affected by
image size, lighting conditions, or rotation. The main
issue with TB3 and SIFT is that it requires an image
of the same quality as the reference image.

2.1.4 ORB (Oriented FAST and Rotated
BRIEF)

ORB may be employed as an alternative to the SIFT
algorithm, resulting in improved efficiency. ORB is
constructed using established FAST key point
detection and BRIEF descriptors. Because the FAST
method is utilized, key points can be detected more
rapidly and efficiently with the aid of the BRIEF
descriptor. This modified version of the FAST key
point decider is used for vision tasks and has superior
key point detection abilities compared to the SIFT
algorithm [14]. When combined with the BFMatcher
[15], it is suitable for traffic sign recognition.
Additionally, it is a quick algorithm that requires less
computational time than others. However, it operates
differently in various environments (background
dependency), best performance is reached by using
the same environment as the reference image.

2.2 Algorithm Selection

Considering the task and with brief analysis on each
algorithm of interest, we decided which algorithm can
be suited best for the task. So, YOLO and ORB might
be good fit and can be tested/ compared further along
with SIFT. Reason for choosing YOLO is the
promising accuracy shown in various applications
with low computational time [7, 8, 12], and ORB
might be a more comparable approach but better
version of SIFT as it is said to be faster than SIFT and
more accurate also [14]. R-CNN is highly accurate
but when working with real-time systems it cannot be
used as it is having two stage detection which affects
the time used for detection of sign adversely. But
along with YOLO and ORB, SIFT will also be
implemented as it is the default algorithm for
comparison. Furthermore, combinations of these
three algorithms are possible and might also be
implemented for test, such as YOLO with SIFT or
YOLO with ORB.

3 CRITERIA

After carrying out the theoretical analysis, it is
necessary to apply the algorithms on TB3 to
determine performance and to judge the algorithms.
To assess their efficiency, specific criteria must be
established:

1) Accuracy for each individual sign;
2) Overall-accuracy for all signs;
3) Calculation/ processing time (Computational

performance and Complexity).

Judgement shall be done by TP, TN, FP, FN [16]
as with these four categories all the possible outcome
can be measured and placed in at least one of these
categories, which is helpful to determine the accuracy
of the system.

Figure 6: Evaluation Criteria [16].

Figure 6 illustrates. that True Positive is when
system detects the sign that was showed, True
Negative is that system detects no sign and no sign
was shown. False Positive is when system detects a
traffic sign even though there is no traffic sign shown,
and False Negative occurs when wrong or no traffic
sign is detected even though traffic sign is shown. To
calculate accuracy and precision two formulas were
used from [16] and illustrated in Figure 6. To measure
precision, true positive is divided by summation of
true positive and false positive, and to calculate
accuracy, summation of true positive and true
negative is divided by summation of all the four
aspects. Furthermore, it is crucial to consider certain
impacts when testing the accuracy of each sign
individually as well as collectively. Firstly,
environmental impacts have to be considered during
sign recognition. Light is one of these environmental
impacts, for example, the system might be trained in
an environment with more or less illumination
compared to the environment where the system is
utilized. Therefore, testing should be conducted while
keeping environmental constraints in mind.
Secondly, the positioning of signs is crucial as they
are not always in the same place; they can be located

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

50

on the right, left, top, bottom, near or far.
To overcome this problem, testing the signs in
different positions is necessary. Furthermore, it is
important to note that for real-time systems,
computational time alone is not sufficient. Instead, it
is necessary to use it to determine how well the
system can detect signs whilst in motion and up to
which speed it can detect them without any issues.

4 EXPERIMENTAL SETUPS

The algorithms are tested on the TB3 using multiple
test-cases, each with its own significance for fulfilling
different criteria.

4.1 On-Table and Mini-City-Track
Test

In On-Table test TB3 is placed in laboratory on the
table to test functionality at defined conditions.
During Mini-City test, the TB3 is placed on a track
with predefined tasks and signs.

4.1.1 Environment Independency

To test this, the robot is placed on a table to assess its
environment independence, mainly focusing on
background interferences, as illustrated in Figure 7.
The outcome is recorded, analyzed and a decision
made accordingly. The traffic sign recognition system
is activated after TB3 was placed on table to evaluate
the signs presented in front of it.

Figure 7: Environment independency test procedure.

4.1.2 Dynamic Positioning Test

There are two dynamic positioning tests: the first
involves a moving traffic sign while the TB3 remains
stationary, and the second involves the robot in
motion on our Mini-City track. For the first test, robot
is placed on table with the traffic sign recognition
system activated. Different signs are then tested in a
continuous manner, going from left to right, up and
down, and vice versa. Results are recorded to
determine whether the traffic sign recognition system
operates independently in positioning. In the second
version, TB3 is placed on the track and the traffic sign

recognition system is triggered. Additionally, the lane
detection function is activated, enabling the robot to
move automatically on the signed roads. It shall be
determined whether the system can detect signs when
the TB3 is in motion or not.

4.1.3 Track Range Test

To determine if the TB3 can effectively detect signs
on a track from short or long distances (greater and
less than 12cm). This test is used for the evaluation of
whether sign detection is affecting the real-time
system by means of detecting signs within a required
time equivalent to the distance of sign and the related
reaction to it from TB3 functionality.

Figure 8: Range test.

Figure 8 outlines the procedure for conducting the
test. Prior to the assessment, markings at precisely
12cm in front of all signs are made. These markings
serve to determine the accuracy of the robots sign
detection prior to and after crossing the mark. The
findings from both criteria are combined to make a
final determination.

4.1.4 Computational Power Testing

For our case the best method for measuring
computational power is to measure the time required
to detect a sign.

Figure 9: Computational Time Test On-Table/Track.

Figure 9 outlines the method for measuring
computational time. Initially, modifications are made
to the "detect_sign" node by implementing code for
time calculation. The code is inserted after accessing
the input sign from the TB3 camera to start the
recording process.

 import time as t
start_time = t.time()

Secondly, to measure the time required, following
code is added after the node publishes the output
image back to the topic it subscribed from.

Placing
Turtlebot on

Table

Running
“detect_sign”

node

Note whether
detection is

environment
Independent

Measuring
test results
and judging
efficiency

through TP,
TN, FP and FN

Placing
Turtlebot on

Track

Running
“detect_sign”

and
“detect_lane”

node

Judge if detection is
good for both cases

and decide if
package is real-time

distance reliable

Measuring
test results at
distance > and
< 12cm by TP,
TN, FP and FN

Modify
“detect_sign”

node

Place
Turtlebot on
Table/ Track

Run “detect_sign”
node and

“detect_lane” node
(if Turtlebot is on

Track)

Judge if measured
time fullfills

needed real-time
requirements

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

51

end_time = round(t.time() –
start_time,2) * 1000
print(end_time, “ms”)

The TB3 is placed on the table or track and the
traffic sign recognition system is turned on to detect
the sign, by this change the time required for
detecting the sign is now also recorded.

5 IMPLEMENTATION AND
TESTING

5.1 Implementing Algorithms

The first modification being executed involves
altering the sign detection algorithm. As depicted in
Figure 10, apart from SIFT, YOLO and ORB
algorithms were implemented on the TB3 to assess
their effectiveness regarding TSR.

Figure 10: Steps to decide algorithm.

5.1.1 Implementing YOLO for TSR

YOLO is the fastest object detection algorithm [8],
although implementation of YOLO is not complex
but training custom model on custom dataset is time-
consuming [8]. For doing it a properly there are
certain steps which are needed to be followed.

5.1.1.1 Training YOLO on a Custom Dataset

The initial stage involves installing the “Ultralytics”
library to use in our case YOLOv8. After installation,
import the library into the node for application
purposes. To train the model, a custom dataset is
necessary. To create a dataset, a multitude of images,
showing various backgrounds under different lighting
conditions, and in different locations are needed, as
shown in Figure 11.

Figure 11: Creating images for TSR dataset.

After creating the image dataset, annotation of
dataset is necessary. Using online tools, such as
Roboflow [17] and CVAT [18], the images can be
annotated. Specifically, for this paper, CVAT was
utilized. A new project was created, with all
necessary classes/labels specified. Afterwards,
individual labels are generated for each class and
relevant images are assigned to each label. To
summarize, the images are manually annotated by
dragging a labelled box to the location of the traffic
sign within the image.

Figure 12: Annotation of sign (image is recorded on Mini-
City-Track) with CVAT.

When the images are annotated as displayed in
Figure 12, with a box outlining the traffic sign in each
image, the data is exported as a dataset, selecting
YOLO version to ensure compatibility. Output
consists of a label text file corresponding to each
image which is located in "labels" directory, while all
the images are copied to the "images" directory.

A "config.yaml" file is generated in the same
environment. This file specifies the path of the
training dataset and defines all the classes/ labels.
Within Python [20], which is used for training the
YOLOv8n model on our custom dataset, this file is
accessed. The model is trained using the "train"
function that is pre-defined in the ultralytics library.

model = YOLO("yolov8n.pt"
results =
model.train(data="config.yaml",
epochs=65)

Finally, a successful training of the model is
indicated by a mean Average Perception (mAP@50)
near to 1. The "runs" directory, generated during the
YOLO training, can then be utilized as a custom
model for our custom dataset. This directory contains

Change/ Add
Sign Detection

Algorithm

• YOLO and ORB
will be
implemented

Algorithm
Testing and
Evaluation

• Compare YOLO
and ORB results
with each other,
and also with
CNN and SIFT

Criteria based
Judgement

Judgement Criteria
1. Individual Sign

Accuracy
2.Overall-Accuracy
3.Calculation time

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

52

weights, training results, and output images from
various validation datasets.

5.1.1.2 Using Pre-Trained YOLO Model

Once the model has been trained, it can then be
utilized to recognize traffic signs in images obtained
from the TB3. To initiate sign recognition,
modification is required to the "detect_sign"-node of
autorace-package. The pre-trained YOLO model is
imported from the "ultralytics" library and
subsequently loaded as the model.

from ultralytics import YOLO
model_path = os.path.join('.',
'runs', 'detect', 'train',
'weights', 'best.pt',)
model = YOLO(model_path)

Afterwards, the YOLO model's "predict()"-
function is utilized on the input image to detect signs,
and the resulting tensor is analyzed to determine
whether any signs were detected. If a traffic sign is
detected, the coordinates for bounding box, the
classification of the box and its associated confidence
are extracted from the tensor. If the confidence
exceeds a predetermined threshold, the output image,
along with the derived information, is transmitted
back to the TB3.

results =
model.predict(cv_image_input)
result = results[0]
box = result.boxes[0]
cords = box.xyxy[0].tolist()
sign_ID = box.cls[0].item()
confidence = box.conf[0].item()
xmin,ymin,xmax,ymax =
int(cords[0]), int(cords[1]),
int(cords[2]), int(cords[3])

5.1.2 Implementing ORB

ORB is a better form of SIFT algorithm, it almost
works in similar pattern as SIFT [14]. It is having
reference images for each sign and these images are
used to find base key points for each sign and later
these key points are matched with the help of
BFMatcher to the key points of the input image [15].
It uses less computational time than YOLO as feature
extraction of all reference images and initialization of
ORB and BFMatcher was done just once before input
image is subscribed. Once, one reference image for
each sign is taken, “OpenCV2” [19] library is
imported in the node because it is used as our base

library for machine learning feature extraction. First,
all the reference images are loaded in the node and
afterwards, key points are fetched from each
reference image with the help of ORB.

self.orb =
cv2.ORB_create(nfeatures=2000)
self.img2 = cv2.imread(dir_path +
'stop.png',0)
self.kp2, self.des2 =
self.orb.detectAndCompute(self.img
2,None)

Once, the key points are fetched from the
reference images, the input image subscribed from
the TB3 is processed. Therefore, the feature matcher
is initiated, in this case “BFMatcher” is used to
compare key points of reference images to current
image. If a sign is detected a bounding box is drawn
on the input image along with which sign it is.
Finally, the output image with the bounding box on it
is published.

self.bf = cv2.BFMatcher(
kp1, des1 =
self.orb.detectAndCompute(cv_image
_input,None)
matches2 =
self.flann.knnMatch(des1,self.des2
,k=2)

6 EVALUATION OF
PERFORMANCE

Test-cases were formed in a way that all criteria are
given for judging efficiency of the system regarding
defined task of TSR for autonomous driving on Mini-
City track. Within following work each traffic sign
(as shown in Figure 2) together with Accuracy and
Precision criteria gets a specific abbreviation:
P – Parking; T – Tunnel; S – Stop;
I – Intersection; C – Construction; 50 – Speed 50;
100 – Speed 100; Li – Traffic Light; L – Left;
R – Right; A% – Accuracy; P% - Precision.

Three test-cases have been selected which focus
on both, accuracy and computational time required.
All needed changes have been embedded in the
autorace-package code. “On-Table test” was
conducted on ORB, SIFT, YOLO and YOLO with
SIFT. Further, the one with the best results was taken
in consideration for “On-Track test” to get to a final
decision.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

53

Table 1: Test-Cases.

Test Description

On-Table:
Accuracy

To test accuracy of TB3 through TP, TN,
FP, and FN
1) TB3 is placed on a table, so environ-

ment/ background independency is
tested.

2) TB3 is not moving but the sign
shown to robot is moved to different
positions like left, right, up, and
down.

On-Track:
Accuracy

To test accuracy of TB3 through TP, TN,
FP, and FN
1) TB3 is placed on the Mini-City track

and it performs sign detection along
with lane detection, by that motion
test is done.

2) Due to moving, signs can be de-
tected from long and short distances.
Range is defined as long range for
above 12cm and short range for less
than 12 cm.

Pro-
cessing:
Time

This test is done during On-Table and
On-Track testing, by determining compu-
tational time in detect_sign node

6.1 On-Table Results

This test was mainly focused on accuracy in limited
environmental conditions as name suggests. This test
is conducted on YOLO, ORB and SIFT and the one
with the best accuracy will be considered for further
testing.

Figure 13: TurtleBot3 during On-Table test.

Figure 13 represents the setup of On-Table test, in
which the TB3 is placed on the table in the laboratory
and one after the other sign is placed in front of it as
shown in the image on the left. Figure 13 right side
shows in a ROS rqt-view what TB3 recognizes while
On-Table test.

6.1.1 YOLO

Results from Table 2 clearly state that YOLO is
having 100% accuracy for five signs out of ten, and
90% or above accuracy for remaining signs except
traffic sign “Left” and “Right.”

Table 2: On-Table test YOLO.

6.1.2 ORB

It is clear from the results shown in Table 3 that ORB
is having less than 40% accuracy for all signs except
“Left” sign and it cannot be considered as a sign
detection algorithm in the final system.

Table 3: On-Table test ORB.

6.1.3 SIFT

As shown in Figure 14 ORB as well as SIFT uses
reference images.

Figure 14: Reference images used for SIFT.

SIFT detects key points in each reference image
and further matches those with the current input
image’s key points. It is observed in Table 4 that SIFT
is having better accuracy than ORB in all signs and in
case of “Right” it is having better accuracy than
YOLO and for “Left” equivalent to YOLO.

Table 4: On-Table test SIFT.

P T S I C 50 100 Li L R
TP 10 10 10 10 9 10 9 9 7 5
FP 0 0 0 0 0 0 0 0 0 0
TN 2 1 1 3 2 2 1 1 3 2
FN 0 0 0 0 1 0 1 1 3 5
A% 100 100 100 100 92 100 91 91 77 58
P% 100 100 100 100 100 10 100 100 100 100

P T S I C 50 100 Li L R
TP 2 1 3 0 0 2 2 0 8 2
FP 0 0 0 0 0 0 0 0 4 0
TN 2 1 1 2 2 2 1 1 0 2
FN 8 9 7 10 10 8 8 10 2 8
A% 33 18 36 16 16 33 27 9 57 33
P% 100 100 100 100 100 100 100 100 66 100

P T S I C 50 100 Li L R
TP 1 7 10 8 9 10 8 5 8 10
FP 0 0 0 0 0 0 0 0 2 0
TN 1 1 2 2 2 2 1 5 3 2
FN 9 3 0 2 1 0 2 5 2 0
A% 18 73 100 83 91 100 82 66 73 100
P% 100 100 100 100 100 100 100 100 80 100

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

54

However, Figure 15 left side shows also clearly,
that partly not all the key points are set to the sign
itself, in the shown case one was set to the bottom of
the stand.

Figure 15: Results of SIFT.

6.2 Optimized Approach

Based on all the gathered experience above and in
combination of all techniques suggested, a final way
of traffic sign recognition system was designed,
which is using YOLO as the primary algorithm for
detection of all signs and SIFT as secondary instance
which is used only for verification of “Left” and
“Right” traffic signs. This way the weakness of
YOLO for these two signs shall be vanished. Due to
that ORB is not accurate for our use case at all as well
as it shows strong environment dependency, it was
not further considered. Figure 16 shows the
implementation of optimized TSR system. First, the
TB3 will start its camera for publishing its video
stream. Then, TSR will read frames until and unless
system is stopped using “CTRL+C” from terminal.
The TSR system starts to process these frames The
object detection done by YOLO is detecting trained
signs, if traffic sign is detected it checks if identified
object is “Left/Right” sign or any other sign, else it
will publish no sign detected. For the case of
“Left/Right” sign it will cross verify it with the help
of SIFT, else it will directly publish the detected sign
without using this instance. If SIFT also confirms the
same direction like YOLO, the system publishes that
sign, else system will publish no sign detected.

6.2.1 Implementing YOLO with SIFT

Quickly, both libraries “Ultralytics” and “OpenCV2”,
supporting YOLO and SIFT, have been added to the
node. The pre-trained model is loaded for YOLO and
SIFT is also initiated. Afterwards, for SIFT “Left”
and “Right” sign’s reference images are loaded and
key points are fetched from those two images.
FLANN matcher is initiated and the input image is
handled by YOLO model before it is optionally
forwarded to the SIFT for cross verification. If it is

any sign other than direction signs it will be published
directly after YOLO detection is finished.

Figure 16: Processing flow of Optimized-TSR based on
YOLO combined with SIFT.

6.2.2 On-Table Results YOLO with SIFT

Results from Table 5 clearly state that YOLO with
SIFT is having 100% accuracy for five out of ten
signs, while for others it is higher than 80%.

Table 5: On-Table test YOLO+SIFT.

P T S I C 50 100 Li L R
TP 10 10 10 10 9 10 9 9 8 8
FP 0 0 0 0 0 0 0 0 0 0
TN 2 1 1 3 2 2 1 1 3 2
FN 0 0 0 0 1 0 1 1 2 2
A% 100 100 100 100 92 100 91 91 85 83
P% 100 100 100 100 100 100 100 100 100 100

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

55

Hence, it can be said that it is best result reached
for On-Table test and that is why it is taken for
continuing with On-Track test.

6.3 On Track Results

The On-Track test exclusively evaluates the YOLO
with SIFT implementation due to that it has
demonstrated the best results among all algorithms in
the On-Table test. The TB3 is positioned on the Mini-
City track during this test to judge dynamic
positioning and range dependencies, as well as the
computational time when capturing images during
motion. The main result of this test is to determine if
the implementation is feasible to handle the given
real-time task where it has to follow the lane with the
aid of a lane detection node while detecting the signs
at fixed positions. Obviously, detection must be
finished in front of a sign so that other nodes can be
called and processed in time. Earlier detection results
in more time for processing other tasks during
autonomous driving. However, if signs are detected
to early, functions might be called that are not yet
relevant. Figure 17 illustrates the setup of the On-
Track test, where the TB3 moves and upon
approaching signs, it detects and notifies the system.

Figure 17: TurtleBot3 during On-Track test.

From Table 6 it is observed that YOLO with SIFT
is having 100% accuracy for eight out of ten signs and
for remaining two signs it is having above 90%
accuracy. If compared to Table 5 “On-Table test
YOLO+SIFT” shows that YOLO with SIFT shows
better result in artificial-world conditions of Mini-
City.

Table 6: On-Track test YOLO+SIFT.

6.4 Analysis of Algorithm Performance

As explained in Figure 8 “Computation Time Test
On-Track/Table” in Chapter 4 “Experimental Setup”
within “detect_sign” node the computational time is
recorded.

Figure 18: Computational Time Test samples.

At Figure 18, it is clearly visible that
YOLO+SIFT is the most time-consuming method for
detecting signs and publishing the result. The average
time taken for YOLO+SIFT (combining data from
both On-Table and On-Track tests) is 163.7ms with a
standard deviation of 36.94, highlighting the different
effects of using two algorithms in sign detection.
YOLO+SIFT takes longer for sign recognition, with
an average time of 124.82ms and a standard deviation
of 24.20. ORB and SIFT take nearly the same amount
of time for traffic sign detection. ORB is a bit quicker
with an average time of 19.15ms compared to SIFT's
average time of 25.37ms. However, in terms of
stability, SIFT is superior with 3.95, whereas for ORB
the standard deviation is 5.93. Therefore, it can be
concluded that ORB is the fastest algorithm among
them, while SIFT yields more consistent outcomes.
In addition, the accuracy and precision of On-Table
and On-Track test for different algorithms for all
signs was also measured with the help of formula
shown in Figure 5 “Evaluation Criteria”.

Average accuracy and precision in Figure 19
demonstrates that the decision to use YOLO for
traffic sign detection was justified, as it improved
TB3's traffic sign recognition accuracy by 12% to

0
30
60
90

120
150
180
210
240
270

Ti
m

e
in

 m
s

Sample #

Computational Time

YOLO+SIFT(On-Table)

YOLO

ORB

SIFT

YOLO+SIFT(On-Track)

P T S I C 50 100 Li L R
TP 10 10 10 10 9 10 10 10 9 10
FP 0 0 0 0 0 0 0 0 0 0
TN 2 1 1 3 1 2 1 1 2 3
FN 0 0 0 0 1 0 0 0 1 0
A% 100 100 100 100 91 100 100 100 92 100
P% 100 100 100 100 100 100 100 100 100 100

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

56

90% compared to the default SIFT algorithm.
Although the ORB algorithm was also implemented,
where Figure 17 demonstrates that ORB has the
shortest computational time at 19.15ms but with a low
performing average accuracy of only 27% and a 4%
loss in precision too. Table 2 reveals a lack of
accurate detection for traffic signs such as "Left" and
"Right" for YOLO.

Figure 19: Comparison of average accuracy and precision
for each algorithm.

The combination of YOLO +SIFT achieved the
highest accuracy of 98% on the track, again with
perfect precision for traffic sign detection with the
effort of a long computational time of 124.82ms. The
optimized integration of YOLO with SIFT resulted in
94% accuracy for table and 98% accuracy for track.
Whereas most probably the fixed position in
comparison to table tests pushed the average 4% up.
This approach successfully detected all signs both on
and off track with a cost of computational time, which
can be managed by reducing frames per second.

7 CONCLUSIONS

The main objective of this paper is to develop an
efficient, easy to train and understandable system for
traffic sign recognition in educational use. The
system should be robust, with minimal errors and
operate in real-time. To improve efficiency, several
algorithms such as R-CNN, YOLO, ORB, SURF, and
SIFT were considered. The advantages and
disadvantages of all algorithms, including SIFT, were
analyzed through theoretical examination. YOLO,
ORB and SIFT were selected for testing on TB3

within an artificial environment, the Mini-City.
However, selecting the appropriate algorithm alone
does not suffice to boost efficiency; various
techniques were also utilized. For instance, a
detection frame and a fusion of two algorithms were
employed. While these measures enhanced accuracy,
they also impacted computational time, necessitating
the implementation of numerous test cases.

Two tests - the "On-Table Test," which focused
on environment independence, floating traffic signs,
and computational power criteria, and the "On-Track
Test," which evaluated accuracy based on range and
dynamic positioning - were conducted and efficiency
was additionally tested via computational time. Test
cases have demonstrated the effectiveness of the
systems and identified the most suitable technique.
 YOLO exhibited superior accuracy and perfect

precision compared to ORB and SIFT in various
environments, while the last two were only
reliable if tested in the same environmental
setting as their reference image. In contrast,
YOLO can effectively operate environment
independent with any background.

 ORB requires the least computational time,
whereas YOLO demands extensive resources to
function optimally. This is due to YOLO
performing recognition tasks after image access,
whereas ORB merely matches key points once
the input image is retrieved.

 YOLO itself is not entirely accurate for all signs;
therefore, SIFT is introduced in combination
with YOLO, but solely on signs that are not
detected accurately, rather than all images.

One of the primary issues encountered was the
high computational power demand of YOLO, leading
to latency in the system and preventing it from being
real-time. However, YOLO performed complete
detection while intrinsic and extrinsic camera threads
were working in the background. Simplest way to
cover is to decrease the frames per second within
autorace-package for TB3.

 if self.counter % 10 != 0:
self.counter += 1
return

 else:
self.counter = 1

After considering the findings and analyzing the
computational time of various algorithms and
techniques, it was decided that the optimal approach
would be to utilize YOLO and SIFT. Of course, this
approach might not be needed for a simple TSR
exploration within educational use, however, it

YOLO ORB SIFT

YOLO
+SIFT
(On-

Table)

YOLO
+SIFT
(On-

Track)
Accuracy 0.90 0.27 0.78 0.94 0.98
Precision 1.00 0.96 0.98 1.00 1.00

0%

20%

40%

60%

80%

100%

Accuracy and Precision

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

57

demonstrates a usual way of implementing assistant
systems where for example in addition to a camera-
based object detection digital-map data is used to
validate detected objects or situations. As an
alternative the YOLO training process could be made
more complex to reach better accuracy for Left/ Right
sign.

REFERENCES

[1] "ROBOTIS e-Manual," Online]. Available:
https://emanual.robotis.com/docs/en/platform/
turtlebot3/autonomous_driving/#traffic-sign-
detection, [Accessed Sep. 7, 2023].

[2] R. Amsters and P. Slaets, "Turtlebot 3 as a Robotics
Education Platform," in Robotics in Education
(Advances in Intelligent Systems and Computing),
M. Merdan, W. Lepuschitz, G. Koppensteiner,
R. Balogh, and D. Obdržálek, Eds., Cham: Springer
International Publishing, 2020, pp. 170-181.

[3] B. Zhong and Y. Li. "Image Feature Point Matching
Based on Improved SIFT Algorithm," [Accessed Aug.
22, 2023].

[4] V. Vijayan and P. Kp. "FLANN Based Matching with
SIFT Descriptors for Drowsy Features Extraction,"
[Accessed Aug. 22, 2023].

[5] M. A. A. Babiker, M. A. O. Elawad, and
A. H. M. Ahmed, "Convolutional Neural Network for
a Self-Driving Car in a Virtual Environment," 2019
International Conference on Computer, Control,
Electrical, and Electronics Engineering (ICCCEEE),
Khartoum, Sudan, 2019, pp. 1-6, doi:
10.1109/ICCCEEE46830.2019.9070826.

[6] J. Redmon and A. Farhadi, "YOLOv3: An Incremental
Improvement," Apr. 2018, [Online]. Available:
https://arxiv.org/pdf/1804.02767.

[7] J. Terven and D. Cordova-Esparza, "A Comprehensive
Review of YOLO: From YOLOv1 and Beyond," Apr.
2023, [Online]. Available:
https://arxiv.org/pdf/2304.00501.

[8] M. Hussain, "YOLO-v1 to YOLO-v8, the Rise of
YOLO and Its Complementary Nature toward Digital
Manufacturing and Industrial Defect Detection,"
Machines, vol. 11, no. 7, p. 677, 2023, doi:
10.3390/machines11070677.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik,
"Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation," in 2014 IEEE
Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, Jun. 2014 - Jun.
2014, pp. 580-587, doi: 10.1109/CVPR.2014.81.

[10] H. Yanagisawa, T. Yamashita, and H. Watanabe,
"A study on object detection method from manga
images using CNN," in 2018 International Workshop
on Advanced Image Technology (IWAIT), 2018,
pp. 1-4, doi: 10.1109/IWAIT.2018.8369633.

[11] O. Hmidani and E. M. Ismaili Alaoui,
"A comprehensive survey of the R-CNN family for
object detection," 2022 5th International Conference
on Advanced Communication Technologies and
Networking (CommNet), Marrakech, Morocco, 2022,
pp. 1-6, doi: 10.1109/CommNet56067.2022.9993862.

[12] J. Du, "Understanding of Object Detection Based on
CNN Family and YOLO," J. Phys.: Conf. Ser., vol.
1004, no. 1, p. 12029, 2018, doi: 10.1088/1742-
6596/1004/1/012029.

[13] E. Karami, M. Shehata, and A. Smith, "Image
Identification Using SIFT Algorithm: Performance
Analysis against Different Image Deformations," Oct.
2017, [Online]. Available: https://arxiv.org/pdf/
1710.02728.

[14] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski.
"ORB: An efficient alternative to SIFT or SURF,"
[Accessed Aug. 22, 2023].

[15] F. K. Noble, "Comparison of OpenCV's feature
detectors and feature matchers,” in The proceedings of
23rd International Conference on Mechatronics and
Machine Vision in Practice: M2VIP 2016 : Nov.
28-30, 2016, Nanjing, Jiangsu, China, Nanjing, China,
J. Potgieter, P. Xu, Z.-S. Zhang, X.-S. Wang, H. Yi,
and I. C. o. M. a. M. V. i. Practice, Eds., 2016, pp. 1-
6, doi: 10.1109/M2VIP.2016.7827292.

[16] Sh. Nimmisha, "Classification of stages of Diabetic
Retinopathy using Deep Learning," 2020, doi:
10.13140/RG.2.2.10503.62883.

[17] "Quickstart - Ultralytics YOLOv8 Docs," [Online].
Available: https://docs.ultralytics.com/quickstart/
#use-ultralytics-with-cli, [Accessed Sep. 12, 2023].

[18] S. Ola, Th. Bjørsum-Meyer, A. Histace, G. Baatrup,
and A. Koulaouzidis, "Annotation Tools in
Gastrointestinal Polyp Annotation" Diagnostics 12,
no. 10: 2324, 2022, [Online]. Available:
https://doi.org/10.3390/ diagnostics12102324

[19] M. Shoeb, M. Akram Ali, M. Shadeel, and M. Abdul
Bari, "Self-Driving Car: Using Opencv2 and Machine
Learning," The International journal of analytical and
experimental modal analysis (IJAEMA), ISSN 0886-
9367.

[20] G. Rossum and F.L. Drake, "Python 3 Reference
Manual", Scotts Valley, CA: CreateSpace, 2009.

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023

58

	1 INTRODUCTION
	2 Methods AND algorithms
	3 Criteria
	4 Experimental SETUPS
	5 implementation AND testing
	6 EVALUATION OF performance
	7 CONCLUSIONS

