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Abstract: Arrhythmia detection is a vital task for reducing the mortality rate of cardiovascular diseases. 
Electrocardiogram (ECG) is a simple and inexpensive tool that can provide valuable information about the 
heart’s electrical activity and detect arrhythmias. However, manual analysis of ECG signals can be time-
consuming and prone to errors. Therefore, machine learning models have been proposed to automate the 
process and improve the accuracy and efficiency of arrhythmia detection. In this paper, we compare six 
machine learning models, namely ADA boosting, Gradient Boost, Random Forest, C-Support Vector (SVC), 
Convolutional Neural Network (CNN), and Long Short-Term Memory Network (LSTM), for arrhythmia 
detection using ECG data from the MIT-BIH Arrhythmia Database. We evaluate the performance of the 
models using various metrics, such as accuracy, precision, recall, and F1-score, on different classes of ECG 
beats. We also use confusion matrices to visualize the errors made by the models. We find that the CNN 
model is the best performing model overall, achieving accuracy of 95% and F1-score of 84.75%. SVC and 
LSTM were the second and third best, achieving accuracy of 94% and 93%, respectively. We also discuss the 
challenges of using ECG data for arrhythmia detection, such as noise, imbalance, and similarity of classes. 
We suggest some possible ways to overcome these challenges, such as using more advanced preprocessing 
and resampling techniques, or incorporating domain knowledge and expert feedback into the models. 

1 INTRODUCTION 

Cardiovascular diseases (CVDs) have been the 
leading cause of death since 1999 as the statistics of 
the Centers for Disease Control and Prevention 
indicate [1].  The mortality rate can be effectively 
reduced by providing a timely treatment using a 
classification model to identify CVDs at early 
stage [7]. One of the common sources of CVDs is 
cardiac arrhythmia, where heartbeats are known to 
deviate from their regular beating pattern. A normal 
heartbeat varies with age, body size, activity, and 
emotions. In cases where the heartbeat feels too fast or 
slow, the condition is known as palpitations. An 
arrhythmia does not necessarily mean that the heart is 
beating too fast or slow, it indicates that the heart is 
following an irregular beating pattern. It could mean 
that the heart is beating too fast-tachycardia, when 
there are more than 100 beats per minute (bpm), or 
slow – bradycardia with less than 60 bpm, skipping a 

beat, or in extreme cases, cardiac arrest. Some other 
common types of abnormal heart rhythms include 
atrial fibrillation, atrial flutter, and ventricular 
fibrillation [2]. The Electrocardiogram (ECG) signal 
detects cardiac abnormalities by measuring the 
electrical signals generated by the heart during 
contraction. A careful study of ECG signals is crucial 
for precise diagnoses of patients’ acute and chronic 
heart conditions.  Arrhythmia is a cardiac abnormality 
related to the rate and rhythm of the heartbeat [6]. 
Despite being the most frequently used diagnosing 
tool, the rates of ECGs misdiagnosis are still too high. 
It is very challenging to accurately detect the clinical 
condition presented by an ECG signal. Cardiologists 
need to accurately predict and identify the right kind 
of abnormal heartbeat ECG wave and then 
recommend the appropriate treatment. The analysis of 
the electrocardiogram (ECG) signals is done manually 
which can be time-consuming. To address this issue, 
machine learning (ML) classification is being 
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proposed to automate the process. This would allow 
ML models to learn the features of a heartbeat and 
detect abnormalities  [10][11]. 

2 ECG STRUCTURE AND 
MIT-BIH DATABASE 

The human body can be thought of as a giant 
conductor of electrical currents. An 
electrocardiogram (ECG) can be registered by 
connecting electrical leads to any two points on the 
body. The ECG contains records for the electrical 
activity of the heart. The ECG of the heart forms a 
series of waves and complexes that have been 
labelled in alphabetical order: the P wave, the QRS 
complex, the T wave and the U wave. The P wave is 
produced by depolarization of the atria; 
depolarization of the ventricles produces the QRS 
complex; and repolarization of the ventricles causes 
the T wave [3]. The significance of the U wave is 
uncertain. Each of these electrical stimulations results 
in a mechanical muscle twitch. This is called the 
electrical excitation-mechanical contraction coupling 
of the heart. This allows us to detect abnormalities by 
equating each phase to the normal cardiac cycle. 
Figure 1 shows the ECG signal representation of a 
normal beat. These ECG signals are extremely 
susceptible to high and low frequency noise which 
usually occur from baseline wander, misplaced 
electrode contact, motion artifacts, or power line 
interference [3]. 

Figure 1: Electrocardiogram (ECG), showing significant 
intervals and deflections [3]. 

The MIT-BIH Arrhythmia Database [12] is a 
publicly available database that contains sections of 
ambulatory ECG recordings from 47 subjects. The 
recordings were digitized at 360 samples per second 
per channel with 11-bit resolution at 10-mV range on 
two channels and studied by the BIH Laboratory. 
Here, 23 recordings were picked at random from a set 
of 4000 24-hour ECG recordings collected from a 
population of 60% inpatients and 40% outpatients 
[12]. The dataset has been pre-annotated and labelled 
by cardiologists. These different annotations refer to 
various normal and abnormal ECG signals which 
represent different types of arrhythmia. The dataset 
consists of ECG signals of various classes, but the 
eight classes used for this investigation are ’N’, ’L’, 
’R’, ’V’, ’A’, ’F’, ’f’, and ’/’.Table 1 shows the 
description and numerical identification values 
assigned to these classes [3]. 

Table 1: Beat classes, ID number and description. 

Class ID Beat Description 
N 1 Normal 
L 2 Left Bundle Branch Block 
R 3 Right Bundle Branch Block 
V 4 Premature Ventricular Contraction 
A 5 Atrial Premature 
F 6 Fusion of Ventricular and Normal 
f 7 Fusion of Paced and Norma; 
/ 8 Paced 

3 DATA PREPARATION 

We used the pre-processing methodology as proposed 
by Verma et al. [3]. The MIT-BIH dataset was read 
using the native python waveform-database (WFDB) 
package, a library of tool for reading, writing, and 
processing WFDB signals and annotations. Most of 
the ECG signals were assigned to the annotation 
classes explained in Table 1. The ECG dataset is 
imbalanced, since there is an abundance on ‘N’ beats 
and the other beat classes do not pass the 10000 
thresholds. This is only from one channel of the MIT-
BIH database. To get all the beats we extracted and 
stacked the ECG signals from both the channels. 
After extracting the 8 classes that are going to be used 
and removing the other classes, a data clean-up 
processes were applied. First, the data was made 
purely numerical in order for easier working, by 
assigning each of the 8 classes a number, shown in 
Table 1. 
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Figure 2: Example of original ECG beats from MIT-BIH database (X-axis: Timestamps, Y-axis: Voltage). 

The next step was to make every beat contain 
equal amount of data points, so each individual beat 
was extracted from all the records by matching the R-
peaks of the ECG with the respective annotation class 
and appending the class numerical value at the end of 
the beat. Then standardization process was 
implemented for all beats to ensure consistent signal 
amplitudes, using the formula z=(x-μ)/σ, where the 
new beat is represented with z (x is the original beat 
data, μ is the mean of the beat data and σ is the 
standard deviation of the data). Each beat was labeled 
with the patient record number and the annotation 
class number, and the resulting clean data was then 
saved into a single .csv file, containing all beats from 
all records. 

The dataset with the clean data was divided into 
two fundamental subsets, train and test. The test set 
represented 25% of the original dataset, while the 
remaining 75% formed the training set.  

The original data from MIT-BIH database for one 
patient is shown on Figure 2. It can be noticed that the 
ECG signals are continuous and not standardized 
between the two channels and are sampled at 360 Hz. 
The data after performing pre-processing is shown in 
Figure 3, where the standardization and r-peak 
centering that is implemented on the data points can 
be seen. 

The resample technique by Sci-kit Learn is used 
in to address the imbalance between the classes in the 
MIT-BIH dataset. The bootstrap method is involved 
in this technique of resampling, where statistics are 
estimated on a data population by sampling a dataset 
with replacement through iteration using a sample 
size and number of repeats. By taking the mean 
values of the total number of beats of the abnormal 
classes the value for up-sampling and down-sampling 
denoted as n_samples were calculated. After 
resampling, all eight classes in the training dataset 
have 3989 samples for the beat hold out method. 

Figure 3: Example of single beats of N, L, R and / classes 
(X-axis: Timestamps, Y-axis: Voltage). 
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4 MACHINE LEARNING 
MODELS 

We use 6 models that have different characteristics to 
classify ECG data into multiple categories based on 
their patterns. We decided to use deep learning 
models, such as Convolutional Neural Networks 
(CNNs) and Long Short-Term Memory (LSTM) 
networks, because of their ability to capture spatial 
features and temporal dependencies, respectively. 
This choice was supported by many previous research 
successes in similar contexts. We also employed 
classical machine learning models, such as Gradient 
Boosting (GBC), ADA Boosting (ADA), Random 
Forecast (RFC), C-Support Vector (SVC), which are 
well-known for their performance in various 
classification tasks. 

Prior successful research papers [3][4] guided us 
through the selection of our models. Verma et al. [3], 
proposed an 11-layer CNN model and LSTM models 
to classify 8 classes of beats in the MIT-BIH 
arrhythmia dataset and their models displayed an 
accuracy of 94.1% and 94% for K-Fold cross-
validation method, and 98.7% and 97% for Leave 
Groups Out method, respectively. Their CNN model 
had four layers of 1D-convolutiona and batch 
normalization pairs, with ReLU activation, 16 kernel 
size and 128, 32 filters. The final two layers were 
1D-convolution layer with 9 filters and a 1D-max 
pooling layer with 2 pool size, followed by a flatten 
layer and fed to four dense layers. The LSTM model 
consisted of two LSTM layers with 128 and 9 filters, 
followed by a 1D-max pooling layer with 2 pool size. 

The output is flattened and goes to four dense layers 
with ReLU and softmax activations. 

Pandey and Janghel et al. [4] used an 11-layer 
CNN with SMOTE to classify five beat classes in the 
MIT-BIH dataset. The network had four 
1D-convolution and max pooling layers, followed by 
two ReLU layers, and a fully connected softmax layer 
to classify beats into five classes. The model was 
tested by randomly splitting the beats into training 
and testing sets, and got 98.3% accuracy. 

In this paper, we build on the previous discussion 
and use the existing CNN and LSTM models as a 
basis for our design. Our aim is to improve these 
models and achieve better performance in ECG. 
classification. We compare different architectures 
and hyperparameters and evaluate their performance 
on the MIT-BIH dataset [6]. The accuracy and other 
metrics for each one of them have been reported and 
used to identify which models are the best for this 
problem. 

Following on from work discussed in this section, 
the first CNN model that we proposed for arrhythmia 
classification is shown in Figure 4. The model 
consists of two 1D convolutional layers with 64 and 
32 filters, with kernel size of 16 and 8 accordingly. 
Each CNN layer is followed by a batch normalization 
layer and a max pooling layer with a pool size of 2. 
The output is flattened and passed through four dense 
layers with 512, 128, 32, and 9 neurons. The first 
three dense layers use the ReLU activation and the 
last layer uses SoftMax activation. We use Adam 
optimizer, categorical cross entropy loss, and 
accuracy metric to train the model with a batch size 
of 64 for 5 epochs. 

Figure 4: Proposed 1D CNN model architecture. 
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The second CNN model that we used consists of 
six 1D convolutional layers. Each convolutional layer 
applies a one-dimensional filter to the input and uses 
ReLU activation and 'same' padding. The number of 
filters increases from 64 to 256 as the layers go 
deeper, which means that the model can learn more 
complex and abstract features. Each convolutional 
layer is followed by a batch normalization layer, 
which normalizes the output and improves the 
training speed and stability. After every two 
convolutional layers, there is a max pooling layer, 
which reduces the dimensionality of the output by 
taking the maximum value in each window of size 
two. There is also a dropout layer, which randomly 
sets a fraction of input units to zero during training, 
which helps prevent overfitting.  A flatten layer is 
used to convert the multidimensional sequences into 
a one-dimensional vector. Then four dense layers are 
added, the first three dense layers have 512, 128, and 
32 neurons, respectively, and use ReLU activation 
and are followed by batch normalization and dropout 
layers. The last dense layer has nine neurons and uses 
SoftMax activation, which is suitable for multi-class 
classification tasks. 

For the third CNN model we used three 1D 
convolutional layers with 32, 64, and 128 filters, each 
followed by batch normalization and max pooling 
layers with pool size of 2. The output is flattened and 
passed through dense layers with 256, 64, and 9 
neurons. After the first two dense layers there is a 
dropout layer with a rate of 0.2 and they use ReLU 
activation. The last dense layer uses SoftMax 
activation. 

All the CNN models that we experimented with in 
this paper have the same training settings. They use 
Adam optimizer, categorical cross entropy loss, and 
the models are trained with a batch size of 256 for 5 
epochs [8]. 

The first LSTM model proposed and investigated 
in this paper uses the Keras Sequential API and 
consists of 8 weighted layers. The first layer has 128 
units and returns sequences. After the first LSTM 
layer a dropout regularization with a rate of 0.2 is 
applied. Dropout randomly sets a fraction of input 
units to 0 during training, which helps prevent 
overfitting.  The second LSTM layer has 64 units and 
after this layer a dropout regularization with a rate of 
0.2 is applied. Next to reduce the temporal 
dimensions of the sequences a Max-Pooling layer 
with a pool size of 2 is applied. Then a flatten layer is 
used to convert the multidimensional sequences into 
a one-dimensional vector, preparing the data for the 
fully connected layers. The model uses three dense 
layers, the first dense layer has 256 neurons and uses 

the ReLU activation function, the second dense layer 
has 128 neurons and uses the same activation function 
ReLU. After each of these two dense layers a dropout 
regularization with a rate of 0.3 is applied. The final 
dense layer has 9 neurons with the SoftMax activation 
function, suitable for multi-class classification tasks.  

 The second LSTM model has two LSTM layers 
with 256 and 128 units, each followed by a dropout 
layer with a rate of 0.3. Then a dense layer with 64 
neurons with a ReLU activation is applied, followed 
by a dropout layer with a rate of 0.3 and another dense 
layer with 9 neurons with SoftMax activation 
function.  

The third LSTM model is similar to the second, 
but instead of two LSTM layers it has three LSTM 
layers with 512, 256 and 128 units. We increased the 
dropout rates for each dropout layer in the third model 
to 0.5 which are higher than the 0.3 of the second 
model, to increase the robustness and generalization 
ability of the model and also to prevent overfitting. 

All LSTM models use the Adam optimized, with 
the default learning rate of 0.001, categorical cross-
entropy loss and accuracy metric. The models are fit 
on the training dataset for 5 epochs and 256 batch 
size [9]. 

For the remaining models, the same hyper-
parameters as in [3] were used: GBC and ADA: 
n_estimators = 100; RFC: n_estimator = 10 and 
max_depth = 10 ; SVC: default parameters. 

The proposed models were trained on a HP 
notebook equipped with an Intel Core i5-7200U with 
2 cores, running at 2.50GHz (2.71GHz turbo boost). 
8GB internal RAM and 1TB internal SSD hard drive. 
Substantial computational power and training time 
were needed to train the CNN and LSTM models. The 
SSD storage enabled fast data access, and the setup 
was affordable. While the absence of the GPU made 
the training times longer, but still the project was 
completed successfully on this hardware setup. 

5 RESULTS 

A comprehensive representation of the performance 
metrics of the ten classification models used in this 
paper is provided in Figure 5. Specifically, it displays 
the accuracy and standard deviation for each of these 
models, allowing for a visual comparison of their 
predictive capabilities and consistency. These results 
indicate that CNN is the best model for arrhythmia 
detection, as it correctly classified most of the ECG 
beats in all classes and made fewer errors than the 
other models. However, LSTM and SVC also 
performed well and may have some advantages over 
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CNN in terms of computational complexity and 
robustness, respectively. 

Figure 5: Achieved accuracy for each of the 10 models. 

To measure and compare the performance of the 
ML models and estimate its general performance, 
cross-validation is used. The data is split into 75% of 
training set and 25% of test set. The accuracy and 
other metrics are reported on the test set as the 
performance of the classifiers. To have a clear view 
of the model’s performance on each class, we 
measured three metrics: precision, recall, and F1-
score, for each of the classes. The results also show 
the weighted average of these metrics across all 
classes, taking into account the imbalance of the 
classes. Due to conciseness and in order to highlight 
the most relevant findings, in Figure 6 we will 
showcase results for the top three best-performing 
models only.  

The classification results show that the three CNN 
models had the highest accuracy of around 95% to 
96%, followed by the SVC model with 94% and the 
first LSTM model with 93% accuracy. The first graph 
in Figure 6 illustrates the results achieved using the 
first CNN classifier. It is obvious that the CNN model 
succeeded in predicting all the classes with different 
performances. The most predictable classes for CNN 
are the N and ‘/’ classes, the highest recall (100%) is 
achieved for the L class and F1-score (99%) for the R 
class. The second graph show the results achieved by 
the SVC model, which has similar results as the CNN 
model, the highest recall (99%) and F1-score (99%) 
for the L and R classes. The best LSTM model of the 
three LSTM models had the highest recall (100%) 
and F1-score (99%) for the L class. The other models 
achieved significantly lower results, i.e., GBC: 91%, 
RFC: 90%, ADA: 26%. This shows that the ADA 
classifier significantly underperforms with the default 
hyperparameters, requires hyperparameter tunning. 

Figure 6: Graphical representation of the classification 
report for the top 3 models according to accuracy. 

Figure 7 illustrates the confusion matrices for the 
three best models, the diagonal of these confusion 
matrices shows that most of the models have more 
than 80% accuracy in classifying the ECG beats. The 
L, R and / classes are the easiest to classify, with over 
90% accuracy for all the models. The N class is the 
hardest to classify, especially for ADA, which only 
has about 20% accuracy. The other models have over 
80% accuracy for the N class. ADA is very sensitive 
to noise and outliers, and it learns gradually. 
Therefore, ADA is not suitable for ECG beat 
classification. It can be noticed that classes A and F 
are the most difficult to classify correctly. This might 
be explained by the fact that class A beats have a 
similar shape to class N beats, which makes them 
hard to distinguish. On the other hand, class F beats 
are very uncommon in the dataset, and the simple 
method of up-sampling them does not help the 
models to learn their features well enough. 

Proceedings of the 11th International Conference on Applied Innovations in IT, (ICAIIT), November 2023 

36 



Figure 7: Confusion matrices for the top 3 models 
according to accuracy. 

6 CONCLUSIONS 

The paper presented a thorough comparison of 
2 Deep Learning approaches (CNN and LSTM) 
to 4 classical Machine Learning models (GDC, ADA, 
RFC, SVC) to classify arrythmia from ECG data. 

In total we used 10 models (3 for each DL approach 
and 1 for each ML approach) and compared their 
performance on the MIT-BIH Arrhythmia database. 
Various metrics such as accuracy, precision, recall 
and F1-score we used to evaluate the models on 
different classes od ECG beats. The results showed 
that CNN is the best model overall for arrhythmia 
detection, achieving the highest accuracy of 95% and 
the highest F1-score for most of the classes. SVC and 
LSTM also performed well, with accuracy 
of 94% and 93%, respectively, and high F1-scores for 
some classes. However, LSTM and SVC may have 
some advantages over CNN in terms of 
computational complexity and robustness, 
respectively. The ECG data can present several 
challenges for the arrhythmia detection models, such 
as noise, imbalance, and similarity of classes. To 
overcome these challenges, more advanced 
preprocessing and resampling techniques should be 
used. Incorporating domain knowledge and expert 
feedback into the models is a promising direction for 
future research and development. We believe that 
with further research on improving the performance 
and interpretability of machine learning models for 
ECG data analysis, more precise results can be 
expected. 
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