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Abstract: The issues of data flow optimization in telecommunication networks are considered. The analyses of the 

problem state of art shows the primarily utilization of logistic Maxflow model on ST-planar directed network 

graph with predetermined fixed metric. Concluded, that conventional logistic Maxflow model is not adequate 

to modern telecoms with flexibly reconfigured channels. Introduced the concept of the free-oriented network 

graph as an enhanced math-model for digital flows simulation. The inverse and direct Maxflow tasks are 

formulated on the normalised free-oriented ST-planar network graph, and the properties of the graph obtained 

as functions of vertices number. The direct Maxflow task is studied in tensor form, and the algorithm of test-

sequences generation for the inverse Maxflow task is constructed. The inverse Maxflow problem has been 

analyzed as a discrete optimization task on the Pontryagin maximum principle with two necessary extremum 

conditions. Related computation algorithm is built with polynomial complexity. Unlike the known 

approaches, proposed method is relevant to data flow optimization in the software defined networks with 

dynamically reconfigurable channels. Along with the maximal flow, the flow distribution over the network 

structure provided.  The formalism of the direct Maxflow task can be used for testing the algorithms of inverse 

Maxflow task solutions, and generation the training sequences for machine learning in AI models. 

1 INTRODUCTION 

An efficient way to reduce the cost and improve the 

quality of telecommunication service is increasing the 

network productivity by optimal scheduling the 

digital flows to gain better equipment utilization. This 

task is known as the Maxflow optimization problem. 

Historically, the Maxflow problem (MFP) arose in 

logistic systems to deliver some unimodal product 

(e.g. gas, oil, water etc) from a producer site S to 

consumer target T. A feature of such systems is that 

products should not simultaneously be sent in 

opposite directions, and transportation channels from 

source S to target T should not intersect with each 

other; besides, there should be no internal flow 

generators or accumulators other than S and T. 

The Maxflow problem conventionally involves 

searching a feasible flow on the given ST-directed 

weighted planar network graph with single-product 

flows and two unique vertices  the flow generating 

source S and flow accumulating sink T. Such a graph 

presumes that all the graph-arcs have fixed weights. 

Denote this type of graph ST-DWPG.  

The ST-DWPG graph as a generic logistic-system 

presentation with fixed arcs-weights still remains to 

be a common model for digital flows optimization. 

However, it is not fully adequate to modern 

telecommunication data networks with dynamic 

reconfiguration of channel capacities, potentially 

enabling the overall network performance increase. 

This work intends to advance the Maxflow study 

in data networks, using the feature of dynamic 

reconfiguration in digital communication channels.  
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Section 2 of this work considers the Maxflow 

problem state of the art. Section 3 formulates the 

objectives of the work. Section 4 introduces a dual 

formalization of the Maxflow problem as traditional 

(inverse) task of feasible flow finding and a coupled 

(direct) task of generating the testing sequences for 

MFP solution algorithms. Section 5 gives definition 

of the direct Maxflow task in tensor form. Section 6 

provides a discrete analysis of the inverse Maxflow 

problem on the ST-planar free-oriented graph. 

Section 7 summarizes results of the work. 

2 THE MAXFLOW PROBLEM 

STATE OF THE ART 

The widely known solution of the Maxflow problem 

(MFP) is Ford-Fulkerson algorithm (FFA), also 

referred to as “method” [1] (1956). It uses the Depth-

First path Searching technique (DFS), and works by 

iteratively finding an augmenting ST-path in residual 

graph (obtained by subtracting the current flow from 

all the arc-capacities along the flow-path). The 

optimum-criterion at any iteration is “maximal flow-

increment along the path”.  

The FFA stops when no more paths exist. It has a 

pseudo-polynomial run-time complexity O(F*E), 

where F is the maximal ST-flow, E is the number of 

arcs in the ST-DWPG graph.  

Based on FFA, alternative approaches have been 

developed. Among them, a very popular and strongly 

polynomial algorithm for Maxflow problem solution 

was proposed by E. Dinitz [2] (1970). In contrast to 

FFA, it provides the vertex-based Breadth-First path 

Searching (BFS) technique to find a single source 

shortest path in an unweighted graph. It has the 

O(V2*E) computational complexity; V, E  vertices 

and edges numbers.  

Similar to Dinitz, another FFS-based MFP-

algorithm was published by J. Edmonds and R. Karp 

in 1972 [3]; it has O(V*E2) computational 

complexity. For certain network topology it 

outperforms the Dinitz method in computation time. 

The theoretical foundations of the Maxflow problem 

in the context of general graph theory applications 

have been outlined in [4] (1976).  

A new push–relabel Goldberg-Tarjan algorithm 
for MFP solution proves that Dinitz blocking-flow 
method needs not more than O(min{V2/3, E1/2} 
augmentations in the unit capacity case [5] (1986). In 
particular case of capacity scaling and ingenious data 
structures, the run-time overcomes the O(V*E) 
barrier in Goldberg-Rao algorithm [6] (1998).   

In 2006, an improved Goldberg-Rao algorithm 

for the maximum flow problem was exhibited by D. 

Papp [7]. It works not only for unit-capacity network 

graphs (as Dinitz algorithm does), but for more 

general case of binary weighted arks.  

An original algorithm to approach the feasible 

flow in near linear time was proposed by P. 

Christiano et al for weighted undirected ST-graph. It 

uses the well-known Laplacian matrix method to 

solve a system of linear equations for electrical flow 

[8] (2010). The work claims developing the fastest

known algorithm for computing approximately

maximum S-T flows.

An enhanced formalism for combinatorial 

optimization problems like MFP is presented by M.A. 

Rajouh based on Pontryagin maximum principle. It 

formulates a set of necessary extremum-conditions 

kept along the algorithm iteration, that enables to 

curtail the initial diversity of iterations to a compact 

set of candidates for optimum. In some cases, the 

necessary conditions prove sufficient [9] (2013). 

A solid overview of network flow algorithms on 

the closed bipolar ST-directed weighted graph 

reflects the book [10] (2019) by D.P. Williamson. The 

book extends the scope of network flow study for 

multicommodity task, and gives the detailed analysis 

of particular two-commodity case. Also, the notion of 

ST-flow in undirected graph is defined, where any 

edge has an arbitrary positive orientation and consist 

of two opposite-directed arcs of equal capacities.   

Generalized MFP-statement to simulate the 

information flows in software defined network 

architecture is introduced in [11] (2019). In contrast 

to conventional logistic-network model in the form of 

bipolar closed ST-directed weighted planar graph 

(ST-DWPG), it defines the overall network capacity 

and its maximal flow on the open 3-pole non-planar 

free-oriented network graph. Related algorithm for 

the 6-vertex graph is presented in [12] (2019). 

An important class of electric-power flows 

optimization (the Equal Maximum Flow Problem  

EMFP) has been studied in [13] (2020). The EMFP 

aims for a maximum equal flow on all edges in a 

subset of the whole network graph edge-set. The 

paper extends the EMFP to Almost Equal Maximum 

Flow Problems (AEMFP) where electric-flow values 

differ according to a certain deviation-function. 

A fast and near optimal algorithm for 

optimization of the end to end routing in SDN-

network is proposed in [14] (2021), based on the max-

flow/min-cut theorem. It shows that the maximal flow 

searching technique with minimal hops paths 

provides better performance compared to the 

traditional shortest path algorithms. 
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To optimize the complex multimodal flows in 

logistic systems, an application of genetic algorithm 

described in [15] (2022), which is generally used to 

solve the Vehicle Routing Problem (VRP). It 

simulates Darwin’s natural evolution in 

transportation network model, and includes five 

recycling steps (task coding, population initialization, 

selective operations definition, mutation, selection 

process). 

The overview of deterministic Maxflow and Min-

cost flow logistic optimization problems for ST-

directed weighted graph is given in [16] (2023) with 

emphasis on the worst-case of running time. The 

paper solely reflects the algorithms having a faster 

run-time than earlier published. It noticed, that 

Goldberg–Rao algorithm has a weakly polynomial 

run-time; the existence of a strongly polynomial 

O(V*E) algorithm was shown by Orlin in 2013, Orlin 

and Gong in 2021. Besides, interior-point methods 

(IPMs) for MFP-solutions considered, as well as the 

algorithms for minimal flow-cost. 

A promising direction in solving complex 

combinatorial problems such as MFP is the use of 

artificial intelligence (AI) and machine learning (ML) 

technologies. A survey of the recent attempts in this 

area published in [17] (2021). Due to the hard nature 

of these problems, the surveyed algorithms rely on the 

handcrafted heuristics for making decisions, that 

otherwise are too expensive to compute or 

mathematically not well defined. Thus, machine 

learning looks like a natural candidate to make such 

decisions in a more principled and optimized way.  

A set of single-machine scheduling problems with 

resource-dependent processing times is studied in 

[18] (2021). Heuristic algorithms for solving the

reduced to unified model problems are presented.

Three types of scheduling tasks are specified: due

dates to jobs assignment, resources allocation to job

operations and  machines jobs scheduling.

Various researches on graph-based tasks deep 

learning are surveyed in [19] (2022). The paper 

focuses directed/undirected wired and wireless SDN 

networks as the most promising solution driving the 

networking industry to re-examine traditional 

network architecture. To track the follow-up research, 

a public GitHub repository is created, where the 

relevant papers will be updated continuously. 

The ML-based approach to MFP solution presents 

the N. Orkun Baycik publication, where the tree-

based learning method is applied. It includes decision 

tree and random forest regression (supervised 

learning algorithm and bagging technique, that uses 

an ensemble learning method). Both trees are built 

independently [20] (2022).  

A network based intelligent node labelling (INL) 

algorithm for solving the Maxflow problem in 

directed network graph is developed in [21] (2023). It 

eliminates common augmenting paths technique to 

compute the maximal flow. Instead, it tries to balance 

input-to-output flow values for all the intermediate 

nodes, thus avoiding the excess or stagnant flow and 

reduction of the under-utilized outflow arcs. The 

algorithm needs at most two iterations to transform 

the initial N-nodes network into an equivalent 

network with O(V*E) worst-case complexity.  

Summarizing the spoken above methods, 

algorithms and approaches to Maxflow problem 

solution, we conclude the following: 

1) The most of the surveyed works on the Maxflow

problem explore the so called “logistic model”

of transportation system in the form of directed

bipolar ST-graph with a source node S and a

target node T [1-7, 10, 14-16, 19, 21]; also,

undirected graphs are used to simulate electrical

circuits and networks ([8, 13]). The case of

‘multi-source/multi-target’ graph (aka bipartite

graph) can be easily reduced to a bipolar ST-

graph. The case of undirected graph is

commonly understood as a symmetrically

directed graph.

2) The conventional Maxflow model of logistic

system is not really adequate to modern data

networks with dynamic reconfiguration of

optical and wireless communication channels,

and therefore, prevents to benefit the digital

channel reconfigurability for data network

performance. A further development of logistic

flow model towards the SDN networking

architecture is given in [11-12] by the concept

of the  ‘free-oriented weighted graph’ along

with related algorithm of the Maxflow

computation over the 3-pole/6-node open graph.

3) Recently, artificial intelligence (AI) and

machine learning (ML) techniques have been

increasingly used to solve complex

combinatorial problems on graphs [17-21]. An

important inductive AI-method is supervised

learning (input objects and desired output-

values for machine learning an AI-model). In

terms of MFP, a graph sample G is an input, and

the maximal flow distribution F on the graph G

is the output. So, the sequence {G, F} can be

used for ML. Yet, finding F for G is a hard

problem; instead, constructing the graph G(F)

for a given F is a rather trivial task. In all,

generating a complete set {G(F)} is equivalent

to building a sufficient ML-sequence {G, F}.
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Based on the surveyed publications analysis, the 

objectives of this work are formulated further on with 

emphasis on data flow study in bi-polar networks. 

3 OBJECTIVES OF THE WORK 

This work aims to take use of the dynamic 

reconfiguration ability of the modern 

telecommunication channels for data networks 

performance increase. To achieve this, the following 

objectives have been set: 

1) Formalization of the inverse and direct Maxflow

problem on the free-oriented bi-polar ST-planar

network graph with multiple vertices. This

includes normalization of the complete ST-

planar graph in visual and matrix forms with the

distinguished topology and metric, studying the

principal properties of the normalized graph,

setting the direct and inverse Maxflow tasks.

2) Definition of the direct Maxflow task in tensor

form. The set of ST-paths in the graph is given

as a system of vectors (tensor) in the N-

dimensional orthonormal Euclidean space,

where N is the full number of edges in ST-planar

graph.

3) Discrete analysis of the inverse Maxflow task on

the free-oriented ST-planar network graph as an

NPC-combinatorial optimization task, aimed to

find the feasible flow between the two open

graph poles, along with the flow distribution

tensor.

4 FORMALIZATION OF THE 

INVERSE AND DIRECT 

MAXFLOW PROBLEM ON THE 

FREE-ORIENTED ST-PLANAR 

NETWORK GRAPH 

The concept of the free-oriented weighted graph 

(FWG) with reconfigurable edges was exhibited in 

2019 to apply the known MFP-algorithms to digital 

flows simulation in telecoms [11]. In contrast to other 

methods, the weight of any FWG-graph edge is 

assumed to be equal the fixed capacity of a duplex 

digital channel, that is divided in any proportion 

between the two coupled simplex-channels, on order 

to fully utilize the overall channel capacity.  

Besides, the solution of the FWG-based Maxflow 

task does not only involve finding the feasible flow 

Fmax, but also the distribution of this flow D(Fmax) 

over ST-paths of the graph. Related algorithm for 

calculation Fmax and D(Fmax) on the 3-pole/6 vertex 

FWG-graph is presented in [12].  

In this regard, there is a need in adaptation of the 

conventional ST-DWPG model of a logistic system 

for digital flows simulation in data networks with 

flexible configurable channels.  

In graph theory, graph G is a cortege of binary 

relations g(k, m) on the set of vertices V: G(V):= 

{g(k,  m)}, k, mV. If g(k, m)  g(m, k), then G is 

undirected graph; else G is directed graph [22]. That 

means: a) G is directed graph, if at least one g(k, m) 

 g(m, k); b) undirected graph is equivalent to

symmetrically directed graph; c) the Ford-Fulkerson

algorithm FFA is valid for both directed and

undirected planar graphs.

Consider conventional ST-planar directed 

weighted graph G(V) of 4 vertices {S, T, 2, 3} and 

6 weighted arcs: gS,2 = g3,T = 1; gS,3= g2,T = 3; g2,3 = 

g3,2 = 1. It is easy to see, that here Fmax= 3, wherein 

residual graph RG has 3 arcs: gS,3= g2,T = g2,3 = 1; the 

arc g2,3 can’t be used to augment the flow.  

Instead, the equivalent free-oriented weighted 

model FWG(V) of the same case has 5 edges gS,2 = 

gT,3 = 1; gS,3 = gT,2 = 3; g2,3 = 2. By this model, Fmax is 

increased to 4, wherein residual graph RG falls down 

to null. This illustrates the privilege of coherent 

transition from the common logistics directed graphs 

to the free-oriented graph models in telecoms. 

Definition of normalized ST-planar graph. 

Consider the visual and matrix forms of the 

ST-planar free-oriented weighted graph (FWG); the 

first one is less formal but intuitively clear; the latter 

is more convenient for digital processing. It is clear, 

that both forms of the graph are invariant towards the 

vertex’s names. Let graph G(V) has digital vertex’s 

indexes 0, 1, 2, ..., V-1 (V is the total vertex’s 

quantity). Let indexes 0 and 1 reserved for S and T 

network nodes (we label them as S0 and T1 in visual 

form). In these terms, Figure 1 depicts normalized 

6-vertex ST-planar visual graph; figure 2 shows this

graph in matrix view; the graph edges have numeric

names (112).

The visual graph framework (Figure 1) contains 

the nested sub-graphs, regularly growing by adding 

new vertices 2, 3, ... to the initial primitive graph of 

two adjacent vertices (S0, T1) with two outer open 

edges. Vertices S0 and T1 simulate digital network 

border gateways for transfer the data flow F in both 

directions via the open edges. This framework has 

maximal number of edges (12) for a 6-vertices planar 

graph. The graph topology in Figure 1 is shown by 

edge-lines, while the metric is given by the edge 

values.  
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Figure 1: Normalized ST-planar visual graph. 

The matrix graph (Figure 2) is divided in three 

sections: right-upper (topology), left-down (metric), 

diagonal (open edges). The yellow cells in Figure 2 

indicate three eliminated edges of complete planar 

6-vertex graph with 12 edges compare to complete

non-planar graph with 15 edges. In digital

presentation of matrix graph, names "S0", "T1" are to

be substituted by 0 and 1 to adhere the Python array

indexing [23].

Figure 2: Normalized ST-planar matrix graph. 

In classic analysis, ‘topology’ T is a collection of 

subsets X` of the given set X, if: {, XT; (U, 

VT) UVT; I(VIT)T}, where Ø is empty 

subset. The pair (X, T) is called ‘topological space’. 

The subsets X`T are called ‘open subsets’ [24].  

Considering the FWG-graph model, we interpret 

‘topology’ as vertices connectivity in the free-

oriented graph, where  is open network 

environment; the ‘open subsets’ X` are bound sub-

graphs that have finite paths to the network-outside 

via the open poles S and T; the latter simulate the 

network border gateways. 

The visual graph in Figure 1 is convenient for 

studying core properties of ST-planar network graph 

as functions of the vertex quantity (V), which are 

important to formalize the inverse and direct 

MaxFlow problem in telecoms. 

The number of inner edges. In case of non-

planar complete graph, the number of inner edges 

equals ENPG(V)=V(V-1)/2. Graph with V≤4 is always 

planar, so ENPG(3)=EPG(3)=3. In Figure 1, adding any 

next vertex to initial 3-vertex graph increments the 

total number of planar graph edges EPG in 3 edges: 

EPG(3+1)=3+3=6; EPG(4+1)=6+3=9; EPG(5+1)= 

9+3 =12 and so on. In general, EPG(V)=3(V-2), V3. 

The number of ST-paths. The ST-planar graph 

with 3 vertices (S0, T1, 2) in Figure 1 has two 

ST-paths: one 1-hop-path ‘S0-T1’ and one 2-hop-

path ‘S0-2-T1’. Each next vertex V adds two paths 

more: one 2-hop-path ‘S0-V-T1’ and one h-hop-path 

(h3) through the ‘vertical’ vertex (V-1, V), e.g. paths 

‘S0-3-T1’ and ‘S0-2-3-T1’.  

Thus, the number of ST-paths in complete planar 

graph is P(V)=2(V-2), V3. This includes: one 1-hop-

path, (V-2) of 2-hop-paths, (V-3) of h-hop-paths with 

h>2; in sum: 1+(V-2)+(V-3)=2(V-2), V3. Any next

path p in the list of counted above paths P(6)=8 in

ST-planar graph (Figure 1) has at least one edge, that

is new -added to the previously listed edges (yellow

marked cells in Figure 4), and in bold-font here:

{p}=(1), (2, 3), (4, 6), (7, 9), (10, 12), (2, 5, 6),

(4, 8, 9), (7, 11, 12).

Distribution PV(h) of h-hop paths. We bring 

without proof the empirical formula: PV(h)=1, if h=1; 

PV(h)=V-h, if h=2, 3, ..., V-1; e.g. P6(h=1, 2, 3, 4, 5) 

=1, 4, 3, 2, 1. The set of eight shortest paths includes: 

P6(h=1, 2, 3) = {1, 4, 3}. The set of 8 max-diverse and 

short paths is {P6(1)=1; P6(2)=4; P6(3)=1; P6(4)=1; 

P6(5)=1} formed by edges {(1); (2, 3); (4, 6); (7, 9); 

(10, 12); (2, 5, 6); (2, 5, 8, 9); (2, 5, 8, 11, 12)} with 

8 backward-unique edges in bold. It can be argued, 

that the number of paths P(V)={p} equals the total 

number of additive flows f(p) in complete ST-planar 

graph G(V). Figure 3 summarizes the spoken above 

properties of ST-planar network graph. 

Figure 3: ST-planar free-oriented graph properties. 
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The known MFP-algorithms suppose predefined 

fixed arcs-weights, and thus, do not correctly work on 

the FWG-model with flexible scheduled arcs. We 

propose here an alternative approach to MFP study in 

the form of the direct and inverse Maxflow task. 

The ordinal direct Maxflow task (O-DMT) we set 

as ‘how to construct the free-oriented ST-planar 

graph G(F) with minimal edges` capacities to provide 

the given total flow distribution F over the set of ST-

paths. The inverse Maxflow task (IMT) we set as 

‘how to find the maximal feasible ST-flow 

distribution F(G) over the set of ST-paths on the given 

free-oriented ST-planar graph G. 

Generic inverse maxflow task IMT implies 

scanning all the ST-paths on the network graph 

topology. The total number of paths P(V) as function 

of vertices quantity V has a faster than polynomial 

growth even for planar graphs. Such computational 

tasks are referred to as nondeterministic polynomial 

complete problems (NPC) [13].  

To solve complex combinatorial optimization 

problems of NPC-type, heuristic approaches are often 

used, which do not guarantee the best results, but may 

have less complexity, calculation time and produce 

adequate outcomes [18].  

One of the famous and widely used heuristic 

method is Pontryagin maximum principle. This is 

choosing a set of necessary extreme conditions kept 

at any point of the object phase-track or the algorithm 

iteration, aimed to curtail the initial solutions 

diversity to a compact set of candidates for optimum. 

In some cases, the necessary conditions prove 

sufficient [9].  

Solving complex NPC problem by heuristic 

method needs reliable proof the result obtained. The 

rigorous proof not always feasible, and empirical 

verification often necessary using various testing 

tools. Here, we propose an idea ‘Verify complex 

inverse task algorithm by simple direct task samples 

generation’.  

The spoken above ordinal direct Maxflow task O-

DMT is rather simple for particular given flow F-

distribution over ST-graph G. In general, the direct 

Maxflow task (DMT) turns into non-trivial case of 

‘generation a comprehensive sequence {F, G} with 

input F and output G for IMT-testing with inversed 

input/output {G, F}’.  

Today, more and more human tasks addressed to 

artificial intelligence (AI) with digital neural 

networks, that capable to be taught by machine 

learning (ML) techniques. The matter is, how to 

construct training samples sequences (TSS) for AI-

models comprehensive teaching.  

Let S = (G, F) a distinct DMT-task output, which 

can be used for an IMT-case testing. In these terms, 

we define {S}= {(G, F)} as the testing/training 

samples sequence (TSS) for testing the inverse 

Maxflow task algorithms on the free-oriented 

ST-planar graph.  

Towards the Maxflow problem in the context of 

AI, we propose the DMT-output generator of 

IMT-tests {G, F} to be used as a training samples 

sequence (TSS) for machine learning of an AI-model. 

The core issue of the direct Maxflow task (DMT) is, 

how many samples {S} needed for complete testing 

the IMT-algorithms or exhaustive MFP machine 

learning. 

5 DEFINITION OF THE DIRECT 

MAXFLOW TASK IN TENSOR 

FORM 

We formulate a particular case of direct Maxflow task 

(DMT) on the bi-pole planar FWG-graph as 

following: ‘Find metric M of network graph G(V) 

with arbitrary number of vertices V, which is relevant 

to given flow distribution F(P) over the set P(V)={p} 

of paths pP(V) in the given ST-planar free-oriented 

network graph G with complete topology T’. The 

‘complete topology’ means, that all the possible 

edges EPG of the ST-planar graph G(V) are included 

(Figure 3).  

Consider the complete planar graph G(V) with 

V=6 vertices (Figure 1). The graph topology T is 

presented by the set of 12 edges EPG={e} identified 

by their digital values 112 in matrix graph 

(Figure 2). All the edges eEPG are mutually 

independent; let each of them be unitary (topological) 

vector e, and the set E:={e} be the Euclid vector 

basis. Graph G(6) has 8 paths P(6)=8, and each path 

pP(V) possess at least one backward-unique edge ef 

to carry augment flow f(p). The set of 8 shortest paths 

is a system of vectors (tensor) P={p} in matrix view 

(Figure 4); here, empty cells are zeros, p(1)=e(1); 

p(2)=e(2)+e(3) and so on. In this case, P includes: a 

single 1-hop path, four 2-hop paths and three 3-hop 

paths.     

The matrix of scalar products {p(k)p(m)} is 

paths-metric tensor MP of P (Figure 5). It is evident, 

that the first five vectors of P are mutually 

orthogonal, as well as vectors number 6 and 8. The 

system P with MP>0 we call the path’s tensor. It is 

easy to show, that MP is positive matrix [25]. 

Let {fP(k)} be the distribution of the entire 

ST-flow F over the paths p(k) of the graph G(V), 
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Figure 4; F=sum{fP(k)}; f:={√𝑓𝑃(k)} the flow row-

vector with scalar product (ff)=F; F:=diag(f) the 

diagonal matrix denoted as flow-tensor.  

Figure 4: System P of path’ vectors in ST-planar graph. 

The metric tensor MF=(FF) is distribution of the 

total flow F over the paths P={p}; F = trace(MF)= 

(ff). On this premise, we define the flow-paths 

tensor FP:=FP. For the graph in Figure 1, the FP is 

(812) matrix, where each k-row element is 

multiplied by the correspondent √𝑓𝑃(k) value.  

Figure 5: Metric tensor MP of path’s P vector system. 

The convolution g:=fFP we define as network 

flow-load metric. For the graph G in Figure 1, g is the 

row-set with 12 flow-loads of G-edges. If fP(k)1 and 

P in Figure 4, then g=(1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 2). 

Now, the direct Maxflow task for ST-planar free-

oriented graph G with complete topology T lies in 

generating a relevant manifold of path’s tensors P on 

T, along with the metric tensors MF. Here, the 

shortest-paths criteria or the maximal paths-diversity 

can be applied. This results in calculation the tensor 

FP=FP=diag(f)P and row-set g=fFP:  

DMT: (P, MF)T  (g)T. 

The graph G(T, g) with topology T and metric g 

is the input for the inverse Maxflow task, while the 

output is (MF, P). Thereby, a comprehensive set 

{G(T,g)/(MF,P)}, obtained by the routine direct 

Maxflow task solution, can be used for testing the 

non-trivial algorithms of the hard inverse Maxflow 

task, as well as a training sample sequence (TSS) for 

machine learning of an AI-model: 

IMT: (g)T  (P, MF)T. 

Ultimately, the direct Maxflow task (DMT) as a 

first part of the whole Maxflow problem (MFP ) for 

data flows simulation in telecommunication networks 

can be given by the following formalism. 

1) Bring the network topology to the normalized

view of the ST-planar graph G(V) with V

vertices (see Figures 1 and 2).

2) Generate the path’s tensor P(G) and flow-tensor

F = diag(f), f = √𝑓𝑃(k) (see Figure 4).

3) Calculate the flow metric-tensor MF = (FF).

4) Get flow-paths tensor FP = FP(G).

5) Count the graph G(V) metric g = fFP.

6) Fix (P, MF)T  (g)T as a DMT result sample.

7) Use {(g)T  (P, MF)T} as IMT/TSS sequence.

6 DISCRETE ANALYSIS OF THE 

INVERSE MAXFLOW TASK ON 

THE FREE-ORIENTED ST-

PLANAR NETWORK GRAPH  

Following the definitions in Section 5, here we 

introduce the inverse Maxflow task (IMT) on the 

free-oriented ST-planar weighted network graph 

G(V) with V vertices, complete topology T and given 

metric g, as the objective: “Find the feasible total flow 

value F between the two open poles S, T, along with 

the path’s tensor P(G) and flow-path tensor FP”.  

This type of discrete optimization tasks belongs to 

the known class of NPC combinatorial problems. An 

obvious but worst strategy for exact solving the 

formulated above IMT task is as follows.  

Let Pi={pk}i the set of ST-paths on the complete 

ST-planar graph G, where each Pi is unique in paths 

pk ordering, e.g.,  

{Pi}={{p1, p2, p3}, {p1, p3, p2}, {p2, p1, p3}, 

 {p2, p3, p1}, {p3, p1, p2}, {p3, p2, p1}}. 

On any iteration Pi, the path pk is consequently 

examined for feasible flow Fi=sum{f(pk)}i until no 

more paths pk exist. Among the iterations {Fi}, one or 

more best results {Fmax}{Fi} are to be taken as final 

product. The power of the set {Fi} steamily grows 

with the increase of vertex’s quantity V.  

To reduce this task, apply the known heuristic 

approach on the base of Pontryagin maximum 
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principle. Let two extremum necessary conditions for 

each step ‘k’ of the current iteration ‘i’: 

1) “max-flow-try”, i.e. f(pk)=max;

2) “shortest-path-first”, i.e. pk≤ pk+1 in hops.

The first condition is used in common FFA-based

algorithms of MFP solution on the ST-planar directed 

graphs; this ensures convergence of the solution 

process.  

The second condition is used in FFA-based 
Edmonds-Karp algorithm of MFP to reduce 

computational complexity. Figure 6 helps to see the 

necessity of the ‘shortest-path-first' condition to 

achieve the maximum flow in ST-planar free-oriented 

graph.  

Figure 6: ST-planar graph case with critical first path. 

It is clear, that the feasible  flow from the source 

S0 to the target T1 in Figure 6 is Fmax= f1(S0-2-T1) + 

f2(S0-3-T1) + f3(S0-3-2-T1) = (1+1+1) = 3, whereas 

the residual graph is null. However, in case of 

violation the second necessary condition (‘shortest-

path-first’), e.g. if begin with the 3-hop path p1=(S0-

2-3-T1) instead 2-hop path (S0-2-T1), we obtain less

feasible flow F=1< Fmax=3, and non-null residual

graph GR, whereas no more paths from S0 to T1 exist:

F=f1(S0-2-3-T1)=1<Fmax=3;  

GR={(3, S0)=2; (3, T1)= 2}; 

vertices S0 and T1 are isolated. 

Thus, violating the second necessary condition 

(‘shortest-path-first’) may result in false output 

product (at least one case shown above); therefore, it 

is always needed, i.e. is necessary condition.   

Let estimate the complexity reduction of the 

inverse MFP-task by the ‘shortest-path-first’ 

condition provision. The total number of different h-

hop paths in ST-planar graph G(V) with V vertices 

can be calculated with Figure 3:  

NPV=1+sum(V-h), h2, 3,...,V-1. 

In particular case of V=6, it is  

NP6=1+(6-2)+(6-3)+(6-4)+(6-5)=1=11. 

It is easy to show, that in general case, the number 

of h-hop paths in ST-graph with V vertices is 

polynomial function 

NPV = 1+sum(V-2,V-3, ...,1) = 1+0.5(V-2) (V-1). 

So, each set Pi={pk}i has NPV paths number. 

Let {Pi}  be the class of all the sets Pi. According 

to the known combinatorial formulas, the number of 

sets Pi in the class {Pi} equals the number of 

permutations of the paths pk: 

|{Pi}|=123...NPV=(NPV)!. 

For instance, if V=6, then |{Pi}|=11!=39`916`800. 

It is rather clear, that among all the Pi sets within 

the full {Pi} collection, the only one set P{Pi} may 

satisfy the "shortest-path-first" condition.  

Thus, by applying Pontryagin maximum principle 

along with two heuristic necessary conditions (“max-

flow-try” and “shortest-path-first”), the inverse 

combinatorial Maxflow task (IMT) on the bi-polar 

free-oriented ST-planar network graph can be 

reduced from the none-deterministic polynomial 

complexity NPC, with {(NPV)!} iterations for 

scanning sets of paths {Pi},  to PC-task with 

computation the flow distribution over a single set of 

paths P={pk}, that includes the polynomial number of 

paths NPV = 1+0.5(V-2) (V-1). 

Now, we get the answer, what ML training 

sequence TSS is sufficient for testing the IMT-

algorithms on the FWG network graph. It is the set of 

paths NPV, constructed by Pontryagin maximum 

principle with two extremum necessary conditions. 

7 CONCLUSIONS 

The main scientific result of the work is formalization 

of the inverse and direct Maxflow tasks on the free-

oriented weighted ST-planar network graph. This 

allows to use the dynamic reconfiguration of the 

modern telecommunication channels in digital 

network-flow optimization, in order to increase the 

overall networks performance. Within the scope of 

this result, the following is obtained. 

The Maxflow problem state of the art is analyzed 

in Section 2. It shows, that most publications on the 

Maxflow problem explore the so called “logistic 

models” of transportation system in the form of 

directed bipolar ST-graph. Among them, recent 

researches on artificial intelligence and machine 

learning techniques have been increasingly used to 

approach the Maxflow problem.  

It is concluded, that conventional logistic 

Maxflow models are not enough adequate to modern 
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telecoms, and therefore, hamper to fully benefit the 

SDN-reconfigurability. Known algorithms on multi-

pole free-oriented graphs are solely limited by the 6-

node graph case. Because of that, further researches 

on Maxflow methods in telecoms on the free-oriented 

graph model needed.  

To advance the Maxflow problem study in data 

networks with reconfigurable channels, related 

objectives have been set in Section 3. Section 4 

formalizes the inverse and direct Maxflow tasks on 

the free-oriented bi-polar ST-planar network graph in 

terms of inverse Maxflow task testing and machine 

learning of artificial intelligence models. Section 5 

studies the direct Maxflow task as a first part of the 

whole Maxflow problem in tensor form; an algorithm 

of testing samples set calculation is constructed.  

The inverse Maxflow problem has been analyzed 

in Section 6 as a discrete optimization task on the 

Pontryagin maximum principle with two necessary 

extremum conditions: ‘max-flow-try’ for the flow-

path scanning, and “shortest-path-first” for 

augmenting paths searching. The related  algorithm is 

reduced to a single iteration of paths tensor analysis 

with polynomial paths number.  

In general, unlike the known approaches to 

product flow maximization on logistic system model, 

a novel method introduced for digital flow 

optimization in software defined networks with 

dynamically reconfigurable channels. Along with the 

total maximal flow, this method provides the 

maximal flow distribution over the network structure. 

The direct Maxflow formalism also enables the 

Maxflow algorithms testing and machine learning of 

artificial intelligence models.  
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